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Abstract. The goal of this paper is to study the representation theory of a classical infinite-
dimensional Lie algebra – the Lie algebra VectTN of vector fields on an N-dimensional torus
for N > 1. The case N = 1 gives a famous Virasoro algebra (or its centerless version - the
Witt algebra). The algebra VectTN has an important class of tensor modules parametrized by
finite-dimensional modules of glN . Tensor modules can be used in turn to construct bounded
irreducible modules for VectTN+1 (induced from VectTN ), which are the central objects of our
study. We solve two problems regarding these induced modules: we construct their free field
realizations and determine their characters. To solve these problems we analyze the structure of
the irreducible Ω1

`
TN+1

´
/dΩ0

`
TN+1

´
⋊VectTN+1-modules constructed in [2]. These modules

remain irreducible when restricted to the subalgebra VectTN+1, unless they belongs to the chiral

de Rham complex, introduced by Malikov-Schechtman-Vaintrob [20].

1. Introduction.

In this paper we study the representation theory of a classical infinite-dimensional Lie algebra
– the Lie algebra VectTN of vector fields on a torus. This algebra has a class of representations
of a geometric nature – tensor modules, since vector fields act on tensor fields of any given type
via Lie derivative. Tensor modules are parametrized by finite-dimensional representations of glN ,
with the fiber of a tensor bundle being a glN -module.

Irreducible glN -modules yield tensor modules that are irreducible over VectTN , with exception
of the modules of differential k-forms. In the latter case, the glN -module is irreducible, yet the
modules of k-forms are reducible, which follows from the fact that the differential of the de Rham
complex is a homomorphism of VectTN -modules. In the present paper we give a vertex algebra
analogue of this result.

In case of a circle, a conjecture of Kac, proved by Mathieu [21], states that for the Lie algebra of
vector fields on a circle an irreducible weight module with finite-dimensional weight spaces is either
a tensor module or a highest/lowest weight module. There is a generalization of this conjecture
to an arbitrary N due to Eswara Rao [7]. The analogues of the highest weight modules in this
case are defined using the technique introduced by Berman-Billig [1]. These modules are bounded
with respect to one of the variables. It follows from a general result of [1] that irreducible bounded
modules for the Lie algebra of vector fields on a torus have finite-dimensional weight spaces,
however the method of [1] yields no information on the dimensions of the weight spaces. This is
the question that we solve in the present paper – we find explicit realizations of the irreducible
bounded modules, using which the dimensions of the weight spaces may be readily determined.

A partial solution of this problem for the 2-dimensional torus was given by Billig-Molev-Zhang
[3] using non-commutative differential equations in vertex algebras. The algebra of vector fields
on T2 contains the loop algebra s̃l2 = C[t0, t

−1
0 ] ⊗ sl2. This subalgebra plays an important role

in representation theory of VectT2. According to the results of [3], some of the bounded modules
for VectT2 remain irreducible when restricted to the subalgebra s̃l2. Futorny classified in [11]
irreducible generalized Verma modules for s̃l2. Such generalized Verma modules admit the action
of the much larger algebra VectT2.

This relation between representations of s̃l2 and VectT2 suggests that for the Lie algebra of
vector fields on TN , an important role is played by its subalgebra s̃lN . An unexpected twist
here is that it is not the generalized Verma modules for s̃lN that admit the action of VectTN for
N > 2, but rather the generalized Wakimoto modules. The generalized Wakimoto modules are
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s̃lN -modules that have the same character as the generalized Verma modules, but need not to be
isomorphic to them.

The generalized Wakimoto modules for s̃lN that we use here were constructed in [2] in the
context of the representation theory of toroidal Lie algebras, however their special properties with
respect to the loop subalgebra s̃lN were not previously recognized.

Let us outline the result of [2] that we use here. Since one of the variables plays a special role,
it will be more convenient to work with an (N +1)-dimensional torus. To construct a full toroidal
algebra, one begins with the algebra of ġ-valued functions on TN+1:

Map(TN+1, ġ) ∼= C[t±1
0 , t±1

1 , . . . , t±1
N ] ⊗ ġ,

where ġ is a finite-dimensional simple Lie algebra. Next we take the universal central extension
of this multiloop algebra, with the center realized as the quotient of 1-forms on the torus by
differentials of functions [14]:

K = Ω1
(
TN+1

)
/dΩ0

(
TN+1

)
.

Finally, one adds the Lie algebra of vector fields on the torus:
(
C[t±1

0 , . . . , t±1
N ] ⊗ ġ ⊕K

)
⋊ VectTN+1.

Irreducible bounded modules for this Lie algebra were constructed in [2] using vertex algebra
methods. Note that the results of [2] admit a specialization to ġ = (0). The multiloop algebra then
disappears, leaving behind, like the smile of the Cheshire Cat, the space of its central extension:

K ⋊ VectTN+1.

It turns out that it is easier to study representations of this Lie algebra, rather than of vector
fields alone, because of the duality between vector fields and 1-forms. Representation theory of
this larger Lie algebra is controlled by a tensor product of three vertex algebras:

V +
Hyp ⊗ VglN ⊗ VVir,

a subalgebra of a hyperbolic lattice vertex algebra, the affine ĝlN vertex algebra at level 1 and the
Virasoro vertex algebra of rank 0. The tensor product of the first two components, V +

Hyp ⊗VglN is

one of the bounded modules for K ⋊ VectTN+1, and in fact it is a generalized Wakimoto module
for the subalgebra s̃lN+1 ⊂ VectTN+1. Then the results of [3] suggest that there is a chance that
K ⋊ VectTN+1-modules constructed in [2] remain irreducible when restricted to VectTN+1. The
study of this question is the main part of the present paper. The answer that we get is remarkably
parallel to the classical picture with the tensor modules. We prove that a bounded irreducible
K⋊VectTN+1-module remains irreducible when restricted to the subalgebra of vector fields, unless
it belongs to the chiral de Rham complex, introduced by Malikov-Schechtman-Vaintrob [20] (for
arbitrary manifolds).

It is only in very special situations an irreducible module remains irreducible when restricted to
a subalgebra. A prime example of this is the basic module for an affine Kac-Moody algebra, which
remains irreducible when restricted to the principal Heisenberg subalgebra. This exceptional
property of the basic module leads to its vertex operator realization and is at heart of several
spectacular applications of this theory.

The space of the chiral de Rham complex is the vertex superalgebra

V +
Hyp ⊗ VZN ,

where VZN is the lattice vertex superalgebra associated with the standard euclidean lattice ZN .
The vertex superalgebra VZN is graded by fermionic degree:

VZN = ⊕
k∈Z

V k
ZN ,

and the components

V +
Hyp ⊗ V k

ZN
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are irreducible K⋊ VectTN+1-modules. Yet for these modules the restriction to the Lie algebra of
vector fields is no longer irreducible since the differential of the chiral de Rham complex

d : V +
Hyp ⊗ V k

ZN → V +
Hyp ⊗ V k+1

ZN

is a homomorphism of VectTN+1-modules.
In fact it was noted in [18] that these components admit the action of the Lie algebra C[t0, t

−1
0 ]⊗

VectTN , but here we prove a much stronger result.
In conclusion, we make two curious observations. The Lie algebra of vector fields on a torus

has a trivial center, yet its representation theory is described in terms of vertex algebras V +
Hyp and

VglN that involve non-trivial central extensions. The central charges of these tensor factors cancel
out to give a vertex algebra of total rank 0.

The final remark is that the chiral de Rham complex is an essentially super object, whereas the
Lie algebra of vector fields we started with, is classical.

The structure of the paper is as follows. We introduce the main objects of our study in Sections
2, 3 and 4. We discuss vertex algebras and their applications to the representation theory of
VectTN+1 in Sections 5 and 6. In Section 7 we introduce the generalized Wakimoto modules for
the loop algebra s̃lN . We construct a non-degenerate pairing for the bounded modules in Section
8. We prove the main result on irreducibility in Section 9 and make a connection with the chiral
de Rham complex in the final section of the paper.

2. Lie algebra of vector fields and its tensor modules

We begin with the algebra of Fourier polynomials on an N -dimensional torus TN . Introducing
the variables tj = eixj , j = 1, . . . , N , we realize the algebra of functions as Laurent polynomials

C[t±1
1 , . . . , t±1

N ]. The Lie algebra of vector fields on a torus is

VectTN = Der C[t±1
1 , . . . , t±1

N ] =
N
⊕

p=1
C[t±1

1 , . . . , t±1
N ]

∂

∂tp
.

It will be more convenient for us to work with the degree derivations dp = tp
∂

∂tp
as the free

generators of VectTN as a C[t±1
1 , . . . , t±1

N ]-module:

VectTN =
N
⊕

p=1
C[t±1

1 , . . . , t±1
N ]dp.

The Lie bracket in VectTN is then written as

[trda, t
mdb] = mat

r+mdb − rbt
r+mda, a, b = 1, . . . , N.

Here we are using the multi-index notations tr = tr1
1 . . . trN

N for r = (r1, . . . , rN ) ∈ ZN .
The Cartan subalgebra 〈d1, . . . , dN 〉 acts on VectTN diagonally and induces on it a ZN -grading.
The Lie algebra of vector fields (on any manifold) has a class of representations of a geometric

nature. Vector fields act via Lie derivative on the space of tensor fields of a given type. The result-
ing tensor modules are parametrized by representations of glN . Let us describe the construction
of tensor modules in case of a torus TN .

Fix a finite-dimensional glN -module W . In case when W is irreducible, the identity matrix acts
as multiplication by a scalar α ∈ C. Let γ ∈ CN . We define the tensor module T = T (W,γ) to be
the vector space

T = qγC[q±1
1 , . . . , q±1

N ] ⊗W

with the action given by

trda(qµ ⊗ w) = µaq
µ+r ⊗ w +

N∑

p=1

rpq
µ+r ⊗ Epaw, (2.1)

where r ∈ ZN , µ ∈ γ + ZN , a = 1, . . . , N and Epa is the matrix with 1 in (p, a)-position and zeros
elsewhere.
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Theorem 2.1. [[6], cf. [26]] Let W be an irreducible finite-dimensional glN -module. The tensor
module T (W,γ) is an irreducible VectTN -module, unless it appears in the de Rham complex of
differential forms

qγΩ0(TN ) −→
d

qγΩ1(TN ) −→
d

. . . −→
d

qγΩN (TN ).

The middle terms in this complex are reducible VectTN -modules, while the terms
qγΩ0(TN ) and qγΩN (TN ) are reducible whenever γ ∈ ZN .

Note that de Rham differential d is a homomorphism of VectTN -modules. Let us specify
irreducible glN -modules that correspond to the tensor modules in de Rham complex. The modules
of functions Ω0 and the module of differential N -forms ΩN correspond to 1-dimensional glN -
modules W on which the identity matrix acts as multiplication by α = 0 and α = N respectively.
The remaining modules Ωk, k = 1, . . . , N − 1, are the highest weight modules for slN with the
fundamental highest weights ωk and α = k (see e.g. [6]). Even though they correspond to
irreducible glN -modules, tensor modules of differential forms are reducible since the kernels and
images of the differential d are obviously the submodules in Ωk.

3. Bounded modules

Our goal is to generalize to an arbitrary N the category of the highest weight modules over
VectTN . In our constructions one of the coordinates will play a special role. From now on, we will
be working with the N+1-dimensional torus and will index our coordinates as t0, t1, . . . , tN , where
t0 is the “special variable”. We would like to construct modules for the Lie algebra D = VectTN+1

in which the “energy operator” −d0 has spectrum bounded from below.
Let us consider a Z-grading of D by degrees in t0. This Z-grading induces a decomposition

D = D− ⊕D0 ⊕D+

into subalgebras of positive, zero and negative degrees in t0. The degree zero part is

D0 =
N
⊕

p=0
C[t±1

1 , . . . , t±1
N ]dp.

In particular, D0 is a semi-direct product of the Lie algebra of vector fields on TN with an abelian
ideal C[t±1

1 , . . . , t±1
N ]d0.

We begin the construction of a bounded module by taking a tensor module for D0. Fix a
finite-dimensional irreducible glN -module W , β ∈ C and γ ∈ CN . We define a D0-module T as a
space

T = qγC[q±1
1 , . . . , q±1

N ] ⊗W

with the tensor module action (2.1) of the subalgebra VectTN ⊂ D0 and with
C[t±1

1 , . . . , t±1
N ]d0 acting by shifts

trd0(q
µ ⊗ w) = β qµ+r ⊗ w.

Next we let D+ act on T trivially and define M(T ) as the induced module

M(T ) = IndD
D0⊕D+

T ∼= U(D−) ⊗ T.

The module M(T ) has a weight decomposition with respect to the Cartan subalgebra 〈d0, . . . , dN 〉
and the (real part of) spectrum of −d0 on M(T ) is bounded from below. However the weight
spaces of M(T ) that lie below T are all infinite-dimensional.

It turns out that the situation improves dramatically when we pass to the irreducible quotient
of M(T ). One can immediately see that the Lie algebra D belongs to the class of Lie algebras
with polynomial multiplication (as defined in [1]), whereas tensor modules belong to the class of
modules with polynomial action. A general theorem of [1] (see also [4]) yields in this particular
situation the following

Theorem 3.1. ([1]) (i) The module M(T ) has a unique maximal submodule M rad.
(ii) The irreducible quotient L(T ) = M(T )/M rad has finite-dimensional weight spaces.
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This leads to the following natural questions:

Problem 1. Determine the character of L(T ).
Problem 2. Find a realization of L(T ).

In [3] these problems were solved for some of the modules L(T ) in case of a 2-dimensional torus
(N = 1). In the present paper we will give a solution in full generality for any N .

4. Toroidal Lie algebras

For a finite-dimensional simple Lie algebra ġ we consider a multiloop algebra
C[t±1

0 , . . . , t±1
N ] ⊗ ġ. Its universal central extension has a realization with center K identified

as the quotient space of 1-forms by differentials of functions [14],

K = Ω1(TN+1)/dΩ0(TN+1).

The Lie bracket in

C[t±1
0 , . . . , t±1

N ] ⊗ ġ ⊕K

is given by

[f1(t) ⊗ g1, f2(t) ⊗ g2] = f1f2 ⊗ [g1, g2] + (g1|g2)f2df1,

where g1, g2 ∈ ġ, f1, f2 ∈ C[t±1
0 , . . . , t±1

N ], (·|·) is the Killing form on ġ and denotes the projection
Ω1 → Ω1/dΩ0.

We will set 1-forms ka = t−1
a dta, a = 0, . . . , N as generators of Ω1(TN+1) as a free C[t±1

0 , . . . , t±1
N ]-

module. We will use the same notations for their images in K.
The Lie algebra D = VectTN+1 acts on the universal central extension of the multiloop algebra

with the natural action on C[t±1
0 , . . . , t±1

N ]⊗ ġ, and the action on K induced from the Lie derivative
action of vector fields on Ω1:

f1(t)da(f2(t)kb) = f1da(f2)kb + δabf2d(f1), a, b = 0, . . . , N.

The full toroidal Lie algebra is a semi-direct product

g =
(
C[t±1

0 , . . . , t±1
N ] ⊗ ġ ⊕K

)
⋊ D.

In fact [2] treats a more general family of Lie algebras, where the Lie bracket in g is twisted with a
2-cocycle τ ∈ H2(D,Ω1/dΩ0). However for the purposes of the present work we need to consider
only the semi-direct product, i.e., set τ = 0.

A category of bounded modules for the full toroidal Lie algebra is studied in [2] and realizations
of irreducible modules in this category are given. The constructions of [2] admit a specialization
ġ = (0), which yields representations of the semi-direct product

D ⋉ K.

The approach of the present paper is to look at the representations of this semidirect product,
constructed in [2], and to study their reductions to the subalgebra D of vector fields on TN+1.
Surprisingly, as we shall see below, most of the irreducible modules for D ⋉ K remain irreducible
when restricted to D.

In order to describe here the results of [2], we will need to present a background material on
vertex algebras.

5. Vertex superalgebras: definitions and notations

Let us recall the basic notions of the theory of the vertex operator (super) algebras. Here we
are following [12] and [17].
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Definition 5.1. A vertex superalgebra is a Z2-graded vector space V with a distinguished vector
1l (vacuum vector) in V , a parity-preserving operator D (infinitesimal translation) on the space
V , and a linear map Y (state-field correspondence)

Y (·, z) : V → (EndV )[[z, z−1]],

a 7→ Y (a, z) =
∑

n∈Z

a(n)z
−n−1 (where a(n) ∈ EndV ),

such that the following axioms hold:
(V1) For any a, b ∈ V, a(n)b = 0 for n sufficiently large;

(V2) [D,Y (a, z)] = Y (D(a), z) = d
dz
Y (a, z) for any a ∈ V ;

(V3) Y (1l, z) = IdV z
0;

(V4) Y (a, z)1l ∈ V [[z]] and Y (a, z)1l|z=0 = a for any a ∈ V (self-replication);
(V5) For any a, b ∈ V , the fields Y (a, z) and Y (b, z) are mutually local, that is,

(z − w)n [Y (a, z), Y (b, w)] = 0, for n sufficiently large.

A vertex superalgebra V is called a vertex operator superalgebra (VOA) if, in addition, V
contains a vector ω (Virasoro element) such that
(V6) The components Ln = ω(n+1) of the field

Y (ω, z) =
∑

n∈Z

ω(n)z
−n−1 =

∑

n∈Z

Lnz
−n−2

satisfy the Virasoro algebra relations:

[Ln, Lm] = (n−m)Ln+m + δn,−m

n3 − n

12
CVir, (5.1)

where CVir acts on V by scalar, called the rank of V .
(V7) D = L−1;
(V8) Operator L0 is diagonalizable on V .

This completes the definition of a VOA.
As a consequence of the axioms of the vertex superalgebra we have the following important

commutator formula:

[Y (a, z1), Y (b, z2)] =
∑

n≥0

1

n!
Y (a(n)b, z2)

[
z−1
1

(
∂

∂z2

)n

δ

(
z2
z1

)]
. (5.2)

As usual, the delta function is

δ(z) =
∑

n∈Z

zn.

By (V1), the sum in the left hand side of the commutator formula is actually finite. The commu-
tator in the left hand side of (5.2) is of course the supercommutator.

Let us recall the definition of a normally ordered product of two fields. For a formal field
a(z) =

∑
j∈Z

a(j)z
−j−1 define its positive and negative parts as follows:

a(z)− =

∞∑

j=0

a(j)z
−j−1, a(z)+ =

−∞∑

j=−1

a(j)z
−j−1.

Then the normally ordered product of two formal fields a(z), b(z) of parities p(a), p(b) ∈ {0, 1}
respectively, is defined as

: a(z)b(z) := a(z)+b(z) + (−1)p(a)p(b)b(z)a(z)− .

The following property of vertex superalgebras will be used extensively in this paper:

Y (a(−1)b, z) = : Y (a, z)Y (b, z) : , for all a, b ∈ V.
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6. Vertex Lie superalgebras

An important source of the vertex superalgebras is provided by the vertex Lie superalgebras.
In presenting this construction we will be following [5] (see also [8], [12], [24], [25]).

Let L be a Lie superalgebra with the basis {u(n), c(−1)|u ∈ U , c ∈ C, n ∈ Z} (U , C are some

index sets). Define the corresponding fields in L[[z, z−1]]:

u(z) =
∑

n∈Z

u(n)z
−n−1, c(z) = c(−1)z

0, u ∈ U , c ∈ C.

Let F be a subspace in L[[z, z−1]] spanned by all the fields u(z), c(z) and their derivatives of all
orders.

Definition 6.1. A Lie superalgebra L with the basis as above is called a vertex Lie superalgebra
if the following two conditions hold:

(VL1) for all x, y ∈ U ,

[x(z1), y(z2)] =
n∑

j=0

fj(z2)

[
z−1
1

(
∂

∂z2

)j

δ

(
z2
z1

)]
, (6.1)

where fj(z) ∈ F , n ≥ 0 and depend on x, y,
(VL2) for all c ∈ C, the elements c(−1) are central in L.

Let L(+) be a subspace in L with the basis {u(n)

∣∣u ∈ U , n ≥ 0} and let L(−) be a subspace

with the basis {u(n), c(−1)

∣∣u ∈ U , c ∈ C, n < 0}. Then L = L(+) ⊕ L(−) and L(+),L(−) are in fact
subalgebras in L.

The universal enveloping vertex algebra VL of a vertex Lie superalgebra L is defined as the
induced module

VL = IndL
L(+)

(C1l) = U(L(−))⊗1l,

where C1l is a trivial 1-dimensional L(+) module.

Theorem 6.2. [[5], Theorem 4.8] Let L be a vertex Lie superalgebra. Then
(a) VL has a structure of a vertex superalgebra with the vacuum vector 1l, infinitesimal transla-

tion D being a natural extension of the derivation of L given by D(u(n)) = −nu(n−1), D(c(−1)) = 0,
u ∈ U , c ∈ C, and the state-field correspondence map Y defined by the formula:

Y
(
a1
(−1−n1)

. . . ak−1
(−1−nk−1)

ak
(−1−nk)1l, z

)

= :

(
1

n1!

(
∂

∂z

)n1

a1(z)

)
. . . :

(
1

nk−1!

(
∂

∂z

)nk−1

ak−1(z)

)(
1

nk!

(
∂

∂z

)nk

ak(z)

)
: . . . : , (6.2)

where aj ∈ U , nj ≥ 0 or aj ∈ C, nj = 0.
(b) Any bounded L-module is a vertex superalgebra module for VL.
(c) For an arbitrary character χ : C → C, the quotient module

VL(χ) = U(L(−))1l/U(L(−))
〈
(c(−1) − χ(c))1l

〉
c∈C

is a quotient vertex superalgebra.
(d) Any bounded L-module in which c(−1) act as χ(c)Id, for all c ∈ C, is a vertex superalgebra

module for VL(χ).

The value χ(c) is referred to as central charge or level.

The vertex algebra that controls representation theory of D ⋉ K is the tensor product of three

VOAs: a subalgebra V +
Hyp of a hyperbolic lattice vertex algebra, an affine ĝlN vertex algebra VglN

at level 1, and the Virasoro vertex algebra VVir of rank 0. In order to apply the results of [2] to
representation theory of D ⋉ K, we use specializations ġ = (0) and τ = 0. In this specialization



REPRESENTATIONS OF LIE ALGEBRA OF VECTOR FIELDS ON A TORUS 8

one has to fix the following values for the various central charges appearing in ([2], Theorems 5.3
and 6.4):

c = 1, cslN = 1; cHei = N,

cVH =
N

2
, c′Vir = 0.

Let us briefly review the constructions of these three vertex algebras.
Hyperbolic lattice VOA. Consider a hyperbolic lattice Hyp, which is a free abelian group on 2N

generators {ua, va|a = 1, . . . , N} with the symmetric bilinear form

(·|·) : Hyp × Hyp → Z,

defined by

(ua|vb) = δab, (ua|ub) = (va|vb) = 0, a, b = 1, . . . , N.

We complexify Hyp to get a 2N -dimensional vector space

H = Hyp ⊗Z C

and extend the bilinear form by linearity on H. Next, we affinize H by defining a Heisenberg Lie
algebra

Ĥ = C[t, t−1] ⊗H⊕ CK

with the Lie bracket

[x(n), y(m)] = n(x|y)δn,−mK, x, y ∈ H, (6.3)

[K, Ĥ] = 0.

Here and in what follows, we are using the notation x(n) = tn ⊗ x.

The algebra Ĥ has a triangular decomposition Ĥ = Ĥ− ⊕ Ĥ0 ⊕ Ĥ+, where Ĥ0 = 1⊗H⊕ CK,

and Ĥ± = t±1C[t±1] ⊗H.
Let Hyp+ be an isotropic sublattice of Hyp generated by {ua|a = 1, . . . , N}. We consider its

group algebra C[Hyp+] = C[e±u1

, . . . , e±uN

] and define the action of Ĥ0 ⊕ Ĥ+ on C[Hyp+] by

x(0)e
y = (x|y)ey, Key = ey, Ĥ+e

y = 0.

To be consistent with our previous notations, we set qa = eua

, a = 1, . . . , N .
Finally, let V +

Hyp be the induced module

V +
Hyp

= Ind
bH
bH0⊕ bH+

(
C[Hyp+]

)
.

We coordinatize V +
Hyp as a Fock space over Ĥ:

V +
Hyp = C[q±1

1 , . . . , q±1
N ] ⊗ C[upj , vpj |

p=1,...,N
j=1,2,... ],

where Ĥ acts by operators of multiplication and differentiation:

up

(−j) = jupj, up

(j) =
∂

∂vpj

, up

(0) = 0,

vp

(−j) = jvpj , vp

(j) =
∂

∂upj

, vp

(0) = qp
∂

∂qp
,

for p = 1, . . . , N, j = 1, 2, . . . .
The space V +

Hyp has the structure of a vertex algebra - it is a vertex subalgebra in the vertex

algebra corresponding to lattice Hyp. We give here the values of the state-field correspondence
map on the generators of this vertex algebra:

Y (up1, z) = up(z) =
∑

j∈Z

up

(j)z
−j−1,

Y (vp1, z) = vp(z) =
∑

j∈Z

vp

(j)z
−j−1, p = 1, . . . , N,



REPRESENTATIONS OF LIE ALGEBRA OF VECTOR FIELDS ON A TORUS 9

Y (qr, z) = qrexp




N∑

p=1

rp

∞∑

j=1

zj

j
up

(−j)


 exp


−

N∑

p=1

rp

∞∑

j=1

z−j

j
up

(j)


 .

The Virasoro element of V +
Hyp is

ωHyp =

N∑

p=1

up1vp1

and the Virasoro field is

Y (ωHyp, z) =
N∑

p=1

: up(z)vp(z) : .

The rank of V +
Hyp is 2N .

Fix γ ∈ CN . The space

MHyp(γ) = qγC[q±1
1 , . . . , q±1

N ] ⊗ C[upj, vpj |
p=1,...,N
j=1,2,... ]

has a natural structure of a simple module for V +
Hyp (see e.g. [1] for details).

Affine ĝlN VOA. The second vertex algebra that we will need is the affine ĝlN vertex algebra at
level 1. Since glN is reductive, but not simple, it has more than one affinization. Here we consider

a particular version of ĝlN :

ĝlN = C[t, t−1] ⊗ glN ⊕ CC

with the Lie bracket

[tn ⊗X, tm ⊗ Y ] = tn+m ⊗ [X,Y ] + nδn,−mTr(XY )C, X, Y ∈ glN . (6.4)

We note that ĝlN is a vertex Lie algebra and consider its universal enveloping vertex algebra
VglN at level 1 (i.e., χ(C) = 1).

Let us give the value of the state-field correspondence map on the generators of this affine
vertex algebra:

Y (X(−1)1l, z) = X(z) =
∑

j∈Z

X(j)z
−j−1, for X ∈ glN .

Since glN has a decomposition glN = slN ⊕ CI, where I is the identity N ×N matrix, the affine

ĝlN vertex algebra is the tensor product of the affine ŝlN vertex algebra and a Heisenberg vertex
algebra. The Virasoro element ωglN of VglN can be thus written as a sum of the Virasoro elements

ωslN for the affine ŝlN vertex algebra and ωHei for the Heisenberg vertex algebra. The usual
formula for the Virasoro element in affine vertex algebra gives the following explicit expression:

ωslN =
1

2(N + 1)




N∑

i,j=1

Eij

(−1)E
ji

(−1)1l −
1

N
I(−1)I(−1)1l


 . (6.5)

The rank of the affine ŝlN vertex algebra at level 1 is N − 1.
For the Heisenberg vertex algebra we choose a non-standard Virasoro element (see [2], (4.33)):

ωHei =
1

2N
I(−1)I(−1)1l +

1

2
I(−2)1l. (6.6)

The rank of this Heisenberg VOA is 1 − 3N .
Adding the two Virasoro elements, we get the Virasoro element for VglN :

ωglN =
1

2(N + 1)




N∑

i,j=1

Eij

(−1)E
ji

(−1)1l + I(−1)I(−1)1l


+

1

2
I(−2)1l. (6.7)

The corresponding Virasoro field is

Y (ωglN , z) =
1

2(N + 1)




N∑

i,j=1

: Eij(z)Eji(z) : + : I(z)I(z) :


+

1

2

d

dz
I(z). (6.8)
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The rank of VglN is −2N .
Let W be a finite-dimensional simple module for glN . Let C act on W as the identity operator

and set (tC[t] ⊗ glN )W = 0. Construct the generalized Verma module for the Lie algebra ĝlN as
the induced module from W , and consider its irreducible quotient LglN (W ). Then LglN (W ) is a
simple module for the vertex algebra VglN .

Virasoro VOA. The last vertex algebra that we need to introduce is the Virasoro vertex algebra
VVir of rank 0. The Virasoro Lie algebra (5.1) is a vertex Lie algebra with U = {ωVir} and
C = {CVir}, where

ωVir(z) =
∑

j∈Z

ωVir
(j)z

−j−1 =
∑

j∈Z

Ljz
−j−2.

Let VVir be its universal enveloping vertex algebra of zero central charge, χ(CVir) = 0.
Let LVir(h) be the irreducible highest weight module for the Virasoro Lie algebra with central

charge 0 with the highest weight vector vh, satisfying L0vh = hvh.

The vertex algebra that controls representation theory of D ⋉ K is the tensor product of the

sub-VOA V +
Hyp of the hyperbolic lattice vertex algebra, affine ĝlN vertex algebra VglN at level 1,

and the Virasoro VOA VVir of rank 0

V +
Hyp ⊗ VglN ⊗ VVir

with the Virasoro element

ω = ωHyp + ωglN + ωVir.

The rank of this VOA is 2N − 2N + 0 = 0. Now we are ready to present a result of [2] (Theorems
5.3 and 6.4):

Theorem 6.3. ([2]) (i) Let MHyp, MglN , MVir be modules for V +
Hyp

, VglN and VVir respectively.

Then the tensor product

M = MHyp ⊗MglN ⊗MVir

is a module for the Lie algebra D ⋉ K with the action given as follows:
∑

j∈Z

tj0t
rk0z

−j = k0(r, z) 7→ Y (qr, z), (6.9)

∑

j∈Z

tj0t
rkaz

−j−1 = ka(r, z) 7→ ua(z)Y (qr, z), (6.10)

∑

j∈Z

tj0t
rdaz

−j−1 = da(r, z) 7→: va(z)Y (qr , z) : +

N∑

p=1

rpE
pa(z)Y (qr, z), (6.11)

∑

j∈Z

tj0t
rd0z

−j−2 = d0(r, z) 7→ − : Y (ω, z)Y (qr , z) : −

N∑

i,j=1

riu
j(z)Eij(z)Y (qr, z)

+

N∑

p=1

rp

(
d

dz
up(z)

)
Y (qr, z), (6.12)

for a = 1, . . . , N .
(ii) The module

L(W,γ, h) = MHyp(γ) ⊗ LglN (W ) ⊗ LVir(h)

is an irreducible module over the Lie algebra D ⋉ K.
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7. Generalized Wakimoto modules.

In [3] the structure of irreducible modules L(T ) over the Lie algebra of vector fields was deter-
mined in case of a 2-dimensional torus (N = 1). It turned out that the situation was analogous
to the case of a basic module for an affine Kac-Moody algebra, which remains irreducible when
restricted to the principal Heisenberg subalgebra [16], [13]. For the Lie algebra of vector fields on
T2 this role is played by its loop subalgebra s̃l2 = C[t0, t

−1
0 ] ⊗ sl2. Indeed we have sl2 embedded

into VectT1:
sl2 ∼=

〈
t−1
1 d1, d1, t1d1

〉
⊂ C[t1, t

−1
1 ]d1.

This extends to an embedding

s̃l2 ∼= C[t0, t
−1
0 ] ⊗

〈
t−1
1 d1, d1, t1d1

〉
⊂ VectT2.

The following theorem was proved in [3]:

Theorem 7.1. ([3]) Let W be the 1-dimensional gl1-module in which the identity matrix acts

as multiplication by α ∈ C. Assume α 6∈ Q, β = α(α−1)
2 , and let γ ∈ C. Then the module

L(T ) = L(α, β, γ) over the Lie algebra VectT2 remains irreducible when restricted to subalgebra
s̃l2.

Note that [3] uses a different convention for the sign of α.
The loop algebra s̃l2 = C[t0, t

−1
0 ]⊗ sl2 is Z-graded by degree in t0. This gives its decomposition

s̃l2 = s̃l+2 ⊕ s̃l02 ⊕ s̃l
−
2 . The zero part s̃l02

∼= sl2 is a subalgebra in C[t1, t
−1
1 ]d1 and thus acts on T .

The positive part s̃l+2 acts on T trivially. We can form the generalized Verma module over s̃l2:

Ind
esl2
esl02⊕esl

+
2

T (α, β, γ) ∼= U(s̃l−2 ) ⊗ T (α, β, γ).

By the results of [11], this generalized Verma module is irreducible over s̃l2 if and only if α 6∈ 1
2Z.

This gives the following

Corollary 7.2. ([3]) Let α ∈ C, α 6∈ Q, β = α(α−1)
2 . Then the VectT2-module L(α, β, γ) when

restricted to s̃l2 is isomorphic to the generalized Verma module over s̃l2:

L(α, β, γ) ∼= U(s̃l−2 ) ⊗ T (α, β, γ).

These results show that the loop subalgebra s̃l2 plays a crucial role in representation theory of
the Lie algebra of vector fields on T2. It is natural to conjecture that in the representation theory
of D = VectTN+1 such a role is played by the loop algebra s̃lN+1. Indeed, D0 has VectTN as a
subalgebra and VectTN contains slN+1 (see e.g. [22]). Thus VectTN+1 contains the loop algebra
s̃lN+1 = C[t0, t

−1
0 ]⊗slN+1. The modules T (W,β, γ) may be viewed as slN+1-modules, and we can

form the generalized Verma module over s̃lN+1:

U(s̃l−N+1) ⊗ T (W,β, γ).

It turns out, however, that in general, the action of s̃lN+1 on the generalized Verma module can
not be extended to the action of the bigger algebra VectTN+1. Instead one should use certain
generalized Wakimoto modules. We define the generalized Wakimoto modules in the following
way:

Definition 7.3. Let T be an slN+1-module. A generalized Wakimoto module M with top T
is an s̃lN+1-module that contains T as an slN+1-submodule with s̃l+N+1 acting on T trivially and
having the property that the character of M coincides with the character of the generalized Verma
module for s̃lN+1:

charM = char
(
U(s̃l−N+1)

)
× char T.

The generalized Verma module is by definition a generalized Wakimoto module. In case when
the generalized Verma module is irreducible, it is the only generalized Wakimoto module with the
given top T . As we mentioned above, for s̃l2 this happens for the tops T (α, β, γ) with α 6∈ 1

2Z

[11]. For N > 1 and any top T (W,β, γ) with a finite-dimensional glN -module W , the generalized
Verma module over s̃lN+1 is always reducible.
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We shall now see that Theorem 6.3 yields a construction of a generalized Wakimoto module for
s̃lN+1. These modules admit the action of the whole algebra of vector fields on TN+1.

Proposition 7.4. Let MglN (W ) be the generalized Verma module for ĝlN at level 1, induced from
an irreducible finite-dimensional glN -module W . Then the module

M = qγC[q±1
1 , . . . , q±1

N ] ⊗ C[upj , vpj ] ⊗MglN (W )

is a generalized Wakimoto module for the loop algebra s̃lN+1.

Proof. Applying Theorem 6.3 with a trivial 1-dimensional Virasoro module, we see that M as a
module for the Lie algebra VectTN+1. By restriction, view M as an s̃lN+1-module. The top of
the module M is the tensor module

T (W,γ) = qγC[q±1
1 , . . . , q±1

N ] ⊗W.

To show that M is a generalized Wakimoto module for s̃lN+1, we need to compare the characters

of C[upj, vpj ] ⊗ U(ĝl
−

N ) and U(s̃l−N+1). We have

char C[upj , vpj ] × charU(ĝl
−

N ) =

∞∏

k=1

(1 − sk)−2N ×

∞∏

k=1

(1 − sk)−N2

= charU(s̃l−N+1).

This completes the proof of the proposition.
�

Theorem 6.3 describes irreducible D ⋉ K-modules. We would like to study their reductions
to subalgebra D. In general, when reduced to a subalgebra, modules become reducible. Here,
however, the link with generalized Wakimoto modules for s̃lN+1 and the result of [3] for N = 1,
give us hope that the situation may be better than one would expect a priory.

8. Duality for modules over the Lie algebra of vector fields

In this section we will establish a duality for the class of modules described in Theorem 6.3 (ii),
that will be useful for the study of their irreducibility as modules over Lie algebra D. We begin
by looking at this question in a general setup.

Let L be a Z-graded Lie algebra L = ⊕
n∈Z

Ln with an anti-involution σ such that σ(Ln) = L−n.

Extend σ to the universal enveloping algebra U(L) by σ(ab) = σ(b)σ(a). Let L± = ⊕
n>0

L±n.

Suppose T1, T2 be two L0-modules with a bilinear pairing

T1 × T2 → C (8.1)

such that
〈xw1, w2〉 = 〈w1, σ(x)w2〉

for all x ∈ L0, w1 ∈ T1, w2 ∈ T2.
For an L0-module T we let L+ act on T trivially and construct the generalized Verma modules

for L: M(T ) = U(L−) ⊗ T .
The generalized Verma module M(T ) inherits the Z-grading (assuming degree of T to be zero).

Define the radical of a generalized Verma module M(T ) as the maximal homogeneous submodule
trivially intersecting with the top T . If T is an irreducible L0-module then the quotient L(T ) of
M(T ) by its radical is an irreducible module for L.

Consider the Shapovalov projection

S : U(L) → U(L0)

with kernel L−U(L) + U(L)L+.
Define a bilinear pairing

M(T1) ×M(T2) → C,

defined by
〈aw1, bw2〉 = 〈w1, S(σ(a)b)w2〉 (8.2)
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for a, b ∈ U(L−), w1 ∈ T1, w2 ∈ T2.

Proposition 8.1. (i) The pairing (8.2) is contragredient, i.e.,

〈xu, v〉 = 〈u, σ(x)v〉

for all x ∈ L, u ∈M(T1), v ∈M(T2).
(ii) If n 6= k then 〈M(T1)n,M(T2)k〉 = 0.
(iii) The radicals of M(T1), M(T2) are in the kernel of the pairing.
(iv) Assume that T1, T2 are irreducible L0-modules and the pairing (8.1) is non-zero. Then the

contragredient pairing factors to the simple modules

L(T1) × L(T2) → C,

on which it is non-degenerate.

This proposition is standard (cf., [23], Proposition 2.8.1) and its proof is left to the reader as
an exercise.

Next we will apply this proposition to establish the duality for the bounded modules described
in Theorem 6.3 (ii).

We consider the following anti-involution on D ⋉ K:

σ(tj0t
rda) = t−j

0 t−rda, σ(tj0t
rka) = t−j

0 t−rka, a = 0, . . . , N.

For a finite-dimensional simple glN -module W , on which the identity matrix I acts as multipli-
cation by α ∈ C, let W ∗ be the dual space to W with slN -module structure of the dual module,
but with I acting as scalar N − α. The natural pairing between W and W ∗ satisfies

〈Eabw|w∗〉 = 〈w| − Eabw∗ + δabw
∗〉.

Theorem 8.2. There exists a non-degenerate contragredient pairing of simple D ⋉ K-modules
defined in Theorem 6.3 (ii):

L(W,γ, h) × L(W ∗, γ, h) → C, (8.3)

satisfying

〈xu, v〉 = 〈u, σ(x)v〉,

for all x ∈ D ⋉ K, u ∈ L(W,γ, h), v ∈ L(W ∗, γ, h).

For the proof of this theorem we will use an alternative construction of the simple D⋉K-module
L(W,γ, h), which is discussed in [2]. These modules may be abstractly defined using approach of
Theorem 3.1. The top of the module L(W,γ, h) is the space

T = T (W,γ, h) = qγC[q±1
1 , . . . , q±1

N ] ⊗W ⊗ vh,

which is a module for the zero degree component D0 ⋉K0 of D ⋉ K with respect to its Z-grading
by degree in t0. The positive part of D ⋉ K acts on T (W,γ, h) trivially, and we can consider the
induced D ⋉ K-module M(T ). The induced module has a unique irreducible quotient, which is
isomorphic to L(W,γ, h).

The action of D0 ⋉ K0 on T (W,γ, h) can be derived from Theorem 6.3 (i) (see Theorem 6.4 in
[2] for details) and T is essentially a tensor module that we discussed above:

trk0(q
µ ⊗ w ⊗ vh) = qµ+r ⊗ w ⊗ vh, (8.4)

trka(qµ ⊗ w ⊗ vh) = 0, (8.5)

trda(qµ ⊗ w ⊗ vh) = µaq
µ+r ⊗ w ⊗ vh +

N∑

p=1

rpq
µ+r ⊗ Epaw ⊗ vh, (8.6)

trd0(q
µ ⊗ w ⊗ vh) = β qµ+r ⊗ w ⊗ vh, (8.7)

where

β = −h−
ΩW

2(N + 1)
−
α(α−N)

2N
, (8.8)
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a = 1, . . . , N , r ∈ ZN , µ ∈ γ + ZN . Here ΩW is the scalar with which the Casimir operator of slN
acts on W .

The claim of Theorem 8.2 follows from Proposition 8.1 and the following lemma.

Lemma 8.3. Let W be a simple finite-dimensional glN -module on which the identity matrix acts
as scalar α, and let W ∗ be a gln-module which is dual to W as a slN -module, and on which the
identity matrix acts as scalar N − α. Then the pairing

T (W,γ, h)× T (W ∗, γ, h) → C,

given by
〈qµ ⊗ w ⊗ vh|q

η ⊗ w∗ ⊗ vh〉 = δµ,η〈w|w
∗〉

is a non-degenerate contragredient pairing of D0 ⋉ K0-modules.

Proof. Using (8.4) we get

〈trk0(q
µ ⊗ w ⊗ vh)|qη ⊗ w∗ ⊗ vh〉 = δµ+r,η〈w|w

∗〉

= δµ,η−r〈w|w
∗〉 = 〈qµ ⊗ w ⊗ vh|σ(trk0)(q

η ⊗ w∗ ⊗ vh)〉.

In case of trka, a = 1, . . . , N , both left and right hand sides are zero. Let us verify the contragre-
dient property for the action of trda, a = 1, . . . , N :

〈trda(qµ ⊗ w ⊗ vh)|qη ⊗ w∗ ⊗ vh〉

= 〈µaq
µ+r ⊗ w ⊗ vh +

N∑

p=1

rpq
µ+r ⊗ Epaw ⊗ vh|q

η ⊗ w∗ ⊗ vh〉

= δµ+r,η

(
µa〈w|w

∗〉 +
N∑

p=1

rp〈E
paw|w∗〉

)

= δµ,η−r

(
µa〈w|w

∗〉 +

N∑

p=1

rp〈w| − Epaw∗ + δpaw
∗〉

)

= δµ,η−r

(
(ηa − ra)〈w|w∗〉 −

N∑

p=1

rp〈w|E
paw∗〉 + ra〈w|w

∗〉

)

= δµ,η−r

(
ηa〈w|w

∗〉 −

N∑

p=1

rp〈w|E
paw∗〉

)

= 〈qµ ⊗ w ⊗ vh|σ(trda)(qη ⊗ w∗ ⊗ vh)〉.

Finally, to check the case of trd0, we note that the constant β in (8.8) is the same for T (W,γ, h)
and T (W ∗, γ, h). This follows from the fact that the Casimir operator for slN acts with the same
scalar on W and W ∗, while the last term in (8.8) is invariant under the substitution α 7→ N − α.
Thus the computation in the case of trd0 is analogous to the case of trk0. This completes the
proof of the lemma. �

Remark 8.4. The pairing (8.3) is in fact a product of contragredient pairings of tensor factors

MHyp(γ) ×MHyp(γ) → C, LglN (W ) × LglN (W ∗) → C, LVir(h) × LVir(h) → C,

with respect to appropriate anti-involutions of corresponding Lie algebras.

Remark 8.5. The duality of Theorem 8.2 can be alternatively constructed via vertex algebra
approach, using the definition of the contragredient module over a vertex algebra (see section 5.2
in [10]).

One of the goals of this paper is to analyze which of the modules defined in Theorem 6.3 (ii)
remain irreducible after restriction to D. First of all, let us look at the question of irreducibility
of the top T (W,γ, h) as a module over D0.
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Lemma 8.6. Let W be an irreducible finite-dimensional glN -module. The module T (W,γ, h) is
reducible as a D0-module if and only if it is reducible as a VectTN -module (see Theorem 2.1) and
h = 0.

Proof. Clearly, if T (W,γ, h) is reducible as a D0-module, it must also be reducible as a VectTN -
module. By Theorem 2.1, all such modules appear in the de Rham complex. Note that

D0 = VectTN ⊕ C[t±1
1 , . . . , t±1

N ]d0,

and by (8.7), trd0 acts on T (W,γ, h) as multiplication by βqr. It is well known that in the modules
of differential forms there are no proper submodules that are C[q±1

1 , . . . , q±1
N ]-invariant. Thus for

T (W,γ, h) to be reducible as a D0-module it is necessary and sufficient that it is reducible as a
VectTN -module and the value of β given by (8.8) is zero. Let us analyze the values of β for the
modules in the de Rham complex. For the modules Ω0(TN ) and ΩN (TN ) the slN -module W is
trivial, so the Casimir operator acts with constant ΩW = 0, while the identity matrix acts on W
with scalars α = 0 and α = N respectively. Simplifying the expression in (8.8) we get in this case
that β = −h. In case of the modules of k-forms Ωk(TN ), k = 1, . . . , N − 1, the highest weight of
the corresponding slN -module W is the fundamental weight ωk. A standard computation shows
that in this case the Casimir operator acts with the scalar

ΩW = (ωk|ωk + 2ρ) = k(N − k)
N + 1

N
. (8.9)

Since the identity matrix acts with the scalar α = k, the formula (8.8) again simplifies to β = −h.
This implies the claim of the Lemma.

�

Consider now an irreducible D⋉K module L(W,γ, h) described in Theorem 6.3 (ii), and assume
that its top T (W,γ, h) is irreducible as a D0-module. To show that L(W,γ, h) remains irreducible
as a module over D, it is sufficient to establish two properties:

(C) Every critical vector of L(W,γ, h) (i.e., annihilated by D+) belongs to its top T (W,γ, h).

(G) L(W,γ, h) is generated by its top T (W,γ, h) as a module over D−.

The following standard observation will be quite useful:

Lemma 8.7. Condition (C) holds for the module L(W,γ, h) if and only if condition (G) holds for
L(W ∗, γ, h).

Proof. We use the existence of a non-degenerate contragredient pairing of D ⋉ K-modules:

L(W,γ, h) × L(W ∗, γ, h) → C.

If L(W,γ, h) has a vector annihilated by D+, which does not belong to the top, it also has a
homogeneous vector with this property. Suppose u is a critical vector of degree s ∈ ZN+1. Since
the pairing is non-degenerate, there exists a vector v in L(W ∗, γ, h) of the same degree, such
that 〈u|v〉 6= 0. If property (G) holds for L(W ∗, γ, h), v can be written as v =

∑
i xivi, where

xi ∈ D−, vi ∈ L(W ∗, γ, h). Applying the contragredient property, we get

〈u|v〉 = 〈u|
∑

i

xivi〉 =
∑

i

〈σ(xi)u|vi〉.

The last expression is zero since σ(xi) ∈ D+ and u is a critical vector. This gives a contradiction,
which implies that property (G) does not hold for L(W ∗, γ, h).

To prove the converse, assume that the component of degree s in L(W ∗, γ, h) is not generated
by D− acting on the top. Let V be the intersection of that homogeneous component with the
space U(D−)T (W ∗, γ, h). Since the pairing is non-degenerate, we can find a non-zero vector u in
the degree s component of L(W,γ, h), such that 〈u|V 〉 = 0. If property (C) holds for the module
L(W,γ, h), there exists a homogeneous y ∈ U(D+), such that z = yu is a non-zero vector in
T (W,γ, h). Let z′ ∈ T (W,γ, h) be such that 〈z|z′〉 6= 0. Then

〈z|z′〉 = 〈yu|z′〉 = 〈u|σ(y)z′〉.
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But σ(y) ∈ U(D−), thus σ(y)z′ ∈ V , which leads to a contradiction. The lemma is now proved.
�

Lemma 8.7 reduces the question of irreducibility of the family of modules L(W,γ, h) to the
question of existence of critical vectors. If both L(W,γ, h) and L(W ∗, γ, h) satisfy condition (C),
then they are both irreducible as modules over D.

9. Critical vectors

In this section we will establish a necessary condition for the existence of non-trivial critical
vectors in the modules L(W,γ, h), which together with Lemma 8.7 will give a sufficient condition
for the irreducibility of such modules.

Theorem 9.1. Let W be an irreducible finite-dimensional glN -module, γ ∈ CN , h ∈ C. Every
critical vector (i.e., annihilated by D+) in the module L(W,γ, h) belongs to its top, unless h = 0 and
W is either a trivial slN -module with identity matrix acting with scalar α = N−mN , m = 1, 2, . . .,
or the highest weight of W is a fundamental weight ωk, k = 1, . . . , N − 1, with identity matrix
acting by scalar α = k −mN , m = 1, 2, . . ..

We will call a module L(W,γ, h) exceptional if h = 0, the identity matrix acts on W by an
integer k ∈ Z and W is a trivial one-dimensional slN -module when k = 0 mod N or has a
fundamental highest weight ωk′ with 1 ≤ k′ ≤ N − 1 and k = k′ mod N .

Theorem 9.2. Let W be an irreducible finite-dimensional glN -module, γ ∈ CN , h ∈ C. Every
non-exceptional module L(W,γ, h) is irreducible as a VectTN -module.

Theorem 9.2 is an immediate consequence of Theorem 9.1 and Lemma 8.7. The proof of
Theorem 9.1 will be split into a sequence of lemmas.

Lemma 9.3. Let g ∈ L(W,γ, h) be a critical vector. Then g does not depend on variables {upj},
i.e., g belongs to the subspace

qγC[q±1
1 , . . . , q±1

N ] ⊗ C[vpj |
p=1,...,N
j=1,2,... ] ⊗ LglN (W ) ⊗ LVir(h). (9.1)

Proof. The algebra D+ contains the elements tj0dp with p = 1, . . . , N , j ≥ 1, which act as ∂
∂upj

.

The condition (tj0dp)g = 0 implies the claim of the lemma.
�

For a formal series a(z) we denote by a(z)− its part that only involves negative powers of z.

Recalling that da(r, z) =
∑
j∈Z

tj0t
rdaz

−j−1, we have (zda(r, z))−g = 0. Using (6.11) for the action

of da(r, z) and taking into account that g does not depend on {upj}, we get

qr


exp




N∑

p=1

rp

∞∑

j=1

upjz
j



(

∞∑

i=1

ivaiz
i + qa

∂

∂qa
+

N∑

p=1

rp
∑

k∈Z

Epa

(k)z
−k

)

× exp


−

N∑

p=1

rp

∞∑

j=1

z−j

j

∂

∂vpj






−

g = 0.

Let us project to the subspace (9.1), setting upj = 0 in the above equality. Also, since the
operator of multiplication by qr is invertible, we can drop it. We then get

Pa(r, z)−g = 0, a = 1, . . . , N, (9.2)

where

Pa(r, z) =

(
∞∑

i=1

ivaiz
i + qa

∂

∂qa
+

N∑

p=1

rp
∑

k∈Z

Epa

(k)z
−k

)
exp


−

N∑

p=1

rp

∞∑

j=1

z−j

j

∂

∂vpj


 .
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At this point we find it convenient to make a change of variables xaj = jvaj . In these notations
Pa(r, z) takes form

Pa(r, z) =

(
∞∑

i=1

xaiz
i + qa

∂

∂qa
+

N∑

p=1

rp
∑

k∈Z

Epa

(k)z
−k

)
exp


−

N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj


 . (9.3)

Let us expand Pa(r, z) in a formal series in variables r = (r1, . . . , rN ):

Pa(r, z) =
∑

s∈ZN
+

rsPas(z).

It is easy to see that for any j ∈ Z and any vector g′, there are only finitely many s ∈ ZN
+ such

that the coefficient at zj in Pas(z)g
′ is non-zero. Thus the coefficient at zj in

∑
s∈ZN

+

rsPas(z)g is a

polynomial in r. Since for each j < 0 these polynomials vanish for all r ∈ ZN , we conclude that
for all s ∈ ZN

+ , a = 1, . . . , N ,

Pas(z)−g = 0.

Note that for s = 0 this equation is trivial. Let us consider the case s ∈ ZN
+ , with sp = 1 and

si = 0 for i 6= p. This gives us an equation

∞∑

k=1

z−kEpa

(k)g =

((
∞∑

i=1

xaiz
i + qa

∂

∂qa

)(
∞∑

k=1

z−k ∂

∂xpk

))

−

g

=

(
∞∑

k=1

(
k−1∑

i=1

xaiz
i + qa

∂

∂qa

)
z−k ∂

∂xpk

)
g. (9.4)

Substituting (9.4) into (9.3) we get

P ′
a(r, z)−g = 0, (9.5)

where

P ′
a(r, z) =

(
∞∑

i=1

xaiz
i + qa

∂

∂qa
+

N∑

p=1

rp

∞∑

k=0

Epa

(−k)z
k

)
exp


−

N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj




+ exp



−

N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj




(

N∑

p=1

rp

∞∑

k=1

(
k−1∑

i=1

xaiz
i + qa

∂

∂qa

)
z−k ∂

∂xpk

)
.

Our module is ZN+1-graded via the action of operators d0, . . . , dN , and without loss of generality
we may assume that g is homogeneous relative to ZN+1-grading. We will call the eigenvalue of
β Id − d0 the degree of g. We use the negative sign here to make the degree non-negative. In fact

the Z-grading by degree may be defined on each of the tensor factors C[xpj |
p=1,...,N
j=1,2,... ], LglN and

LVir by

deg(xpj) = deg(Eab
(−j)) = deg(L(−j)) = j,

deg(W ) = deg(vh) = 0.

On the space C[xpj |
p=1,...,N
j=1,2,... ] we will also consider a refinment of Z-grading by degree, where we

will compute the degree in each of the N families of variables. For each a = 1, . . . , N , define

dega(xpj) = jδap.

Then for a monomial y ∈ C[xpj |
p=1,...,N
j=1,2,... ] we have

deg(y) =
N∑

a=1

dega(y).

In addition to the degree of monomials, we will consider another ZN -grading by length, where

lena(xpj) = δap
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and define the total length to be

len(y) =
N∑

a=1

lena(y).

Let us fix homogeneous bases {y′i}, {y
′′
j }, {y

′′′
k } in the spaces C[xpj |

p=1,...,N
j=1,2,... ], LglN and LVir

respectively. Then we can expand g into a finite sum

g =
∑

ijk

αijkq
µy′i ⊗ y′′j ⊗ y′′′k . (9.7)

Note that in the above decomposition deg(g) = deg(y′i) + deg(y′′j ) + deg(y′′′k ). Since equations

(9.2), (9.4) and (9.5) do not involve any operators acting on the component LVir, we conclude
that these must be satisfied not only by g, but also by each of the components

gk =
∑

ij

αijkq
µy′i ⊗ y′′j ⊗ y′′′k .

Lemma 9.4. Let g be a homogeneous non-zero critical vector. Then in the decomposition (9.7)
there exist y′′j ∈ W and y′′′k ∈ Cvh with αijk 6= 0 for some i.

Proof. Let us rewrite (9.7) as

g =
∑

ij

qµy′i ⊗ y′′j ⊗

(
∑

k

αijky
′′′
k

)
.

Consider the smallest degree n0 of y′′′k for which αijk 6= 0 for some i, j. We claim that n0 = 0.

Otherwise, since LVir is irreducible, there exists a raising operator ωVir
(n) , n ≥ 2, such that

ωVir
(n)

∑

k

deg(y′′′

k
)=n0

αijky
′′′
k 6= 0.

Consider now the Virasoro operator acting on all three factors of the tensor product: ω(n) =

ωHyp
(n) +ωglN

(n) +ωVir
(n) . The part of ω(n)g involving the terms of the smallest degree in the component

LVir will be ∑

ij

qµy′i ⊗ y′′j ⊗ ωVir
(n)

∑

k

deg(y′′′

k
)=n0

αijky
′′′
k 6= 0.

Thus ω(n)g 6= 0. However operator ω(n) represents −tn−1
0 d0 ∈ D+ and must annihilate g since g

is a critical vector. This is a contradiction, which implies that n0 = 0.
Let g̃ = qµ

∑
ij αijy

′
i ⊗ y′′j ⊗ vh be the projection of g to the space

qµC[xpj |
p=1,...,N
j=1,2,... ] ⊗ LglN (W ) ⊗ vh.

We just proved that g̃ 6= 0, and it was noted earlier that it satisfies equation (9.4). Let n1 be the
smallest degree of y′′j such that αij 6= 0 for some i. To complete the proof of the lemma, we need
to show that n1 = 0. If n1 > 0 using the same argument as above we see that there exists a raising
operator Epa

(n), n ≥ 1 such that Epa

(n)g̃ will have a non-zero component with terms in LglN (W ) of

degree n1 − n. However the equation (9.4) implies that all factors from LglN (W ) that appear in
Epa

(n)g̃ have degrees at least n1. This contradiction implies n1 = 0, and the lemma is proved.

�

Let g be the projection of the critical vector g to the space

qµC[xpj |
p=1,...,N
j=1,2,... ] ⊗W ⊗ vh. (9.8)

By the above Lemma, g 6= 0. Let us take the projection of the equation (9.5) to the space (9.8).
This yields

P ′′
a (r, z)−g = 0, (9.6)
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where

P ′′
a (r, z) =

(
∞∑

i=1

xaiz
i + qa

∂

∂qa
+

N∑

p=1

rpE
pa

(0)

)
exp


−

N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj




+ exp



−

N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj




(

N∑

p=1

rp

∞∑

k=1

(
k−1∑

i=1

xaiz
i + qa

∂

∂qa

)
z−k ∂

∂xpk

)
.

Again we decompose P ′′
a (r, z) in a formal power series in r, P ′′

a (r, z) =
∑

s∈ZN
+

rsP ′′
as(z), and we

have P ′′
as(z)−g = 0 for all s ∈ ZN

+ .
Next we will consider the grading of g by (total) length. Note that the operator P ′′

as(z) has two
homogeneous components with respect to the length grading – one that decreases the length by
s1 + . . .+ sN − 1 and the other (that contains terms involving qa

∂
∂qa

) by s1 + . . .+ sN . Let f be

the maximum length component of g and suppose len(f) = ℓ. Denote by Qas(z) the component of
P ′′

as(z) that reduces the length by s1+. . .+sN−1. Then the component of length ℓ+1−s1−. . .−sN

in P ′′
as(z)−g is Qas(z)−f . Thus

Qas(z)−f = 0. (9.9)

Assembling back the generating series Qa(r, z) =
∑

s∈ZN
+

rsQas(z), we get

Qa(r, z) =

(
∞∑

i=1

xaiz
i +

N∑

p=1

rpE
pa

(0)

)
exp


−

N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj




+ exp


−

N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj



(

N∑

p=1

rp

∞∑

k=1

(
k−1∑

i=1

xaiz
i

)
z−k ∂

∂xpk

)

=

(
∞∑

i=1

xaiz
i +

N∑

p=1

rpE
pa

(0)

)
exp



−

N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj





+

(
N∑

p=1

rp

∞∑

k=1

(
k−1∑

i=1

(xai − raz
−i)zi

)
z−k ∂

∂xpk

)
exp


−

N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj




=

(
∞∑

i=1

xaiz
i

)
exp


−

N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj




+

(
N∑

p=1

rp

∞∑

k=1

(
k−1∑

i=1

xaiz
i

)
z−k ∂

∂xpk

)
exp



−
N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj





+

(
N∑

p=1

rpE
pa

(0) − ra

∞∑

k=1

N∑

p=1

(k − 1)rpz
−k ∂

∂xpk

)
exp


−

N∑

p=1

rp

∞∑

j=1

z−j ∂

∂xpj


 . (9.10)

Our goal is to solve the system of equations (9.9) in the space C[xpj |
p=1,...,N
j=1,2,... ]⊗W . The solutions

we are looking for are homogeneous in both degree and length. Let deg(f) = m, len(f) = ℓ. The
equation (9.9) has trivial solutions with ℓ = 0. These correspond to the critical vectors in the top
of the module. We are going to show that non-trivial solutions of (9.9) must have length ℓ = 1.

To establish this claim we will first analyze the equation (9.9) in cases N = 1 and N = 2. The
case of the general N will follow from the following simple observation. Consider a proper subset
S ⊂ {1, . . . , N}. Let us take a solution f of (9.9) and specialize all variables xpj with p 6∈ S to
scalars, we will get a solution for (9.9) with a smaller N . To see this, set in (9.9) rp = 0 for all
p 6∈ S and restrict a to the set S. The information about the solutions of (9.9) with N = 1 and
N = 2 may be used to establish properties of solutions of this equation for a general N .
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Lemma 9.5. Let N = 1, and let W be a 1-dimensional gl1-module with identity matrix I = E11

acting by scalar α ∈ C. Let f be a non-constant homogeneous (in both length and degree) solution
of (9.9) with N = 1. Then len(f) = 1 and α = 1 − deg(f).

Proof. First of all, let us rewrite (9.10) for the case N = 1. To simplify notations we will drop
redundant indices and write xi instead of xpi, etc.,

Q(r, z) =

(
∞∑

i=1

xiz
i + r

∞∑

k=1

(
k−1∑

i=1

xiz
i

)
z−k ∂

∂xk

+ rα− r2
∞∑

k=1

(k − 1)z−k ∂

∂xk

)
exp


−r

∞∑

j=1

z−j ∂

∂xj


 .

(9.11)
Let f satisfy Q(r, z)−f = 0. We may view f as a polynomial of length ℓ > 0 and degree m ≥ ℓ

in C[x1, x2, . . .]. Choose a natural number s such that



∞∑

j=1

z−j ∂

∂xj




s+1

f = 0 (9.12)

but

R(z) =




∞∑

j=1

z−j ∂

∂xj




s

f 6= 0. (9.13)

Clearly 1 ≤ s ≤ ℓ.
Let us consider the coefficient at rs+1 in the equation Q(r, z)−f = 0:

(−1)s

s!

(
∞∑

k=1

(
k−1∑

i=1

xiz
i

)
z−k ∂

∂xk

)
R(z) +

(−1)s

s!
αR(z)

−
(−1)s−1

(s− 1)!

(
∞∑

k=1

(k − 1)z−k ∂

∂xk

)


∞∑

j=1

z−j ∂

∂xj




s−1

f = 0.

Thus (
∞∑

k=1

(
k−1∑

i=1

xiz
i

)
z−k ∂

∂xk

)
R(z) + αR(z) − z

d

dz
R(z) − sR(z) = 0. (9.14)

Consider an expansion R(z) = Rnz
−n +Rn+1z

−n−1 + . . .+Rmz
−m with Rn 6= 0. Let us look at

the coefficient at z−n in the above equation:

αRn + nRn − sRn = 0,

which implies α = s− n ∈ Z−.
Applying the operator z d

dz
to (9.12) we get

(
∞∑

k=1

kz−k ∂

∂xk

)
R(z) = 0.

Let us prove by induction that for all j ≥ 0
(

∞∑

k=1

kjz−k ∂

∂xk

)
R(z) = 0. (9.15)

Suppose (9.15) holds for all j′ ≤ j, j ≥ 1. Applying the operator
∑∞

k=1 k
jz−k ∂

∂xk
to (9.14) and

using the induction assumption, we get

0 =

(
∞∑

p=1

pjz−p ∂

∂xp

)(
∞∑

k=1

(
k−1∑

i=1

xiz
i

)
z−k ∂

∂xk

)
R(z) −

(
∞∑

k=1

kjz−k ∂

∂xk

)
z
d

dz
R(z)

=

(
∞∑

k=1

(
k−1∑

p=1

pj

)
z−k ∂

∂xk

)
R(z) −

(
∞∑

k=1

kj+1z−k ∂

∂xk

)
R(z)
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=

(
1

j + 1
− 1

)( ∞∑

k=1

kj+1z−k ∂

∂xk

)
R(z),

which establishes the inductive step. In the above calculation we used the fact that
k−1∑
p=1

pj is a

polynomial in k with the leading term kj+1

j+1 .

Using the Vandermonde determinant argument we conclude from (9.15) that

∂

∂xk

R(z) = 0

for all k. This implies that all Ri are scalars, but since they can’t have equal degrees, we conclude
that Rn is a non-zero scalar, while all other coefficients are zero. Without the loss of generality
we may thus assume

R(z) =




∞∑

j=1

z−j ∂

∂xj




s

f = z−n.

Thus s = len(f) = ℓ and n = deg(f) = m, and then α = len(f)−deg(f). It remains to prove that
len(f) = 1. We will reason by contradiction. Let us suppose that ℓ = len(f) > 1 and consider

S(z) =




∞∑

j=1

z−j ∂

∂xj




ℓ−1

f.

Since every term in S(z) has length 1, we can write

S(z) = β1x1z
−m+1 + β2x2z

−m+2 + . . .+ βm−ℓ+1xm−ℓ+1z
−ℓ+1.

Now we look at the coefficient at rℓ in the equation Q(r, z)−f = 0:

0 =
(−1)ℓ

ℓ!




(
∞∑

i=1

xiz
i

)


∞∑

j=1

z−j ∂

∂xj




ℓ

f




−

+
(−1)ℓ−1

(ℓ− 1)!

(
∞∑

k=1

(
k−1∑

i=1

xiz
i

)
z−k ∂

∂xk

)


∞∑

j=1

z−j ∂

∂xj




ℓ−1

f

−
(−1)ℓ−2

(ℓ− 2)!

(
∞∑

k=1

(k − 1)z−k ∂

∂xk

)


∞∑

j=1

z−j ∂

∂xj




ℓ−2

f

+
(−1)ℓ−1

(ℓ− 1)!
α




∞∑

j=1

z−j ∂

∂xj




ℓ−1

f.

Taking out the factor of (−1)ℓ

ℓ! we get

0 =

m−1∑

i=1

xiz
−m+i − ℓ

(
∞∑

k=1

(
k−1∑

i=1

xiz
i

)
z−k ∂

∂xk

)
S(z)

+ℓz
d

dz
S(z) + ℓ(ℓ− 1)S(z) + ℓ(m− ℓ)S(z)

=

m−1∑

i=1

xiz
−m+i − ℓ

m−ℓ+1∑

k=1

(
k−1∑

i=1

xiz
i

)
βkz

−m

+ℓ

m−ℓ+1∑

k=1

(−m+ k)βkxkz
−m+k + ℓ(m− 1)

m−ℓ+1∑

k=1

βkxkz
−m+k
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=

m−1∑

i=1

xiz
−m+i − ℓ

m−ℓ∑

i=1

(
m−ℓ+1∑

k=i+1

βk

)
xiz

−m+i + ℓ

m−ℓ+1∑

k=1

(k − 1)βkxkz
−m+k.

We stress that the above calculation is only valid when ℓ > 1. If ℓ > 2 we immediately get a
contradiction since the coefficient at z−1 yields xm−1 = 0. It only remains to rule out the case
ℓ = 2. In the latter case the equation simplifies to the following:

m−1∑

k=1

xkz
−m+k − 2

m−1∑

k=1

(
k−1∑

i=1

xiz
i

)
βkz

−m + 2

m−1∑

k=1

(k − 1)βkxkz
−m+k = 0.

Let us specialize this equation to x1 = . . . = xm−1 = 1, z = 1. Then we get

(m− 1) − 2

m−1∑

k=1

(k − 1)βk + 2

m−1∑

k=1

(k − 1)βk = 0,

which implies m = 1, which is impossible since m = deg(f) can not be less than ℓ = len(f). Thus
ℓ = len(f) = 1 and the lemma is proved.

�

Next we are going to show that for a general N , a homogeneous non-trivial solution of (9.9)
must have total length 1. The previous lemma implies that such a solution may have only two
components with respect to lena grading for each a, where lena may be either 0 or 1. To prove
the general case, it is sufficient to consider N = 2, since if a monomial has lena + lenb at most 1
for any pair of distinct indices, then its total length does not exceed 1.

Lemma 9.6. Let N = 2 and let W be a finite-dimensional gl2-module. Then any homogeneous
(in both length and degree) non-constant solution f of (9.9) has total length 1.

Proof. It is sufficient to consider the case ofW being irreducible since the equation (9.9) is compati-
ble with the glN -module homomorphisms. Let us fix a basis
{wn, wn−1, . . . , w−n} of W , where n ∈ 1

2Z+ and (E11 − E22)wi = 2iwi. Assuming that the
identity matrix acts on W by scalar α, we get

E11wi =
(α

2
+ i
)
wi and E22wi =

(α
2
− i
)
wi.

It follows from the previous lemma that every monomial in the decomposition of f has length
at most 1 with respect to each of the two indexes. Thus we only need to prove that f can not
have total length 2. We will reason by contradiction. If len(f) = 2 then for each monomial in f
both len1 and len2 are 1. Suppose deg(f) = m. Let us write

f =

n∑

i=−n

fi ⊗ wi.

By Lemma 9.5 we have

deg1(fi) = 1 −
(α

2
+ i
)
, deg2(fi) = 1 −

(α
2
− i
)
,

so m = deg(f) = 2 − α. Let bi = deg1(fi) = m
2 − i and ci = deg2(fi) = m

2 + i. Then f may be
written as

f =
n∑

i=−n

βix1,bi
x2,ci

⊗ wi, (9.16)

where we set βi = 0 whenever bi ≤ 0 or ci ≤ 0.
Let us take the equation derived from (9.9) by taking the coefficient at r1r2 with a = 1 and

substitute (9.16) in it. We get

0 =
n∑

i=−n

βi




m−1∑

j=1

z−m+jx1,j


⊗ wi −

n∑

i=−n

βi




bi−1∑

j=1

z−m+jx1,j


⊗ wi
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−

n∑

i=−n

βi




ci−1∑

j=1

z−m+jx1,j


⊗ wi −

n∑

i=−n

βi(ci − 1)z−m+bix1,bi
⊗ wi

−
n∑

i=−n

βi(1 − bi)z
−m+bix1,bi

⊗ wi −
n∑

i=−n

βiz
−m+cix2,ci

⊗ E21wi. (9.17)

Note that only the last sum contains variables x2,j . By equating this sum to zero, we conclude
that βiE

21wi = 0 for all i = −n, . . . , n. It follows that βi = 0 for all i 6= −n. Similarly, taking
the same equation with a = 2, we will get that βi = 0 for all i 6= n. Thus the only possibility for
a non-zero solution is when n = 0, which means that W is 1-dimensional and m is even. In this
case b0 = c0 = m

2 and f = x1, m
2
x2, m

2
⊗ w, and the equation (9.17) becomes

m−1∑

j=1

x1,jz
−m+j ⊗ w − 2

m
2 −1∑

j=1

z−m+jx1,j ⊗ w = 0,

which gives a contradiction. Thus the total length of f must be 1 and the lemma is proved.
�

Now we return to the general case. We proved that a non-trivial homogeneous solution f of
(9.3) must have length 1. Suppose deg(f) = m. Then f can be written as

f =

N∑

p=1

xpm ⊗ wp, wp ∈ W.

The equation (9.9) then simplifies as follows:

0 =

N∑

p=1

rp

N∑

b=1

rbE
pawb + ra(m− 1)

N∑

b=1

rbwb

=

N∑

p=1

N∑

b=1

rprb (Epa + δpa(m− 1))wb. (9.18)

Consider a new action ρ′ of glN on W :

ρ′(Epa)w = Epaw + (m− 1)δapw, w ∈ W.

This gives the same structure of W as an slN -module, but now the identity matrix acts with scalar
α′ = α+ (m− 1)N . Then (9.18) is equivalent to the system of equations

ρ′(Eca)wb + ρ′(Eba)wc = 0 (9.19)

where a, b, c = 1, . . . , N .
We will also use a third glN -action ρ′′ on W :

ρ′′(Epa)w = ρ′(Epa)w + δapw = Epaw +mδapw, w ∈ W.

The identity matrix here acts with scalar α′′ = α+mN . For this action the equation (9.19) may
be written as

ρ′′(Eca)wb + ρ′′(Eba)wc = δcawb + δbawc. (9.20)

We also have
N∑

p=1

N∑

b=1

rprbρ
′′(Epa)wb = ra

N∑

b=1

rbwb. (9.21)

We are going to classify glN -modules W for which the system (9.19) has non-trivial solutions.
We will do this indirectly, linking this system with reducibility of tensor modules.
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Lemma 9.7. Let (W,ρ′′) be a finite-dimensional irreducible glN -module. Let P be the set of all
solutions (w1, . . . , wN ) ∈ W × . . .×W of the system of equations (9.20). Then the subspace

P̃ =

{
⊕

r∈ZN

qr ⊗ (r1w1 + . . . rNwN )
∣∣(w1, . . . , wN ) ∈ P

}

is a VectTN -submodule in the tensor module T (W ) = C[q±1
1 , . . . , q±1

N ]⊗W , associated with (W,ρ′′).

Proof. Let (w1, . . . , wN ) ∈ P . Then using the tensor module action and (9.21) we get

tsda

(
qr ⊗

N∑

b=1

rbwb

)
= raq

r+s ⊗
N∑

b=1

rbwb +
N∑

p=1

N∑

b=1

sprbq
r+s ⊗ ρ′′(Epa)wb

=

N∑

b=1

rbq
r+s ⊗

N∑

p=1

(rp + sp)ρ
′′(Epa)wb.

Fix 1 ≤ a, i ≤ N . Set w̃p = ρ′′(Epa)wi, p = 1, . . . , N . To complete the proof of the lemma, it
is sufficient to show that (w̃1, . . . , w̃N ) ∈ P . Instead of working with (9.20), it will be easier to
check an equivalent condition (9.19). Note that w̃p = ρ′(Epa)wi + δpawi. Then using the fact that
(w1, . . . , wN ) satisfies (9.19), we obtain

ρ′(Ecd)w̃b + ρ′(Ebd)w̃c

= ρ′(Ecd)ρ′(Eba)wi + δabρ
′(Ecd)wi + ρ′(Ebd)ρ′(Eca)wi + δacρ

′(Ebd)wi

= −ρ′(Ecd)ρ′(Eia)wb + δabρ
′(Ecd)wi − ρ′(Ebd)ρ′(Eia)wc + δacρ

′(Ebd)wi

= −ρ′(Eia)ρ′(Ecd)wb − δidρ
′(Eca)wb + δacρ

′(Eid)wb + δabρ
′(Ecd)wi

−ρ′(Eia)ρ′(Ebd)wc − δidρ
′(Eba)wc + δabρ

′(Eid)wc + δacρ
′(Ebd)wi = 0.

Thus (w̃1, . . . , w̃N ) ∈ P . Lemma is now proved.
�

Corollary 9.8. Let (W,ρ) be a finite-dimensional irreducible glN -module. If
L(W,γ, h) has a critical vector of degree m ≥ 1 then either W has a fundamental highest weight
ωk, 1 ≤ k ≤ N−1, with respect to slN -action, with identity matrix acting with scalar α = k−mN ,
or W is a 1-dimensional module with identity matrix acting with scalar α = N −mN .

Proof. If the system (9.20) has a non-trivial solution then the submodule P̃ in the tensor module
T (W ) corresponding to (W,ρ′′) is non-zero. It is a proper submodule since its component at q0

is trivial. Using the classification of reducible tensor modules (Theorem 2.1), we conclude that
T (W ) is one of the de Rham modules Ωk(TN ), k = 1, . . . , N . Taking into account the relation
α = α′′ −mN , we obtain the claim of the corollary.

�

To complete the proof of Theorem 9.1 it remains to establish the following

Lemma 9.9. If L(W,γ, h) has a critical vector that does not belong the top then h = 0.

Proof. Our strategy will be the same as in derivation of equation (9.9). A critical vector g is

annihilated by tj0t
rd0 for j ≥ 0. Thus

(z2d0(r, z))−g = 0.

We will project this equation to the subspace (9.8) in order to derive an equation on f . Finally, we
will take ra-component of the resulting equation. The action of d0(r, z) is given by (6.12), which
has three summands. We will analyze the contribution of each summand in z2d0(r, z) separately.

Consider the first summand

−


z2




∞∑

j=1

ω(−j)z
j−1


Y (qr, z) + z2Y (qr, z)




∞∑

j=0

ω(j)z
−j−1






−

g. (9.22)

We have
ω(j)g = 0 for j ≥ 2,
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since −ω(j) represents tj−1
0 d0. Thus the corresponding terms in the above expression may be

dropped. We also recall that

ω(j) = ω
Hyp
(j) + ωglN

(j) + ωVir
(j) .

We further split (9.22) into three summands corresponding to this decomposition. For the case of
the Virasoro field of the hyperbolic lattice component we have

ωHyp(z) =

N∑

p=1




∞∑

j=1

jupjz
j−1



(

∞∑

k=1

kvpkz
k−1 + z−1qp

∂

∂qp
+

∞∑

k=1

∂

∂upk

z−k−1

)

+
N∑

p=1

(
∞∑

k=1

kvpkz
k−1 + z−1qp

∂

∂qp
+

∞∑

k=1

∂

∂upk

z−k−1

)


∞∑

j=1

∂

∂vpj

z−j−1


 . (9.23)

The first summand in (9.23) does not contribute to the projection to (9.8) since it contains multi-
plications by upj , while Y (qr, z) does not involve differentiations in these variables. Note that we

are only interested in powers zj in ωHyp(z) with j ≥ −2. Thus the only terms that will contribute
are:

N∑

p=1

(
∞∑

k=1

kvpkz
k−1

)


∞∑

j=1

∂

∂vpj

z−j−1



 .

In operator Y (qr, z) we may then drop the factors containing upj when taking the projection to
(9.8). The contribution that we get will be

−



z2
N∑

p=1




∞∑

k=3

k−2∑

j=1

kvpk

∂

∂vpj

zk−j−2



 exp



−
N∑

p=1

rp

∞∑

j=1

z−j

j

∂

∂vpj









−

f

−



exp



−

N∑

p=1

rp

∞∑

j=1

z−j

j

∂

∂vpj




N∑

p=1



z
∞∑

j=1

(j + 1)vp,j+1
∂

∂vpj

+

∞∑

j=1

jvpj

∂

∂vpj









−

f.

Let us now take the ra-coefficient of the expansion in powers of r:



N∑

p=1




∞∑

k=3

k−2∑

j=1

kvpk

∂

∂vpj

zk−j






∞∑

j=1

z−j

j

∂

∂vaj


 f




−

+






∞∑

j=1

z−j

j

∂

∂vaj




N∑

p=1


z

∞∑

j=1

(j + 1)vp,j+1
∂

∂vpj

+
∞∑

j=1

jvpj

∂

∂vpj


 f




−

. (9.24)

Since f is linear in vpm,

f =

N∑

p=1

vpm ⊗ wp ⊗ vh, wp ∈W,

the first summand in (9.24) vanishes, while the second simplifies to

z−m

∞∑

j=1

∂

∂vaj

+ z−m

∞∑

j=1

∂

∂vaj


 f

= 2z−m1 ⊗ wa ⊗ vh. (9.25)

Next, let us consider the contribution of the Virasoro field of VglN :

−



z2




∞∑

j=1

ω
glN
(−j)z

j−1



Y (qr, z) + z2Y (qr, z)
(
z−1ω

glN
(0) + z−2ω

glN
(1)

)




−

g. (9.26)
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The operators ω
glN
(j) with j ≤ 0 increase the degree in the component LglN and thus do not

contribute to the projection to the space (9.8), and only the term with ω
glN
(1) will contribute. The

Virasoro field of ĝlN is a sum of the Virasoro fields of ŝlN (6.5) and the Heisenberg algebra (6.6).
Using (6.5) we can write

ωslN
(1) =

1

2(N + 1)




∞∑

k=1

N∑

i,j=1

Eij

(−k)E
ji

(k) +
∞∑

k=0

N∑

i,j=1

Eji

(−k)E
ij

(k)

−
1

N

∞∑

k=1

I(−k)I(k) −
1

N

∞∑

k=0

I(−k)I(k)

)
,

and the terms that contribute to the projection are

1

2(N + 1)




N∑

i,j=1

Eij

(0)E
ji

(0) −
1

N
I(0)I(0)


 ,

which is a multiple of the Casimir operator for slN . If W corresponds to the tensor module of

k-forms, k = 1, . . . , N , this operator will act on the space (9.8) with scalar k(N−k)
2N

(see (8.9), this
also includes the case of a trivial slN module W when k = N).

Analogously, for the Virasoro field (6.6) of the Heisenberg algebra ωHei
(1) will be acting on f with

the scalar

1

2N
I(0)I(0) −

1

2
I(0) =

(k −mN)2

2N
−
k −mN

2
.

Going back to (9.26), we get the contribution of the Virasoro field in VglN .

−

(
k(N − k)

2N
+

(k −mN)2

2N
−
k −mN

2

)
exp


−

N∑

p=1

rp

∞∑

j=1

z−j

j

∂

∂vpj


 f,

and its ra-term will yield

z−m

m

(
k(N − k)

2N
+

(k −mN)2

2N
−
k −mN

2

)
1 ⊗ wa ⊗ vh. (9.27)

Now let us deal with the Virasoro field of LVir. The corresponding term is

−



z2




∞∑

j=1

ωVir
(−j)z

j−1



Y (qr, z) + z2Y (qr, z)
(
z−1ωVir

(0) + z−2ωVir
(1)

)




−

g. (9.28)

Since the operators ωVir
(j) with j ≤ 0 increase the degree in the component LVir, the only term

that contributes to the projection to (9.8) is ωVir
(1) , which acts on (9.8) with scalar h. Thus the

ra-term of (9.28) gives the contribution



∞∑

j=1

z−j

j

∂

∂vaj


ωVir

(1) f =
z−m

m
h 1 ⊗ wa ⊗ vh. (9.29)

Next we shall look at the the summand −
N∑

a,b=1

rau
b(z)Eab(z)Y (qr , z) in (6.12). Its ra-term is

−
N∑

p=1



z2




∞∑

j=1

jupjz
j−1 +

∞∑

j=1

∂

∂vpj

z−j−1



×

(
∑

k∈Z

Eap

(k)z
−k−1

)



−

g.
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When we consider the projection to (9.8), we can drop terms with multiplications by upj and Eap

(k)

with k ≤ −1, while for Eap

(k) with k ≥ 1 we may use (9.4), which yields

−

N∑

p=1




∞∑

j=1

∂

∂vpj

z−j



Eap

(0)f

−

N∑

p=1




∞∑

j=1

∂

∂vpj

z−j



(

∞∑

k=1

(
k−1∑

i=1

ivpiz
i + qp

∂

∂qp

)
z−k

k

∂

∂vak

)
f.

Taking into account that f is linear in vpm, this can be simplified to the following

−

N∑

p=1




∞∑

j=1

∂

∂vpj

z−j


Eap

(0)f −N

(
∞∑

k=1

(
k−1∑

i=1

i

)
z−k

k

∂

∂vak

)
f

= −z−m

N∑

p=1

1 ⊗ Eapwp ⊗ vh − z−mN
m− 1

2
1 ⊗ wa ⊗ vh. (9.30)

Lemma 9.7 provides a relation between components (w1, . . . , wN ) and submodules in the tensor
modules Ωk(TN ). Using computations in the tensor module of k-forms one can show that

N∑

p=1

Eapwp = (N − k −m+ 1)wa,

thus (9.30) reduces to

−z−m

(
(N − k −m+ 1) +N

m− 1

2

)
1 ⊗ wa ⊗ vh. (9.31)

The ra-coefficient of the last summand

N∑

p=1

(
z2

(
d

dz
up(z)

)
Y (qr, z)

)

−

g

is 


∞∑

j=1

j(j − 1)uajz
j +

∞∑

j=1

(−j − 1)
∂

∂vaj

z−j





−

g,

and its projection to (9.8) yields

∞∑

j=1

(−j − 1)
∂

∂vaj

z−jf = −(m+ 1)z−m1 ⊗ wa ⊗ vh (9.32)

Finally, collecting (9.25), (9.27), (9.29), (9.31) and (9.32) together, we get

0 =

(
2 +

1

m

(
k(N − k)

2N
+

(k −mN)2

2N
−
k −mN

2

)
+
h

m
− (N − k −m+ 1)

−N
m− 1

2
− (m+ 1)

)
wa =

h

m
wa.

Since a is arbitrary, we can choose it so that wa 6= 0. Thus h = 0, which was to be demonstrated.
�
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10. Chiral de Rham complex

Chiral de Rham complex was introduced by Malikov et al. in [20]. In case a of torus TN the
space of this differential complex is a tensor product of two vertex (super) algebras

V +
Hyp ⊗ VZN .

Here VZN is the lattice vertex superalgebra of the standard euclidean lattice ZN . Before we define
the differential of this complex, let us review the structure of VZN . The vertex superalgebra VZN

has two main realizations – the bosonic realization and the fermionic one, with boson-fermion
correspondence being an isomorphism between the two models. For our purposes it will be more
convenient to use the fermionic realization of VZN .

Consider the Clifford Lie superalgebra ClN of “charged free fermions” with basis

{ϕp

(j), ψ
p

(j)|p = 1, . . . , N, j ∈ Z}

of its odd part and a 1-dimensional even part spanned by a central element K. The Lie bracket
in ClN is given by

[ϕa
(m), ψ

b
(n)] = δabδm,−n−1K, [ϕa

(m), ϕ
b
(n)] = [ψa

(m), ψ
b
(n)] = 0.

Define formal fields

ϕa(z) =
∑

j∈Z

ϕa
(j)z

−j, ψa(z) =
∑

j∈Z

ψa
(j)z

−j−1, K(z) = Kz0.

With this choice of fields ClN becomes a vertex Lie superalgebra since the only non-trivial relation
between these fields is

[
ϕa(z1), ψ

b(z2)
]

= δabK(z2)

[
z−1
1 δ

(
z2
z1

)]
.

The lattice vertex superalgebra VZN is isomorphic to the universal enveloping vertex algebra of
ClN at level 1. As a vector space it is the unique ClN -module generated by vacuum vector 1l,
satisfying

K1l = 1l, ϕp

(j)1l = ψp

(j)1l = 0 for j ≥ 0, p = 1, . . . , N.

In its fermionic realization VZN is the exterior algebra with generators {ϕp

(j), ψ
p

(j)|
p=1,...,N
j≤−1 } and is

irreducible as a module over ClN . The state-field correspondence map Y is given by the standard
formula (6.1).

We fix the Virasoro element in VZN :

ωfer =

N∑

p=1

ϕp

(−2)ψ
p

(−1)1l.

The rank of this VOA is −2N .
It is well-known that vertex superalgebra VZN contains a level 1 simple ĝlN vertex algebra. The

fields generating this subalgebra are

Eab(z) =: ϕa(z)ψb(z) : .

It is easy to check that these satisfy relations (6.4) and the central element of ĝlN acts as identity

operator. It is also straightforward to verify that the Virasoro element (6.7) in the ĝlN vertex

algebra maps to ωfer under this embedding.
Let us define two Z-gradings on VZN . The fermionic degree is defined by

degfer(ϕ
p

(j)) = 1, degfer(ψ
p

(j)) = −1, degfer(K) = degfer(1l) = 0.

The bosonic grading is defined as follows:

degbos(ϕ
p

(j)) = −j − 1, degbos(ψ
p

(j)) = −j, degbos(K) = degbos(1l) = 0.

Let V k
ZN be the subspace of the elements of fermionic degree k. We have a decomposition

VZN = ⊕
k∈Z

V k
ZN .
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Note that each subspace V k
ZN is a ĝlN -submodule, which is graded by the bosonic degree. Its

structure is described by the following well-known result (see e.g. [9] or [15]):

Theorem 10.1. For each k ∈ Z, V k
ZN is an irreducible ĝlN -module at level 1. Let Ṽ k

ZN be the

non-trivial component of V k
ZN of the lowest bosonic degree. If k = 0 mod N then Ṽ k

ZN is 1-

dimensional. If k = k′ mod N with 1 ≤ k′ < N , then as an slN -module Ṽ k
ZN has the fundamental

highest weight ωk′ . The identity matrix of glN acts on Ṽ k
ZN as k Id.

Combining this result with Theorem 6.3, we get

Corollary 10.2. The space

MHyp(γ) ⊗ V k
ZN

has a structure of a module for the Lie algebra VectTN+1 of vector fields.

For these modules the Virasoro tensor factor LVir(h) is 1-dimensional (h = 0). The modules
in this family are precisely the exceptional modules L(W,γ, h) for which Theorem 9.2 does not
claim irreducibility. We are going to see below that these modules are in fact reducible.

Let us express the action (6.11), (6.12) of the Lie algebra VectTN+1 on MHyp(γ) ⊗ V k
ZN using

the fermionic realization:

da(r, z) 7→ Y (da(r), z), d0(r, z) 7→ Y (d0(r), z),

where

da(r) = va
(−1)q

r +
N∑

p=1

rpϕ
p

(−1)ψ
a
(−1)q

r,

d0(r) = −


ωHyp

(−1)q
r + ω

fer
(−1)q

r +

N∑

a,b=1

rau
b
(−1)ϕ

a
(−1)ψ

b
(−1)q

r −

N∑

p=1

rpu
p

(−2)q
r




= −




N∑

p=1

up

(−1)v
p

(−1)q
r +

N∑

p=1

ϕp

(−2)ψ
p

(−1)q
r +

N∑

a,b=1

rau
b
(−1)ϕ

a
(−1)ψ

b
(−1)q

r


 .

Here we used the relation

ω
Hyp
(−1)q

r =

N∑

p=1

up

(−1)v
p

(−1)q
r +

N∑

p=1

rpu
p

(−2)q
r.

Following [20], let us now introduce the differential

. . .−→
d

MHyp(γ) ⊗ V k
ZN−→

d
MHyp(γ) ⊗ V k+1

ZN −→
d

. . .

of the chiral de Rham complex.
Let

Q =

N∑

p=1

vp

(−1)ϕ
p

(−1)1l

and set d = Q(0), i.e., d is a coefficient at z−1 in Y (Q, z) =
N∑

p=1
vp(z)ϕp(z). Vanishing of the

supercommutator

[Y (Q, z1), Y (Q, z2)] = 0

implies d ◦ d = 0.

Theorem 10.3. The map

d : MHyp(γ) ⊗ V k
ZN →MHyp(γ) ⊗ V k+1

ZN

is a homomorphism of VectTN+1-modules.
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The statement of this theorem is equivalent to the claim that the following operators on
MHyp(γ) ⊗ VZN commute:

[d, da(r, z)] = 0,

[d, d0(r, z)] = 0.

The proof of these relations will be based on the following simple observation:

Lemma 10.4. Let V be a vertex superalgebra and let a, b ∈ V . Suppose that a(0)b = 0. Then
[
a(0), Y (b, z)

]
= 0.

Proof. Since a(0)b = 0, the commutator formula (5.2) yields

[Y (a, z1), Y (b, z2)] =
∑

j≥1

1

j!
Y (a(j)b, z2)

[
z−1
1

(
∂

∂z2

)j

δ

(
z2
z1

)]
.

However the right hand side does not contain terms with z−1
1 and the claim of the lemma follows.

�

Let us continue with the proof of the theorem. We need to show that

Q(0)da(r) = 0 and Q(0)d0(r) = 0.

Since Y (Q, z) =
N∑

i=1

: vi(z)ϕi(z) :, we have

Q(0) =
N∑

i=1




∞∑

j=0

ϕi
(−j−1)v

i
(j) +

∞∑

j=1

vi
(−j)ϕ

i
(j−1)



 .

It is easy to see that vi
(j)da(r) = 0 for j ≥ 1 and ϕi

(j)da(r) = 0 for j ≥ 1. Thus

Q(0)da(r) =

N∑

i=1

(
ϕi

(−1)v
i
(0) + vi

(−1)ϕ
i
(0)

)
da(r)

=
N∑

i=1

riϕ
i
(−1)v

a
(−1)q

r −
N∑

i=1

N∑

p=1

rpv
i
(−1)ϕ

p

(−1)ϕ
i
(0)ψ

a
(−1)q

r

=

N∑

i=1

riϕ
i
(−1)v

a
(−1)q

r −

N∑

p=1

rpv
a
(−1)ϕ

p

(−1)q
r = 0.

Let us now show that Q(0)d0(r) = 0. Since vi
(j)d0(r) = 0 for j ≥ 2 and ϕi

(j)d0(r) = 0 for j ≥ 1,
we get

−Q(0)d0(r) =

N∑

i=1

(
ϕi

(−1)v
i
(0) + ϕi

(−2)v
i
(1) + vi

(−1)ϕ
i
(0)

)
(−d0(r)).

Let us compute each of three terms in the right hand side separately:
(

N∑

i=1

ϕi
(−1)v

i
(0)

)
(−d0(r))

=
N∑

i=1

N∑

p=1

ϕi
(−1)v

i
(0)u

p

(−1)v
p

(−1)q
r +

N∑

i=1

N∑

p=1

ϕi
(−1)v

i
(0)ϕ

p

(−2)ψ
p

(−1)q
r

+

N∑

i=1

N∑

a,b=1

raϕ
i
(−1)v

i
(0)u

b
(−1)ϕ

a
(−1)ψ

b
(−1)q

r

=

N∑

i=1

N∑

p=1

riϕ
i
(−1)u

p

(−1)v
p

(−1)q
r +

N∑

i=1

N∑

p=1

riϕ
i
(−1)ϕ

p

(−2)ψ
p

(−1)q
r
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+
N∑

i=1

N∑

a=1

N∑

b=1

rariu
b
(−1)ϕ

i
(−1)ϕ

a
(−1)ψ

b
(−1)q

r. (10.1)

The last summand in (10.1) vanishes since it is antisymmetric in {a, i}. Next,
(

N∑

i=1

ϕi
(−2)v

i
(1)

)
(−d0(r))

=

N∑

i=1

N∑

p=1

ϕi
(−2)v

i
(1)u

p

(−1)v
p

(−1)q
r +

N∑

i=1

N∑

p=1

ϕi
(−2)v

i
(1)ϕ

p

(−2)ψ
p

(−1)q
r

+

N∑

i=1

N∑

a,b=1

raϕ
i
(−2)v

i
(1)u

b
(−1)ϕ

a
(−1)ψ

b
(−1)q

r

=

N∑

p=1

ϕp

(−2)v
p

(−1)q
r +

N∑

i=1

N∑

a=1

raϕ
i
(−2)ϕ

a
(−1)ψ

i
(−1)q

r. (10.2)

And finally, (
N∑

i=1

vi
(−1)ϕ

i
(0)

)
(−d0(r))

=

N∑

i=1

N∑

p=1

vi
(−1)ϕ

i
(0)u

p

(−1)v
p

(−1)q
r +

N∑

i=1

N∑

p=1

vi
(−1)ϕ

i
(0)ϕ

p

(−2)ψ
p

(−1)q
r

+

N∑

i=1

N∑

a,b=1

rav
i
(−1)ϕ

i
(0)u

b
(−1)ϕ

a
(−1)ψ

b
(−1)q

r

= −

N∑

i=1

N∑

p=1

vi
(−1)ϕ

p

(−2)ϕ
i
(0)ψ

p

(−1)q
r −

N∑

i=1

N∑

a,b=1

rav
i
(−1)u

b
(−1)ϕ

a
(−1)ϕ

i
(0)ψ

b
(−1)q

r

= −

N∑

p=1

vp

(−1)ϕ
p

(−2)q
r −

N∑

i=1

N∑

a=1

rav
i
(−1)u

i
(−1)ϕ

a
(−1)q

r. (10.3)

Combining (10.1), (10.2) and (10.3) we get Q(0)(−d0(r)) = 0, and the theorem is proved.

Let us present here a diagram of the Chiral de Rham complex for N = 2. On the diagram, the
fermionic degree increases in the horizontal direction and bosonic in vertical.

Ω0 Ω1 Ω2

k=0 k=1 k=2
•−−−−→ • −−−−→• →

k=−1 d d k=3
•−−−−→ • • • −−−−→• →

k=−2 d d k=4
•−−−−→ • • • • • −−−−→• →

• • • • →
k=−3 d d k=5
•−−−−→ • •−−−−→• →

The tops of the modules MHyp(γ)⊗V
k

ZN with 0 ≤ k ≤ N are the spaces qγΩk(TN ) of differential

k-forms that form the classical de Rham complex. Non-trivial VectTN -submodules in these tops
generate non-trivial VectTN+1 submodules in corresponding modules MHyp(γ) ⊗ V k

ZN .
It was proved in [20] that the cohomology of the chiral de Rham complex coincides with the

classical de Rham cohomology. This implies, in particular, that for k < 0 or k > N the short
sequences

MHyp(γ) ⊗ V k−1
ZN −→

d
MHyp(γ) ⊗ V k

ZN −→
d

MHyp(γ) ⊗ V k+1
ZN
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are exact. Using this fact, we get

Corollary 10.5. (i) For k ≤ 0, VectTN+1-modules MHyp(γ) ⊗ V k
ZN have non-trivial critical

vectors.
(ii) For k ≥ N , VectTN+1-modules MHyp(γ) ⊗ V k

ZN are not generated by their top spaces.

Proof. We can see from the above diagram that for k < 0 the images of the top vectors in
MHyp(γ) ⊗ V k

ZN are non-trivial critical vectors in MHyp(γ) ⊗ V k+1
ZN . For k ≥ N , the top spaces of

MHyp(γ)⊗V
k

ZN are in the kernel of d. Thus the submodules generated by the tops are annihilated
by d as well. Since the map d is non-zero, these submodules are proper. �

As a result we see that all modules that belong to the chiral de Rham complex are reducible.
The claim of Corollary 10.5 is consistent with the existence of the contragredient pairing given by
Theorem 8.2: (

MHyp(γ) ⊗ V k
ZN

)
×
(
MHyp(γ) ⊗ V N−k

ZN

)
→ C.

For the chiral de Rham complex this duality was constructed in [19].
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