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We give a representation-theoretic interpretation of the sine-Gordon equation
using the action of affine Kac-Moody algebra S/l\g on the Weyl algebra. In this setup 7-
functions become functions in non-commuting variables. The skew Casimir operators
that we introduce here, give rise to a hierarchy of partial differential equations that

includes the sine-Gordon equation and two copies of the Korteweg-de Vries equation.
0. Introduction

One of the most fascinating applications of the Kac-Moody theory is the use of affine
Lie algebras and their groups to exhibit hidden symmetries of soliton equations. In 1981
M. Sato [20] and Drinfeld-Sokolov [6] (see also [7]) discovered fundamental links between
soliton equations and infinite-dimensional Lie groups. In an important sequence of papers
(2], [3], [4], Date, Jimbo, Kashiwara and Miwa gave a construction of the Kadomtsev-
Petviashvili and Korteweg-de Vries hierarchies based on the representation theory of affine
Kac-Moody algebras. The affine algebra a., produces the KP hierarchy, while the KdV
hierarchy is linked to s/l\z

Date, Jimbo, Kashiwara and Miwa used the vertex operator realization of the basic
highest weight module, which was discovered earlier by Lepowsky and Wilson [18]. In this
realization for 5/1\2, the space of the basic module is identified with the polynomial algebra
in infinitely many variables x = (z1, z3,xs5,...). A completion of this space is interpreted
as the space of 7-functions. In this framework, the Backlund transformation that raises the
soliton number of an N-soliton 7-function, is given by the exponential of a vertex operator.

Kac and Wakimoto [16] discovered that the Casimir operator equation
QreT)=0 (0.1)

decomposes in a hierarchy of PDEs in Hirota form.
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The sine-Gordon equation

Uzt = sin(u) (0.2)

is of great significance to both mathematics and physics. This equation appeared first in
geometry and describes the surfaces of constant negative curvature in R®. The physical
importance of the sine-Gordon equation is related to the fact that it is a soliton equation
which is manifestly Lorentz-invariant.

The sine-Gordon equation played a special role in the development of the soliton
theory. The Backlund transformation method, which is a precursor for the Lie theory
approach, was first developed in the geometric setup for this equation. Before the con-
nection between soliton equations and infinite-dimensional Lie algebras was discovered in
1980’s, Mandelstam wrote a paper [19] on quantized sine-Gordon equation, in which he
used operators somewhat similar to the vertex operators.

From the AKNS method [1] it is known that the sine-Gordon equation is related to
;l\z, but the representation-theoretic interpretation of this equation was missing.

The main goal of the present paper is to fill this gap. Our starting point is the following
observation. From the original Hirota’s paper [13] we know that the sine-Gordon equation

(0.2) can be written as a system of equations in Hirota form on a pair of functions (g, 1)

{Dth(T()OTO —m07)=0 (0.3)

D, Dy(79 0 11) = ToT1,

where u is related to (79,71) by u = 4arctan (:—;) To describe the soliton solutions in
terms of 7-functions, we to put 79 and 7 together into 7 = 79 + ¢71. Then the N-soliton
solution for the sine-Gordon is given by (cf. [13]):

T="Ty+ 1T =

N 2 k k
= 1+Z Z aj, ...Oljkik H (%) exp ((Z zj_sl) t+ (Z sz> a:)
Ir Js s=1 s=1

k=11<j1<...<ju <N 1<r<s<k

with real-valued «;’s and z;’s.

If we compare this with the expression for the N-soliton solution for the KdV hierarchy
[11], [14]
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then it becomes clear that time ¢ in the sine-Gordon equation is nothing but variable
x_1 missing in the KdV picture! The “correct” set of variables should include both pos-
itive and negative odd integers: x = (..., x_3,%_1,%1,Z3,...). We shall use the symbols
Ziodd; Zev, Nodd, Ney to denote odd/even integers/natural numbers.

Our extended hierarchy will be completely symmetric in positive and negative direc-
tions. This means that the s/l;-module that we need to construct should not be of the
highest /lowest weight. However, the Casimir operator is a crucial ingredient for the con-
struction of the hierarchy of differential equations (see (0.1) above). Formally, this operator
is well-defined only for the highest/lowest weight modules. Nevertheless, we are still able
to use the Casimir operator in our situation.

In the vertex operator realization of the basic highest weight module, gl; acts by
differential operators on the algebra of polynomials C[z1,x3,z5,...]. In this paper we
represent 8/l\2 by the same differential operators, but now acting on the algebra of differential
operators in variables x1,x3, s, ..., by left multiplication. The algebra of differential
operators is isomorphic to the Weyl algebra W generated by p;,q;, 4,5 € Noqqa with

relations

DiDj = DiPi» Q45 = 4%, PiGj — 4;pi = cidij -1, ¢; € C\{0}.

o)
a_pl.a
% are well-defined. This allows us to view the elements of the Weyl algebra as functions

Though the Weyl algebra is non-commutative, still the partial differentiations
on a quantized space.

The Weyl algebra has a Poincaré-Birkhoff-Witt decomposition

W= C[Qlaq& v ] ® (C[plap3a .. ]

Since both subalgebras C[q1,¢s,...] and C[p1,ps,...] are commutative, there is a linear

bijection between W and the polynomial algebra C[...,z_3,z_1,21,23,...]:
m: W — Clzy,23,...]®Clz_1,2_3,.. ]

The image of a differential operator under map = is called the symbol of a differential
operator (see e.g., [17]).

The idea of our approach is to write a Kac-Moody group invariant equation on a Weyl
algebra element 7 and then convert it into a hierarchy of partial differential equations in
Hirota form on the symbol 7 = (7). Then we can use the Kac-Moody group action to

generate the soliton solutions from the trivial solution 7 = 1.
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The function 7 = 1 is not anymore a solution of (0.1), since we have changed the
action to be the left multiplication and 1 now represents the identity operator. However,

7 =1 is trivially a solution of
QTRT)— (T 7)Q=0. (0.4)

This algebraic equation transforms into a hierarchy of the non-linear PDEs in the variables
x=(...,2_3,%_1,%1,Z3,...) which contains two KdV subhierarchies going in positive and
negative directions.

The simplest new equation in this double KdV hierarchy is the following (cf. (4.34)):

0
Uyt = B (Ugzy + Ugly + Ug) (0.5)

with * = z1,y = x_1,t = x3. This is a generalization of the KdV with two spatial
variables, but different from the Kadomtsev-Petviashvili equation.

The sine-Gordon equation can not possibly occur in the double KdV hierarchy (0.4)
since the system of Hirota equations (0.3) can not be expressed in terms of 7 = 79 + i1y
alone.

Using the boson-fermion correspondence we construct “skew” Casimir operators that
split 7 into even and odd parts (Proposition 2.2). It remains a mystery whether the skew
Casimir operators are related to the Dirac operator. We construct a hierarchy of equations
by considering skew analogs of (0.4) (see (2.7), (2.8)).

As expected, the sine-Gordon equation with respect to the variables x; and z_; ap-
pears in it, “linking” the two KdV hierarchies.

The generalization of the present work to the case of s/l; should yield a hierarchy
containing the finite Toda chain. The infinite Toda chain was derived by Kac and van
de Leur [15] from the two component vertex operator representation of as.. It would be
interesting to understand the connection between these two approaches.

Here is a brief description of the structure of the paper. In Section 1 we construct a
representation of affine Lie algebra a., on a completion of the Weyl algebra W. We also
review the boson-fermion correspondence and the construction of the Casimir operator.
In Section 2 we consider the reduction of this representation to s/l;, introduce the skew
Casimir operators and study their properties. In Section 3 we show how to convert the skew
Casimir operator equations into a generating series of PDEs in Hirota form and construct
N-soliton solutions for these equations. In the final section we derive non-linear partial
differential equations from the Hirota equations. We also obtain the Leibnitz formula for

the Hirota formalism and use it for the treatment of systems of Hirota equations.
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1. Boson-fermion correspondence and representations of a.,

In the previous works on applications of infinite-dimensional Lie algebras to soliton
equations the main idea is to represent Lie algebras by differential operators. In this setting
the Casimir operator equation becomes an infinite hierarchy of non-linear PDEs in Hirota
form. The fact that the Casimir operator commutes with the Lie algebra allows one to
construct soliton solutions of this hierarchy.

The approach that we take here is to use the action not on the space of functions,
but rather on the Weyl algebra, or, equivalently, on the space of differential operators
themselves.

We consider the Weyl algebra WV, an associative algebra with 1 generated by the
elements p;, ¢;, © € N with the defining relations

4 ..
Diqj — qiPi = —35@'1, PiDj = PiDi» %95 = 4%, 1,5 € N. (1.1)

The scaling factor —% in the first of these relations is chosen to put the vertex operators
considered below, in a more symmetric form. Essentially, W is a factor of the universal
enveloping algebra of the Heisenberg algebra in which the central element is identified with
1.

The Weyl algebra has a natural representation on the space of polynomials in infinitely
many variables (Fock space) F' = Cl[zy,za,...] by the operators of differentiation and

multiplication:
2 0

-, 205, € N.
j 0z; q; J J

pj —

Thus the Weyl algebra can be also interpreted as the algebra of differential operators on

F.

98 98
Op;’ Og;

are well defined (which follows from the fact that the relations (1.1) survive the partial

In spite of the non-commutativity of the Weyl algebra, the partial derivatives

differentiation). These partial derivatives are inner derivations of W ([5], section 4.6):

0

ap; (f(a,p)) = i[qg',f(q, P)l, a%j (f(a,p)) = —% [pj, f(a,p)], flq,p) € W.
(1.2)



Here q= (q17Q27 .- ')7 P= (p17p2a .- )

The exponentials exp(a%), a € C, (resp. exp(aaiqj)) are the shift operators

pi — pi + 0ija, ¢ — qi, (resp. p; — pi, ¢ — ¢ + i), which are well-defined com-
muting automorphisms of W.

Clearly, an element f(q,p) € W can be written in many ways. We call the normal
form of f(q, p) its presentation in which the generators ¢;’s are grouped to the left of p;’s in
all monomials. The normal form can be found using the standard Poincaré-Birkhoff-Witt
procedure. It also corresponds to the decomposition W = W~ @ W, where W™ (resp.
W) is an abelian algebra generated by qi,qa, ... (resp. p1,pa,...).

The subalgebra W~ (resp. W) is isomorphic to the algebra of polynomials in in-
finitely many variables C[z1, x2,...] (resp. Clz_1,2_2,...] ). Consider the isomorphism of
vector spaces

T: W QW' = Clzy,w2,...2_1,7_2,...],

7w (f(q1,q2,...)9(p1,02,...)) = f(x1,72,...)9(x_1,7_2,...).

The map 7 coincides with the notion of a symbol of a differential operator expressed in the
Weyl algebra language. This map allows us to convert the elements of the Weyl algebra
into ordinary functions in commuting variables.

We define the normally ordered product : fg: of f(q,p) and g(q,p) to be

: f(a,p)g(q,p) :== 7! (x(f(q,p))m(9(q, p)))-

We will consider a Z-grading of W = @ W, by assigning degrees to the generators
ne
as follows:

deg(p;) =14, deg(q;)=—i, ieN

Next we introduce a completion W of the Weyl algebra, in which the vertex operators will
be later defined. We set the completion of W, to be

Wa= [] Wi oW (1.3)
i<0,5>0
itj=n
and define W as
W= @& W,. (1.4)
nEZ

It follows from the Poincaré-Birkhoff-Witt argument that ¥V has a well-defined structure

of an associative algebra.



In physics literature the generators of the Weyl algebra p;, ¢; are called free bosons.
The boson-fermion correspondence is a way of constructing free fermions out of free bosons
and vice versa ([9],[14]). The free fermions are the generators 1;, ¢}, i € Z, of the Clifford

algebra C, satisfying the relations
Vi + Vi = 6y ithi +bihi =0, YT+ =0, 4,5 € Z.

Form the formal generating series (fermion fields)

=Y ¢uz " and 9(x) =) Wi

keZ kel

Proposition 1.1. (cf. [14], Theorem 14.10) The Clifford algebra C, can be repre-
sented on the space B = C[u,u~'] ® W by vertex operators

1 .
Y(z) = 2 Buuexp qu exp | 5D iz |,
JGN jeN

(1.5)

Y*(z) — wly v exp —% Z quj exp —% ijz_j
jeN jeN

Here the correspondence between two formal series is the correspondence between
their respective components.

Note that the components of the vertex operators belong to the algebra B = Clu, u™!|®
W and act on B by left multiplication. The symbol z“3% is interpreted as 2“3 (u™) =
zMmu™

The only difference between the statement above and Theorem 14.10 in [14] is that
here we consider the action of these vertex operators by left multiplication on Clu, u=]|@W
and not on Clu,u™!] ® F as differential operators. Proposition 1.1 is thus an immediate
corollary.

The obvious relations between the operator of multiplication by u and the fields
P(z),¥*(2)

b(2)u=zup(z), P*(2)u=2""up*(2)

can be rewritten for their components as

Ykt = ki1, Yrpu = utpy. (1.6)



The classical matrix Lie algebras can be embedded into Clifford algebras and Weyl
algebras. It is well-known that this can be also done for the affine Kac-Moody algebras [8]
and, in particular, for the affine algebra a., of infinite rank.

The algebra ao, is a non-trivial one-dimensional central extension of the Lie algebra

G Of infinite matrices with finitely many non-zero diagonals:
O = ZaijEij ‘ dn eN |’I:—j‘>n:>aij:0 s
i,j€L
Qoo = Goo @ CL1.

The action of a, on Clu,u=!] ® W is determined by the formula:

) Wt if i#j or i=j>0,
E”H{—w;wi if =<0,

Using (1.5) we can write a generating series for this action ([14], 14.10.9):

el
o 1 21\ “ow
Z E;jziz57 = ((Z) [(z1,22) — 1) ,

i,j€L #1

where
1L . . 1 ) :
['(21,29) = exp 3 Z(z{ — 23)q; | exp 3 Z(zl_] — 25 7)p;
j=1 j=1

In order to get a connection with the differential equations in Hirota form, we should
also consider the tensor square B ® B of the as-module B = Clu,u~1] ® W.
The key link is the Casimir operator ([14], 14.11.2)

Q= ¥y
kel

which acts on a completion B ® B and commutes with the as-action ([14], 14.11). To
construct this completion we view W ® W as a Weyl algebra in twice as many generators
and take its completion as in (1.3), (1.4). The algebra B ® B is the tensor product of
W ® W with two copies of Clu, u1].



2. Skew Casimir operators

It is well-known that affine Kac-Moody algebra sly = sly (C[t,t7']) ® CK may be
embedded into a,, by

Hyji1 =Y Eiirajir » Aj= Y (D) Eyy; . Ke—1, jeZ, (21)
1/ A/
where
0 ¢ —t7 0 0
Hjjq1 = (tj+1 0) ) A2j = ( 0 tj) ) A2j+1 = (_tj-l—l 0)
The restriction of the representation of a, on B to this subalgebra yields (cf. [14], 14.13):
k k
He——ope s Hog= 50, k€ Noaa, (2.2)
P 8

> 4527 5 (1)) - 1), (2.3)

jE€l

where

I'(z) = exp Z g7 | exp Z piz 7| . (2.4)
7€Ngaa 7€NGaa

Lie algebra g = ;l\g has a Zy-grading g = g, @ g,, where g, is the principal Heisenberg
subalgebra spanned by H; , j € Zoqqa and K, while g, is spanned by A; + %6j70K ,J €.
The following lemma is an immediate consequence of the formulas (2.2)-(2.4) above:

Lemma 2.1. (i) zu = uz for x € g,,

(ii) xu = —ux for z € g;.

This result can also be seen from the realization of elements of g as infinite matrices.
The conjugation by w is a shift operator: u_lEiju = Fit1,j+1 — 0i,005,01. It follows from
(2.1) that the elements in g, are represented by matrices invariant under this shift, while
elements of g, are represented by anti-invariant matrices.

The subspace 1 @ W in B is clearly invariant under ao, and ;l\z—actions. While the
Casimir operator Q does not leave the space W ® W invariant, it can be easily modified

into an operator Ay, for which W ® W is invariant:
Ap=(10u)Qut®1).

Moreover using the conjugation by 1 ® u* we obtain a whole family of skew Casimir
operators:
Ap=(1@uFMNQulou™) , keZ
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Note that the conjugation by elements u*®1 produces the same family because £ commutes
with u ® u.

It is easy to see that
Z Az 7k = (w(z)u_l) ® (m/)*(z))
kel

Restricted to W ® W, the generating series A(z) = Y. Arxz~F can be explicitly writ-
keZ
ten as

1 ) 1 . 1 ~ 1 —i
A(z) = exp 3 Z q;7’ | exp 3 ijz 7| ®exp 3 Z q;#’ | exp 3 ijz !
jeN jeN jeN jeN

The skew Casimir operators A do not anymore commute with the action of a.,, but
as we see in the following Proposition, behave nicely relatively to the subalgebra sls in a.
Proposition 2.2. (a) For z € g,

(2R14+1Qx)A\, =Ak(z®1+1Q2x), keLZ.
(b) For z € g,
($®1+1®$)Ak:—Ak(ﬂf®1+1®$), kEZOdd,

(@1 -1Q0x)A\y, = —A(z®@1—-1Qx), kE Zey.

Proof. Recall that Ay, = (1QuF*1)Q(u"1®@uF). Part (a) is obvious because zu = ux
for z € gy by Lemma 2.1 and x ® 1 + 1 ® £ commutes with the Casimir operator (2.

Verification of (b) is also straightforward. Suppose that z € g; and k is odd. By
Lemma 2.1, z commutes with the even powers of u and anticommutes with the odd powers
of u. Thus

(z®14+1®2)(1Qu ™MQu™ @ u™F)
=1u" Nzel+12)Qu'eu*)
=1 'eu™Mrel+1x ).

If k£ is even then
(z®1-102)(1u*"MQu@u™*)

=1u""Nzel+102)Qu ! ®@u™k)
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=—(1eu""MNueu ™zl -101).

Let 7 = 7(21, #2, - - -) be a formal Laurent series in finitely many formal real variables
21, Za, . . . with coefficients in W. Let 7*(z1, 2, ...) be the complex conjugate of 7.

Proposition 2.3. The sets of solutions 7(z1, 22, ...) of equations
(7A'®7A')Ak =Ak(7A'*®7A'*), k € Zoaa, (2.5)

and
(7A'®7A'*)Ak=Ak(7A'*®7ﬁ), k EZev; (26)

are invariant under the transformation
7(21,22,--.) = 7' (21, 22, - . -, 2) = T(21, 22, - - .) exp (ail'(2)) ,

where oo € R and z is a formal real variable.

The equations (2.5) and (2.6) are understood here as equalities of the corresponding
W ® W-valued coefficients in the formal Laurent series.

Proof. Since the components of I'(z) represent the elements of g;, we get from
Proposition 2.2 that for k € Zgyqq

exp (ail'(z)) ® exp (ail'(z)) Ay = exp (i (T'(2) @ 1 + 1 Q@ T'(2))) Ag

=Agexp(—ai (I'(2) @ 1+ 1Q®T(2))) = Agexp (—ail'(2)) ® exp (—ail'(2)) ,

and in a similar way for k& € Zg,:
exp (il'(2)) ® exp (—ail'(2)) A = A exp (—ail'(2)) ® exp (ail'(z)) .
Suppose that 7 is a solution of the equation (2.5)
(7 @ F)Ax = Ap(F* ®7%), k€ Zoda-
Then for 7/ = 7exp («il'(z)) we have
(' @7 )Ar = (7 ®7) (exp (ail'(2)) ® exp (ail'(2))) Ay

= (7 Q@ 7)Ag (exp (—ail'(2)) ® exp (—ail'(2)))
= Ap(7* @ 7*) (exp (—il'(2)) ® exp (—ail'(2))) = A ((7)* @ (7')*).
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Thus 7' is also a solution of (2.5). The case of (2.6) is completely analogous.

Corollary 2.4. The series 7 = (1 + @1i['(z1)) ... (1 + anil'(zx)) in formal real vari-
ables z1,...,zy with a;,...,an € R is a solution for both (2.5) and (2.6).

Proof. Trivially 7 = 1 is a solution for both equations. Thus by the above proposition,
7 = exp (a1il'(21)) . . .exp (anil(zn)) satisfies (2.5) and (2.6). Finally, exp (ail'(2)) =
1 + ail'(2) because I'?(z) = 0 ([14], 14.11.15), and the claim of the Corollary follows.

Consider the real and the imaginary parts of 7: 7o(21, 22, . ..) = Re(7), 71(z1, 2z2,...) =

Im(7). The equations (2.5) and (2.6) can be rewritten as the systems

(To®@To—T1 ®@T1)Ar —A(To@To—T1Q@71) =0 ez 27)

(7A'0®7A_1+7A'1®7A'())Ak+Ak(’7A'0®’7A'1+7A'1®’7A'0):0 odd )
and R R R X

(To®To+T1 ®@T1)Ar —A(To@To+T1Q@71) =0 ke (2.8)

The requirement that « and z are real may be dropped if we apropriately adjust the
statement of Proposition 2.3:
Proposition 2.5. The sets of solutions (7, 71) of the systems (2.7) and (2.8) are

invariant under the transformation
" N A 1 al'(z
(o) = G, ) = o) ( oy 1)

where z is a formal variable and o € C.

The proof parallels the one of Proposition 2.3.

3. Hirota bilinear equations and their solutions

The differential nature of the Weyl algebra is encoded in its defining relations (1.1).

In this section we shall see how to convert purely algebraic equations
(TR T)Ak = A (7" @ 7%), k € Zoaa,

(TR 7" )\ = Ap(7* @ 7), k € Zey,

into a hierarchy of differential equations in Hirota form on the “dequantized” functions
To = 7(7o), 1 = 7(F1).

When a product of two “functions” in W is written in the normally ordered form,
expressions involving partial derivatives (1.2) appear. One special case of this procedure

is recorded in the following Lemma and will be later used in our calculations.
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Lemma 3.1. Let p,q be generators of the Weyl algebra satisfying pg — gp = ¢ - 1.
Then for 7 = 7(q, p) we have

exp(zp)F = {exp (cza%> %} exp(zp)

and

sexnen) = ot s (= 2) 7).

Here z is a formal variable and the above equalities are interpreted as equalities of formal

power series.
Proof. We shall prove the second identity, the first will then follow by applying the
automorphism p — ¢,q — —p. From (1.2) we get that

7(¢,p)q = q7(q,p) + cg—; = (q + C%> 7(q,p).

By induction we obtain

7(¢,p)q" = (q + C%) 7(g,p)-

To complete the proof, we apply the above equality to the Taylor expansion of exp(zq):

. 0\ .
7(q,p) exp(zq) = exp (zq + cz%> 7(q,p)

= exp(zq) {exp (CZ%[) ?(q,p)} :

At this point we are ready to transform (2.7) and (2.8) into a hierarchy of Hirota
bilinear equations. Note that the terms involved in these equations are of the form
(f ® 9)Ax £ Ax(f ® g). We shall work with such expressions using the generating series
(fRAR2)EA(2)(f®g), f®g € WRW. Denote the variables in the first copy of W by
qi,p: and in the second copy of W by ¢¥, p/. Then

(3

(f@gA(z) EA()(f®9) =

1 & . 1. »
= (P9, p")exp | 5D (¢;—a))2" | exp | 5D (0 —pf)z



We shall assume that both f(q’,p’) and g(q”,p”) are in the normal form. Moreover

since p; commutes with ¢/, we can replace f(q',p’)g(q”,p") with the normally ordered
product : f(q’,p")g(qd”,p”): , i.e. move all ¢’s to the left of all p’s.

Making the change of variables p; = 3 (0} + p}/), 5s = 30, — P}), ¢; = (¢, + d/), 4 =

%(q{ —¢q.'), we rewrite the above expression as

o0 o0
:fla+@p+Pgla—ap—D) rexp | Y G2 |exp | > pz

o0 (o0
texp | > G20 |exp | Y Fz7 | : fla+@p+DPlga—ap—p):-
=1 =1

Collecting ¢’s on the left and p’s on the right using Lemma 3.1 (note that [p;, ¢;] =
—%&j - 1), we get

oo
exp Eq”jzJ X
i=1

X 9 277 9 - - ~ ~
exp —22—_8~ £ exp —22—.6~ :fl@+a,p+P)g(a—qp—D):
=1 J oP; - )%

X exp Zﬁjz_j . (3.1)
j=1

We can convert this expression into the Hirota form. Recall that the Hirota bilinear
differentiation is defined as

P (Dg, Dy,...) [ f(z,y,...)og(z,y,...)] =

Jd 0 N . - _
P <%, 95 ) fe+z,y+7,..)9(x—2,y—19,.. ')|5;=0,g=0,...'
Using the Taylor formula we get that (see [14], 14.11.8)
g0 0
P (%’87]’) fle+zZ,y+79,..)9(x—2,y—7,...) =

P(Dg,Dy,...)exp(ZDg +yDy +...)[f(z,y,...) o g(z,y,...)].
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Applying this identity we transform (3.1) into

exp quzj exp chquj exp —22 —D,, | Texp —QZ—‘D%
j=1 j=1 = =
oo o0 )
exp [ > p;Dy, | [: f(a,p)° g(q,p) :]}exp > piz | (3-2)
Jj=1 7j=1

We use the reduction to the subalgebra sly in as to construct solutions of (2.5)
and (2.6). We see from (2.2)-(2.4) that this reduction involves only variables p;, ¢; with
J € Npqq, so the solutions we get in Corollary 2.4 do not depend on the even-indexed
variables. Thus in (3.2) we may set D, = 0, Dy, = 0 for j € Ne,. In (3.2) all ¢’s are
collected to the left of all p’s and all ¢’s are to the left of all p’s. Because of that we can

easily evaluate the image of this expression under the map 7, which gives us:

R+ (2)[7(f)(x) o w(g)(x)];

where

Ri(z) =exp Z i;727 | exp Z T Dy,
jeZ\{0} §€Lioaa

2 279
X < exp | —2 Z —D;_, | Lexp | -2 Z — Dy,
: J , J
JENodd JENodd
and x = (...,x_3,2_1,%1,%3,...). Here Ry(z) is a Laurent series in z and a Taylor series
in Z;. The coefficients of this series are Hirota differential operators.
Now we can rewrite (2.7) and (2.8) as the generating series for the hierarchy of Hirota

bilinear equations on 7o = 7(7y) and 7 = 7 (71):

Res (sz_ (z)) (tfooTg—T1071) =0, J € Ziey, (3.3)
Res (2R (2)) (Toomi+T1070) =0,  j € Zey, (3.4)
Res (2R_(2)) (oomo+Ti0om) =0, j€ Zoaa, (3.5)
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Res (27 R4 (2)) (oomi —T1079) =0,  j € Zoaa. (3.6)

As usual, the residue denotes the coefficient at z—! of a formal Laurent series. The coeffi-
cient at each monomial in Z’s in the formal equations above is a Hirota bilinear equation
on 79 and 7;. We shall study the Hirota equations that occur here in the next section.
Now we turn to describing solutions of this hierarchy.

From Corollary 2.4 it follows that

To+im =7 (1L + aqil(z1)) ... (1 + anil(zn)))
is a solution of (3.3) - (3.6). From [14] we get that the right hand side converges to
N e\ 2 k
1+Z . Z Qjy v Ol H (z 2 ) exp Z (Zz.s>xm
k=11<j1<...<jr <N 1<r<s<k >7Ir Is meZingq \5=1

(3.7)

when |z1| > |2z2| > ... > |zn|. By analytic continuation we conclude that

[5] 2
z. _ z.
To = 1+Z(—1)k E Qjy oo e Qg H (zjr +ZJS)
k=1 r T s

1<51 <. <J2r SN 1<r<s<2k

2k
X eXp Z (Zz"j) T | (3.8)

m€ligaa V=1

[N;l] 9
Z. — Z.
T = Z (—1)k Z 0 TR 0 7 Py H (zj + Zj_s )
k=0 Jr Js

1<j1<...<J2k+1<N 1<r<s<2k+1

2k+1
X eXp Z (Z z":) T, (3.9)

m€Lioaa =1

is a solution of the hierarchy (3.3)-(3.6) for all z1,...2n.
As we shall see in the next section, this hierarchy contains the sine-Gordon equation,

as well as two copies of the Korteweg - de Vries hierarchy.
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4. The KdV - sine-Gordon — KdV hierarchy

In this section we transform the Hirota equations (3.3)-(3.6) into non-linear PDEs. We
show that among other equations, this hierarchy contains the sine-Gordon equation, the
KdV and the modified KdV equations. We begin by listing some of the Hirota equations
that are coefficients at monomials in (3.3)-(3.6) (we multiply them by appropriate constants
to avoid fractional coefficients). For simplicity of notations, we write D; for Dy .

From the series (3.3):

D_1Dy(rpomg—T1071) =0 (at 212), (4.1)

(Df — D1D3) (roomo—T1071) =0 (at z1273), (4.2)

(D_1Ds +2D_1D} — 3D3) (tgomg — 1 071) =0 (at z_127°), (4.3)
( )=0 ( (4.4)

1)
(D_1D; + D7)
From the series (3.4):

T0OT9g — 719071

(D_1Dy —1)(mp0719) =0 (at z12), (4.5)
(DY — D1D3) (r1079) =0 (at z1272), (4.6)
(D} — D_1D3) (T1079) =0 (at w32), (4.7)
(D} = D_1D3) (r1079) =0 (at 232) (4.8)
From the series (3.5):

Di(rgotg+T1071) =0 (at 232°), (4.9)
(D} +2D1D3) (tgoTg+T1071) =0 (at z1232"%), (4.10)
(D_1D} — D_1D3) (toomg+ 11 071) =0 (at z_1z127%).  (4.11)

And finally from the series (3.6):
( D3) (r1079) =0 (at z1272), (4.12)
(D_1D3 — D1) (T1079) =0 (at z_1272), (4.13)
(D} = Ds) (r1070) =0 (at z127%), (4.14)
(2D} — 5D{D3 + 3D5) (t1079) =0 (at z327?) (4.15)

One of the transformations that we consider below is © = 4 arctan (T(l)) or, equiva-
lently, 2+ = tan (%). Let more generally Z- = ¢(u), hence 71 = .
In order to rewrite systems of leota equations as non-linear PDEs in function u,

we need the Leibnitz rule Lemma for the Hirota differential operators. For a multi-index
B = (Bi,---,Bn) let DP = Dfi ...Df: be the Hirota differential operator and let 07 =
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981 ... 9P be the usual differential operator. For a pair of multi-indices 3 and v with

. n. ﬂ — 131 ,Bn
o<y ()= (5. (M),

Lemma 4.1.

@ Dprog) = (4 00D (1 o)

~

) D rf 020) = 5 () D 0 @) D97 09)

The proof of this Lemma is straightforward.
Sine-Gordon equation. Consider (4.1) and (4.5):

{D_lDl(T()OTO —T1 O’rl) =0

(D-+Dy— 1) (o) = 0 (4.16

and set 71 = @79. Applying Lemma 4.1, we transform this system into

{ (1- 4,02)D—1D1(T0 or9) —D_1D1(po0 <P)Tg =0
@D _1D1 (190 7) + (0_101(p) — )78 = 0.

Interpreting this as a system of linear equations on D_1D; (19 o 7o) and 7¢ we get that

1—¢? —D—1D1(90090))
det =0 417
¢ ( ® 0-101(p) — ¢ (4.17)

since this system has a non-trivial solution.

If we now substitute ¢ = tan (%) and multiply (4.17) by cos* (%) then we obtain the

u

4
sine-Gordon equation:

0%u )

praw T sin(u). (4.18)

If we let parameters o in (3.8), (3.9) be purely imaginary then 71 will become purely

imaginary, while 79 will remain real. In this case u will be purely imaginary, v = U,

L = tanh (%), and the function U satisfies the sinh-Gordon equation:

7o
02U
837_1(9.’13'1

Modified KdV equation. The same technique applied to (4.9) and (4.12)

= sinh(U). (4.19)

{D%(TOOTo-l-TlOTl) =0
(4.20)
(Di}’ — D3) (rp0719) =0
yields b , )
{ (1+¢7)Di(ro070) + Di(po )y =0 (4.21)
301() D3 (10 0 7o) + (83 () — B3(9)) (¢ 0 )73 = 0.
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After the same substitution as above, ¢ = tan (%), multiplying the determinant of this

system by cos ( ) we get the mKdV equation:

ou 1/0u\® 03
72 =3 (o) + ot 42

or for v = 3‘9—“:
1
ov 3 o2 ov 0%

63:3 8.731 + 8—"{’
Mized sine-Gordon — mKdV equation. The system of three equations (4.4), (4.7) and
(4.9)

(4.23)

(D% +D_1D3) (7’0 OTp — T1 OT1) =0
(D} — D_1Ds) (11 079) =0 (4.24)
Di(rgomg+Tiom) =0

becomes a system of three linear equations on D?(rgo07y) , D_1D3(190 ), 7¢ and from

its determinant

1—-¢®> 1—-¢* (Di+D_1D3)(pop)
det | ¢ —¢ 07(p) —0_103(p) | =0 (4.25)
1+¢> 0 D3 (po )

after substitution ¢ = tan (%) we obtain the equation

0%u

0%u 1 . ou
( = (4.26)

— sin(u) pr.

2
92102, =3 ) + cos(u)

One can show that this equation follows from the sine-Gordon and mKdV equations (4.18),
(4.22) taken together, however (4.26) may have an independent physical meaning.
The second mKdV equation. The system of Hirota equations (4.9), (4.10), (4.14) and
(4.15)
( (D1 Ds) (110 79)
(2D5 —5D?Ds3 + 3D5) (11 0 79)
)

|

(4.27)
D? f(roomg+ T 07

Il
—~ O =) (@) o

. (D%+2D1D3) (T()OT0+T10T1)

applying the same method as above and eliminating x3 using (4.23), is transformed into

the following equation for v = 46%1 arctan (:-;)

v 9 (35 5 ,0% 5 [0v\® oW
22 4 2y [ — Z_ 4.2
dzs Oz ( oY 0x? oY (83:1) * oxrt ]’ (4.28)
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which is essentially the second equation in the mKdV hierarchy constructed by the AKNS
method [1].
The double KdV hierarchy. It can be easily seen that the hierarchy (3.3)-(3.6) is

invariant under the transformation z — 2!

,Tj — T_j, l.e., it is symmetric in the positive
and negative directions.

If in (3.3) and (3.4) we set T} = 0 for k¥ < 0 and consider non-negative values of j,
then

Res (ZjR:I: (z)) = +Res (sz(z)) ,

where

B - . - z_]
P(z) = exp ijzg exp Z Dy, | exp | -2 Z TD%. . (4.29)
j=1 7€Noaa 7€Nqaq
In this case the Hirota polynomials appearing in (3.3) and (3.4) differ only by sign. Com-
bining (3.3) and (3.4) together we get that 7 = 79 + i7; satisfies

Res (27 P(2)) (toT) =0 for j € Ng, U{0}. (4.30)
The Hirota equation
(DY — D1D3)(1o71) =0 (4.31)
(cf. (4.2), (4.6)) after the substitution f = 53—:21n(7') becomes the Korteweg - de Vries
1
equation
of of  9*f
— =12f— 4+ —%. 4.32
0z f(‘)a:l + 0z3 (4.32)
The series (4.30) is the KAV hierarchy [4], [14] in variables z1, 3, x5 . . .. By symmetry, the
second copy of the KdV hierarchy extends in the negative direction z_1,z_3,.... These

two KdV hierarchies are linked together by the sine-Gordon equation (4.18) which involves
variables x; and x_;. The soliton solutions for the double KdV hierarchy are given by
(3.7) with purely imaginary values of ay,...an.

Remark 4.2. Another way to construct this subhierarchy is to consider the Casimir
operator Q,g for affine Kac-Moody algebra sl (see [14]) acting on W ® W. The double

KdV hierarchy then arises from the equation
(7R 7)Qast = Qag (T @ 7).

The double KdV hierarchy that we obtain here contains more than just two copies
of the KdV hierarchy. It also contains equations that involve both positive and negative

variables. The simplest such an equation on the function 7 = 74 + 7y is

(D_1D3 —4D_1D} +3D%) (toT) =0, (4.33)
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which follows from (4.3), (4.4), (4.7) and (4.8). A similar equation (without the last
term) appears in the Dil)-hierarchy [16], but the solutions constructed here and in [16] are
inequivalent.

After the substitution g = 8%1 In(7) we get

0%g 0 03g dg Og dg
= 4 24 — 4.34
0r_10x3 O, ( 0x_10132 * Ox_, 0z, 38.’1:1) ’ (4:34)

which is a generalization of the KdV with two spatial variables, but different from the
Kadomtsev-Petviashvili equation.

It is interesting to note that the same equation appears in our hierarchy in a different
way. If we combine (4.3), (4.4) with (4.9) and (4.11) then we get

(D_1D3 — D_1D3 4+ 3D3) (to0 79) = 0 (4.35)

and
(D_1D3 — D_1D} 4+ 3D3) (r10m1) = 0. (4.36)

These can be transformed into (4.33) by rescaling the variables z; = %x; Thus in addition

to the solutions g = 6%1 In(7) of (4.34) with 7 given by (3.7), we also get solutions

2
Z. _Z‘
T:1+ (—l)k As. ... 05 II (7'77‘ JS)
E : J1 J2k zjr+zjs

k=1 1<j1<...<jax <N 1<r<s<2k

o (3(E) ooy (E) ey (£) ) o

2k+1 2k+1 2k+1
Xexp( (Zz‘l)x 1+ = (ZZJS)JH-I- (Zzs) ) (4.38)

Miura transformation. It is well-known that solutions of the mKdV equation

and

ov , OV 83V
g2 4.
Oz V 83:1 Ox3 (4:39)
with V = v (cf. (4.23) ) can be transformed into solutions of the KAV equation
of of  0°f
— =12f— 4+ —= 4.4
O0xs f@xl * 03 (4.40)
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by the Miura substitution

(4.41)
The soliton solutions of (4.39) and (4.40) are given by V = 48%1arctanh (%:—;)
= 26—21 In (:gf—z:i) and f = 86—% In(79 + i71), where 79 and 71 are given by (3.8) and
(3.9) with purely imaginary parameters o;. Note that 7y & é7y is real in this case.

A natural question to ask is whether for a given pair (79, 71), the functions V and f
are linked by the Miura transform (4.41). The answer to this question is positive, and as
we see from the following Lemma, the Miura transform is a feature of the whole hierarchy
and not specific just to the pair of the KdV and mKdV equations.

Lemma 4.3. The functions V = 2-2-In (M> and f = 86_:; In(7p+1i7 ) are related

811:1 To—iTl

by the Miura transform (4.41) if and only if the Hirota equation (4.10) holds:
D%(T() OTg+ T10 7'1) =0.

The proof of this Lemma is straightforward.
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