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Abstract. A connected Lie group G is generated by its two 1-parametric subgroups
exp(tX), exp(tY ) if and only if the Lie algebra of G is generated by {X, Y }. We consider
decompositions of elements of G into a product of such exponentials with times t > 0 and
study the problem of minimizing the total time of the decompositions for a fixed element of
G. We solve this problem for the group SU2 and describe the structure of the time-optimal
decompositions.

0. Introduction.
In the axiomatics of quantum mechanics a state of a quantum system is a unit vector in

a complex hermitian vector space and its evolution is given by unitary transformations. In
quantum computing the space of states is finite-dimensional and the quantum computation
is an element of SUN , which is a compact connected real Lie group. In order to carry out
a quantum computation in physical reality, we need to be able to transform an initial state
ψ of a quantum processor into a state gψ, where g is the element of SUN representing the
quantum computation. In the classical (non-quantum) case, a computation can be viewed
as a boolean function in several variables. A processor can not implement an arbitrary
function directly, but instead decomposes the computation into elementary steps, which is
reflected in the process of programming. An efficient algorithm for a classical computation
is a program that minimizes the number of elementary steps, which results in a shorter
run time.

Likewise, an implementation of a quantum computation g is a factorization of g into
certain elementary factors, called the quantum gates (in analogy with the classical logical
gates used for the decomposition of an arbitrary boolean function of several variables in
a disjunctive normal form, for example). Some quantum gates are the direct analogues
of the classical logical gates and are discrete, while others depend on a continuous time
parameter.

Time evolution of a quantum system is governed by a Hamiltonian H and is given by
the exponential exp(itH) ∈ SUN . Here X = iH belongs to the Lie algebra suN . We are
going to assume that all available quantum gates are continuous, since the discrete gates
are physically realized as continuous gates applied for a specific finite time.

This leads to the following quantum control problem: given a set S ⊂ suN of quantum
controls (gates), decompose an element g ∈ SUN into a product

g = exp(t1C1) × . . .× exp(tnCn), (0.1)

where Ci ∈ S, ti ∈ R. This quantum control problem admits a solution for every g
precisely when the set S generates the Lie algebra suN (see Theorem 1.1 below). This
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result is proved using topological methods and does not provide an effective procedure for
finding such decompositions.

Minimal sets of quantum gates for quantum computing were discussed in [2] and [6],
where it is shown that a set of two generic Hamiltonians is sufficient for controllability. A
review of quantum control methods in physical chemistry is given in [7].

The problem of finding explicit factorizations of type (0.1) goes back to Euler [3],
who studied it for the group SO3 of rotations in R

3. The Lie algebra so3 consists of
skew-symmetric 3 × 3 matrices and the exponentials exp(tCi) corresponding to

C1 =





0 0 0
0 0 −1
0 1 0



 , C2 =





0 0 −1
0 0 0
1 0 0





are the rotations in angle t around X- and Y -axis respectively. Euler proved that every
g ∈ SO3 can be factored as g = exp(t1C1) exp(t2C2) exp(t3C1) for some t1, t2, t3 ∈ [0, 2π).
The parameters t1, t2, t3 are called Euler angles. This problem has applications in robotics
when an object needs to be oriented in space in a prescribed way.

For the quantum applications the parameters ti in (0.1) represent time, and thus
must be positive. It is natural to pose an optimization problem in this context: among
all factorizations (0.1) with positive times ti, find the one that minimizes the total time
t1 + . . .+ tn. This corresponds to finding an implementation of a quantum algorithm with
the shortest running time.

As we shall see in this paper, this optimization problem, as posed, might not have a
solution – there may be a sequence of factorizations of type (0.1) with the number of factors
n going to infinity, while the total time going to infinum. For this reason we slightly modify
the above optimization problem and ask for the infinum of total times for all factorizations
of a given g ∈ SUN

In this paper we solve this problem for the group SU2 with the set of controls S
consisting of two elements, S = {X, Y }.

We show that the infinum time does not change if we replace S = {X, Y } with its
convex closure S = {τX + (1 − τ)Y | 0 ≤ τ ≤ 1}. In the latter case there will be in fact
an optimal decomposition (0.1) with a finite number of factors. It turns out that to get
an optimal decomposition it is sufficient to add to S at most one element W ∈ S, the one
that is orthogonal to X − Y . In this paper we give explicit descriptions of the optimal
decompositions in SU2. Since there is a surjective homomorphism SU2 → SO3, our results
are also applicable to the group SO3.

Our solution is based on the method of Lagrange multipliers adopted for the set-up
of Lie groups. Alternatively one could use the geometric theory developed in [4], which
is based on the Pontryagin maximum principle. The general methods, however, give only
necessary conditions for optimality, which in practice are not sufficient. To get the desired
results we supplement these general methods with some explicit calculations in SU2 which
allow us to get stronger and more explicit optimality conditions.

We hope that our methods and results will help to solve this problem in greater
generality.

2



Acknowledgements: I am thankful to Velimir Jurdjevic and Alexander Weekes for
stimulating discussions. This work is supported with a grant from the Natural Sciences
and Engineering Research Council of Canada.

1. Time-optimal decompositions in Lie groups.
Let G be a compact connected real Lie group, and let g be its Lie algebra. An

element X ∈ g defines a 1-parametric subgroup {exp(tX)|t ∈ R}. In this paper we study
an optimal control problem on G, describing optimal decompositions of an arbitrary given
element g ∈ G into a product of exponentials exp(tX) with X belonging to a fixed set S
of controls, S ⊂ g and positive times t.

The following well-known criterion describes when the group G is controllable by a
set S:

Theorem 1.1. ([4], Theorem 6.1) A real connected Lie group G is generated by
its subgroups {exp(tX)}, X ∈ S, if and only if S generates the Lie algebra g.

In Theorem 1.1 the parameters in the subgroups {exp(tX)} could be both positive and
negative. In applications to controllability of quantum systems, the parameters t represent
time, and must be positive. If we restrict the question to controllability with positive time
parameters, then the analogue of Theorem 1.1 still holds for compact Lie groups:

Theorem 1.2. ([4], Theorem 6.3) Let G be a compact connected real group. If
the set S generates the Lie algebra of G then every element g ∈ G admits a factorization

g = exp(t1C1) · . . . · exp(tnCn)

for some n ≥ 0 with Ci ∈ S and ti > 0.
These theorems are proved using topological methods, and do not provide an effective

way of finding such decompositions. In this context it is natural to pose the problem of
describing decompositions that are time-optimal:

Problem. For a given g ∈ G determine

inf
{

t1 + . . .+ tn
∣

∣ g = exp(t1C1) · . . . · exp(tnCn), ti ≥ 0, Ci ∈ S
}

. (1.1)

A compact Lie group G is isomorphic to a Lie subgroup in a general linear group ([5],
Corollary 4.22), so we assume that G ⊂ GLd(F), where F = R or C. The Lie algebra g is
then a real subalgebra in the matrix Lie algebra Md(F).

Consider an arbitrary R-bilinear positive-definite scalar product 〈·, ·〉 on Md(F). We
can make it left and right G-invariant by integration over G using the Haar measure on G
([5], Section IV.2):

(A,B) =

∫

G×G

∫

〈gAh, gBh〉dgdh.

Since the Haar measure on G is left- and right-invariant, this averaging procedure will
yield a G-bi-invariant scalar product (· , ·) on Md(F) which is still positive-definite. This
scalar product defines a norm | · | on Md(F). We can rescale the above scalar product to
achieve

|AB| ≤ |A| · |B| for all A,B ∈Md(F).
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The restriction of this scalar product to g gives a positive-definite bilinear form on g, which
is invariant under the conjugation action of G on its Lie algebra:

(gAg−1, gBg−1) = (A,B) for A,B ∈ g, g ∈ G.

Note that the Killing form on g yields a proportional scalar product when g is simple,
but in case of a general compact Lie group G the Killing form has a disadvantage that it
is only (negative) semi-definite ([5], Corollary 4.26), and may be degenerate, whereas the
form constructed above is strictly positive-definite.

We get the following estimate on the norm of a Lie bracket:

|[A,B]| = |AB −BA| ≤ 2 · |A| · |B|.

The exponential map

exp : g → G, exp(A) =
∞
∑

k=0

1

k!
Ak

is surjective for compact G ([5], Corollary 4.48), but is not injective. However locally, it
maps bijectively a neighbourhood of 0 ∈ g to a neighbourhood of 1 ∈ G. The logarithm,
which is a local inverse of the exponential map and assumes values in g, is defined for
g ∈ G satisfying |1 − g| < 1 using the standard formula

ln(g) = −
∞
∑

k=1

1

k
Bk, where B = 1 − g.

The following Lemma is a straightforward norm estimation with power series of oper-
ators, and we omit its proof:

Lemma 1.3. (a) | exp(A)| ≤ e|A|,
(b) | exp(A+B) − exp(A)| ≤ e|A|

(

e|B| − 1
)

,

(c) | exp(A+B) − exp(A)| ≤ e|A||B| + o(|B|), as |B| → 0.

Let us recall the Campbell-Hausdorff formula ([1], II.6.4):

exp(A) exp(B) = exp





∑

r,s≥0

Hr,s(A,B)



 , (1.2)

where

Hr,s(A,B) =
1

r + s

∑

m≥1

(−1)m−1

m

∑

r1+...rm=r

s1+...sm=s

ri+si≥1

(

m
∏

i=1

1

ri!si!

)

[Ar1Bs1 . . .ArmBsm ]
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and H0,0(A,B) = 0. Here for a monomial U = Ar1Bs1 . . .ArmBsm , we denote by [U ] the
iterated commutator, defined inductively for C ∈ {A,B} as [C] = C, [CU ] = [C, [U ]].
The iterated commutator [Ar1Bs1 . . .ArmBsm ] is zero unless either sm = 1 or sm = 0 and
rm = 1.

The first few terms of this series are:

∑

r,s≥0

Hr,s(A,B) = A+B +
1

2
[A,B] +

1

12
[A, [A,B]]−

1

12
[B, [A,B]] + . . . .

Let us discuss convergence of the Campbell-Hausdorff series
∑

r,s≥0

Hr,s(A,B). Consider

a function in two variables

f(u, v) = −
1

2
ln(2 − e2u+2v).

We can expand this function in a Taylor series

f(u, v) =
∑

r,s≥0

ηr,su
rvs,

which is absolutely convergent when |u| + |v| ≤ ln 2
2

.
By Lemma II.7.1 in [1], we can estimate the terms of the Campbell-Hausdorff series:

|Hr,s(A,B)| ≤ ηr,s|A|
r|B|s.

Thus the Campbell-Hausdorff series is convergent in g and the equality (1.2) holds when
|A| + |B| ≤ ln 2

2
. In addition, a tail of the Campbell-Hausdorff series may be estimated

with the corresponding tail of the series f(|A|, |B|).
We will also use the following well-known formula ([5], Proposition 1.93):

exp(A)B exp(−A) = exp(adA)B,

where ad(A)B = [A,B].
Theorem 1.4. Optimization problem (1.1) in SU2 with S = {X, Y } is equivalent to

the problem with the set of controls S = {τX + (1 − τ)Y |τ ∈ [0, 1]}.
Proof. We need to show that for every τ ∈ [0, 1] the infinum of time in (1.1) with

S = {X, Y } for g = exp(τX+(1−τ)Y ) is less or equal to 1. It is well-known that g can be
approximated with an arbitrary precision in time 1 (see e.g., Theorem 3.7 in [4]). Indeed,
let A = τX , B = (1 − τ)Y . Then

g = exp(A+B) = lim
N→∞

[

exp

(

A

N

)

exp

(

B

N

)]N

. (1.3)

To see this, we apply the Campbell-Hausdorff formula,

exp

(

A

N

)

exp

(

B

N

)

= exp

(

A

N
+
B

N
+

1

2N2
[A,B] + o(1/N2)

)

,
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from which (1.3) follows:

[

exp

(

A

N

)

exp

(

B

N

)]N

= exp(A+B +O(1/N)).

We need to prove a stronger result, that g itself can be decomposed in a product of
exponentials with control set S with a total time not exceeding 1 + ǫ for an arbitrarily
small ǫ > 0.

A direct computation with the Campbell-Hausdorff formula shows that we can improve
the approximation (1.3) in the following way:

hN =

[

exp

(

A

2N

)

exp

(

B

N

)

exp

(

A

2N

)]N

= exp
(

A+B +O(1/N2)
)

. (1.4)

Let us show that we can attain exp (A+B) by a small variation of time parameters in
(1.4), while keeping these parameters positive. Let B(ǫ) = {g ∈ G

∣

∣ |1 − g| ≤ ǫ}. Since
the norm is G-invariant, we get that the ball in G of radius ǫ with the center in h ∈ G
can be written as hB(ǫ) = B(ǫ)h. We are going to show that by varying three of the

parameters by N− 3
2 , we can cover the set hNB

(

cN− 3
2

)

, which will contain exp(A+B) for

large N by Lemma 1.3(c). In order to show that a variation of certain three parameters
covers a ball around hN , we need to establish that the corresponding jacobian is non-zero.
The computation of the jacobian takes place in the Lie algebra su2. Since {A,B} is a
generating set for this Lie algebra, the set {A,B, [A,B]} forms a basis of su2. The tangent
vector to exp (t · ad(A+B))B at t = 0 is [A,B], which implies that for some M ∈ N, the
Lie algebra su2 is spanned by

{

A,B, exp
(

M−1ad(A+B)
)

B
}

. Fix M , and assume that
N is a multiple of M , N = MK. We consider the following variation of (1.4):

exp

(

A

2N
+ ǫ1A

)

exp

(

B

N
+ ǫ2B

)[

exp

(

A

N

)

exp

(

B

N

)]K−1

exp

(

A

N

)

× exp

(

B

N
+ ǫ3B

)[

exp

(

A

N

)

exp

(

B

N

)]N−K−1

exp

(

A

2N

)

.

The differential of this variation is

exp

(

A

2N

)

{

ǫ1A+ ǫ2B + ǫ3

[

exp

(

B

N

)

exp

(

A

N

)]K

B

[

exp

(

B

N

)

exp

(

A

N

)]−K
}

×

[

exp

(

B

N

)

exp

(

A

N

)]N−1

exp

(

B

N

)

exp

(

A

2N

)

.

Since

lim
N→∞

[

exp

(

B

N

)

exp

(

A

N

)]K

B

[

exp

(

B

N

)

exp

(

A

N

)]−K

= exp
(

M−1ad(A+B)
)

B,
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we conclude that for large N the jacobian of this variation is non-zero. Thus by vary-
ing the corresponding time parameters with |ǫ1|, |ǫ2|, |ǫ3| ≤ N− 3

2 , we can cover the set

hNB
(

cN− 3
2

)

, for some constant c > 0 that depends on A and B. Since hN approximates

g = exp(A + B) with precision O(N−2), this set contains g for large N . This completes
the proof of the Theorem.

Since a uniform rescaling of the controls X ′ = cX , Y ′ = cY , gives an equivalent
optimization problem (with optimal time rescaled by a factor c−1), we may assume without
loss of generality that |X | = 1 and |Y | ≥ |X |. Let κ = 1/|Y | ≤ 1. We may pass to the
normalized set of controls {X, Y/|Y |} by replacing the total time t1 + . . . + tn for the
decomposition exp(t1C1) · . . . · exp(tnCn) with the cost function

n
∑

i=1

κiti, where κi =

{

1, if Ci = X,
κ, if Ci = Y/|Y |.

(1.5)

From now on we assume that S = {X, Y } with |X | = |Y | = 1 and consider the
optimization problem with cost function (1.5) where the cost factor κ ≤ 1. This will allow
us to consider the limiting case κ = 0, when there is no cost associated with control Y .

Let us introduce some terminology.
An admissible word of length n is an expression exp(t1C1) · . . . · exp(tnCn) with n ≥ 0,

ti ≥ 0 and Ci ∈ S. A word of zero length is the identity element of G.
Every admissible word can be written in a reduced form, where ti > 0 and Ci 6= Ci+1

for all i.
A decomposition of g ∈ G as an admissible word of length n is called n-optimal if it

has the minimum cost among all admissible words of length n that are equal to g.
A decomposition of g ∈ G as an admissible word of length n is called optimal if it has

the minimum cost among all admissible words of arbitrary lengths that are equal to g.
For a given g ∈ G, an optimal decomposition may not exist since there might be a

sequence of decompositions of g of increasing lengths and with cost going to infinum. On
the other hand, n-optimal decompositions exist, as we show in the following Lemma.

Lemma 1.5. Let G be a connected Lie group, and suppose that the set of controls
S is finite and satisfies the following condition: every generator C ∈ S with a zero cost
factor κ = 0 has a periodic exponential, i.e., exp(TC) = 1 for some T > 0. If g ∈ G has a
decomposition as an admissible word of length n then it has an n-optimal decomposition.

Proof. Let tinf be the infinum cost over the set of all decompositions of g in admissible
words of length n. Let

{

exp(t
(j)
1 C

(j)
1 ) · . . . · exp(t(j)n C(j)

n )
}

j=1,2,...

be a sequence of admissible words of length n with cost converging to tinf. Since the set

of controls S is finite, we can choose a subsequence in which the generators {C
(j)
k } are

independent of j.

All times t
(j)
k are bounded by the same constant (for the generators with non-zero

cost factors a bound is obtained from the bound on the total cost, and for other generators
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from the periodicity assumption). Thus there is a subsequence where all times converge

to some values, lim
j→∞

t
(j)
k = tk. Then by continuity, exp(t1C1) · . . . · exp(tnCn) = g and the

cost of the word exp(t1C1) · . . . · exp(tnCn) is tinf.

The following Lemma is obvious:
Lemma 1.6. (a) If a word of length n is optimal then it is n-optimal.
(b) If the word

exp(t1C1) · . . . · exp(tnCn) (1.6)

is optimal (resp. n-optimal), then its subword

exp(tpCp) · . . . · exp(tkCk)

with 1 ≤ p ≤ k ≤ n is also optimal (resp. k − p+ 1-optimal).
(c) If the word (1.6) is optimal then

exp(s1C1) exp(t2C2) · . . . · exp(tn−1Cn−1) exp(snCn)

with 0 ≤ s1 ≤ t1, 0 ≤ sn ≤ tn, is also optimal.
The last claim of the lemma suggests that for the optimal words there are stronger

constraints on time parameters ti with 2 ≤ i ≤ n− 1. We will call these the middle time

parameters.

2. Optimal words in SU2.
For the rest of the paper we will focus on the case G = SU2. We find it convenient to

use the realization of SU2 as the unit sphere in the quaternion algebra H:

SU2 =
{

a1 + bi+ cj + dk | a2 + b2 + c2 + d2 = 1
}

.

The Lie algebra su2 in this realization is the tangent space at 1 and has basis {i, j, k}.
This basis is orthonormal relative to the invariant bilinear form. The norm in H satisfies
|xy| = |x| · |y| and is SU2-bi-invariant.

The isomorphism with the standard matrix construction of su2 is given by Pauli
matrices:

i 7→

(

i 0
0 −i

)

, j 7→

(

0 1
−1 0

)

, k 7→

(

0 i
i 0

)

.

The group SU2 acts on its Lie algebra by the conjugation automorphisms. Since −I
acts trivially, this action factors through SO3

∼= SU2/ {±I}, and is given by the natural
action of SO3 on R

3.
The action of SO3 on the unit sphere is transitive, so without loss of generality we may

assume that X = i, while Y = i cosα + j sinα, where α is the angle between the vectors
X and Y , 0 < α < π. This identification will allow us to carry out certain calculations in
an explicit form. If C is an element of su2 of norm 1 then exp(tC) = cos(t) + C sin(t).

Since exp(πX) = exp(πY ) = −1 is a central element, we see that an n-optimal word
satisfies the following
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π-Condition: at most one time parameter may be greater or equal to π; without loss
of generality we may assume that this parameter corresponds to the generator Y , as it has
a lower cost, and is not a middle time parameter.

We begin by describing 4-optimal words.
Proposition 2.1. (a) Let

g = exp(t1X) exp(t2Y ) exp(t3X) exp(t4Y ) (2.1)

be a 4-optimal word with t1, t2, t3 < π. Then either

tan(t2)

tan(t3)
=

κ− cos(α)

1 − κ cos(α)
(2.2)

or (2.1) is not reduced.
(b) The same condition holds for a 4-optimal word

exp(t4Y ) exp(t3X) exp(t2Y ) exp(t1X).

Proof. We will apply a version of the Lagrange multipliers method. Consider an
infinitesimal variation of (2.1):

exp((t1 + ǫ1)X) exp((t2 + ǫ2)Y ) exp((t3 + ǫ3)X) exp((t4 + ǫ4)Y ), (2.3)

with the constraint that the product still equals g. Carrying out calculations to the first
order in ǫi, we have exp(ǫiCi) ≈ 1 + ǫiCi. We will collect all terms with ǫi in the middle
of the word (2.3), using the relations:

ǫ1X exp(t2Y ) = exp(t2Y ) exp(−t2Y )ǫ1X exp(t2Y )

= exp(t2Y ) [(cos(t2) − sin(t2)Y )ǫ1X(cos(t2) + sin(t2)Y )]

= exp(t2Y )ǫ1
[

cos2(t2)X − sin2(t2)Y XY + sin(t2) cos(t2)[X, Y ]
]

.

Similarly,

exp(t3X)ǫ4Y = ǫ4
[

cos2(t3)Y − sin2(t3)XYX + sin(t3) cos(t3)[X, Y ]
]

exp(t3X).

Setting Z = 1
2
[X, Y ] = sin(α)k, we can get the following expressions in the basis

{X, Y, Z} :
XYX = Y − 2 cos(α)X, Y XY = X − 2 cos(α)Y. (2.4)

Using the above relations, we see that to the first order in ǫi, (2.3) can be written as

exp(t1X) exp(t2Y )
[

(ǫ1 cos(2t2) + ǫ3 + 2ǫ4 cos(α) sin2(t3))X

+(2ǫ1 cos(α) sin2(t2) + ǫ2 + ǫ4 cos(2t3))Y +(ǫ1 sin(2t2)+ǫ4 sin(2t3))Z
]

exp(t3X) exp(t4Y ).
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Equating the middle factor to zero, we get the system:







ǫ1 cos(2t2) + ǫ3 + 2ǫ4 cos(α) sin2(t3) = 0,
2ǫ1 cos(α) sin2(t2) + ǫ2 + ǫ4 cos(2t3) = 0,

ǫ1 sin(2t2) + ǫ4 sin(2t3) = 0.
(2.5)

If this system has rank 3 then by the implicit function theorem there exists a smooth curve
in the space of parameters {(t1, t2, t3, t4)} such that the product (2.1) is equal identically
to g on the curve. The tangent vector to this curve is a non-zero solution of the system
(2.5). Since by assumption the word (2.1) is 4-optimal, the differential of the cost function

ǫ1 + κǫ2 + ǫ3 + κǫ4

must be zero on the tangent vector of the curve. Thus the determinant

∣

∣

∣

∣

∣

∣

∣

cos(2t2) 0 1 2 cos(α) sin2(t3)
2 cos(α) sin2(t2) 1 0 cos(2t3)

sin(2t2) 0 0 sin(2t3)
1 κ 1 κ

∣

∣

∣

∣

∣

∣

∣

must be zero, since the corresponding homogeneous system of equations has a non-trivial
solution. In case when the system (2.5) has rank less than 3, the above determinant is still
equal to zero. Evaluating this determinant we get:

4 sin(t2) sin(t3) ((1 − κ cos(α)) sin(t2) cos(t3) − (κ− cos(α)) cos(t2) sin(t3)) = 0.

Since 0 < t2, t3 < π, we can cancel the factor 4 sin(t2) sin(t3) and obtain the claim of the
proposition.

Part (b) is completely analogous.

Remark 2.2. The denominator of κ−cos(α)
1−κ cos(α)

is non-zero since 0 ≤ κ ≤ 1 and

| cos(α)| < 1. If the numerator of this fraction vanishes, the condition (2.2) should be
replaced with

(1 − κ cos(α)) sin(t2) cos(t3) = (κ− cos(α)) cos(t2) sin(t3). (2.6)

Using Proposition 2.1 and Lemma 1.6 we get a description of n-optimal words:
Corollary 2.3. Suppose κ 6= cos(α). Let exp(t1C1) exp(t2C2) · . . . · exp(tnCn) be a

reduced n-optimal word with n ≥ 4. Then

tp = tp+2 for all 2 ≤ p ≤ n− 3. (2.7)

Since in an n-optimal word all middle parameters corresponding to the same control
are equal, we will denote by tx (resp. ty) the middle time parameters corresponding to X
(resp. Y ).

10



Corollary 2.4. Under the assumptions of the previous corollary,

tan(ty)

tan(tx)
=

κ− cos(α)

1 − κ cos(α)
. (2.8)

We see from Corollaries 2.3 and 2.4 that reduced n-optimal words are described with
at most three independent time parameters for all n. Since the group SU2 is three-
dimensional, we conclude that for each n there exists only a finite number of n-optimal
words representing a given g ∈ SU2 (for the case κ = cos(α) see Theorem 2.12 below).

Next we shall investigate optimality of words of length 3.
Proposition 2.5. Let cos(t) > 0 and let ǫ > 0 be a small parameter. Then

(i) exp(ǫX) exp(tY ) exp(ǫX) = exp(τY ) exp(µX) exp(τY ) (2.9)

and

(ii) exp(ǫY ) exp(tX) exp(ǫY ) = exp(τX) exp(µY ) exp(τX), (2.10)

where

τ = t/2 + ǫ cos(α)(1 − cos(t)) + o(ǫ) (2.11)

and

µ = 2ǫ cos(t) + o(ǫ). (2.12)

Proof. Let us write both sides of (i) in the form a+bX+cY +dZ, using the relations

XY = − cos(α) + Z, Y X = − cos(α) − Z, (2.13)

together with (2.4). We immediately see that d = 0, while

a = cos(2ǫ) cos(t) − cos(α) sin(2ǫ) sin(t) = cos(2τ) cos(µ) − cos(α) sin(2τ) sin(µ), (2.14)

b = sin(2ǫ) cos(t) − 2 cos(α) sin2(ǫ) sin(t) = sin(µ), (2.15)

c = sin(t) = sin(2τ) cos(µ) − 2 cos(α) sin2(τ) sin(µ). (2.16)

We can determine µ from (2.15), getting (2.12).
From the equality

(c+ b cos(α)) cos(µ) − a cos(α) sin(µ) = sin(2τ)(1 − sin2(α) sin2(µ))

we determine τ and obtain (2.11). It can be seen that this indeed gives a solution of (i).
The condition cos(t) > 0 is required to ensure the positivity of µ. The claim for part (ii)
follows by symmetry.

Corollary 2.6. Let 0 < t < π
2 and let ǫ > 0 be a small parameter. Then

(i) The word exp(ǫX) exp(tY ) exp(ǫX) is not 3-optimal.
(ii) If κ > cos(α) then the word exp(ǫY ) exp(tX) exp(ǫY ) is not 3-optimal.
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Proof. We are going to show that the cost of the right hand sides of (2.9) and (2.10)
are smaller than for the left hand sides. Let us evaluate the differences in these costs:

2ǫ+ κt− 2κτ − µ = 2ǫ+ κt− κt− 2κǫ cos(α)(1 − cos(t)) − 2ǫ cos(t) + o(ǫ)

= 2ǫ(1 − cos(t))(1 − κ cos(α)) + o(ǫ) > 0,

which proves (i), while for (ii) we have:

t+ 2κǫ− 2τ − κµ = t+ 2κǫ− t− 2ǫ cos(α)(1 − cos(t)) − 2κǫ cos(t) + o(ǫ)

= 2ǫ(1 − cos(t))(κ− cos(α)) + o(ǫ) > 0.

Corollary 2.7. Suppose κ > cos(α). A reduced optimal word exp(t1C1) . . . exp(tnCn)
of length n > 1 satisfies the strong π-condition, which is the π-condition with an additional
restriction t1, tn ≤ π.

Proof. It is sufficient to show that for a reduced optimal word exp(t1Y ) exp(t2X) of
length 2, we have t1 ≤ π. Suppose t1 > π and let 0 < τ < min(t2,

π
2
). Then

exp(t1Y ) exp(t2X) = exp((t1 − π)Y ) exp(τX) exp(πY ) exp((t2 − τ)X),

which is not optimal by Corollary 2.6(ii). This contradiction implies t1 ≤ π.

Now we can describe possible optimal decompositions in SU2. We will consider several
cases.

Theorem 2.8. Suppose cos(α) < κ ≤ 1. Then the infinum of the cost of admissible
decompositions of a given element of SU2 is attained either

(a) on a reduced n-optimal word

exp(t1C1) exp(t2C2) · . . . · exp(tnCn)

satisfying the strong π-condition, (2.7) with π
2 ≤ tx < π, π

2 ≤ ty < π, and when n ≥ 4 the
condition (2.8).
or

(b) on a word
exp(t1C1) exp(t2W ) exp(t3C3),

where C1, C3 ∈ {X, Y }, t1, t2, t3 ≥ 0 and

W = (1 − κ cos(α))X + (κ− cos(α))Y

with the cost of exp(t2W ) equal to (κ2 − 2κ cos(α) + 1)t2.
Proof. It is clear that the infinum of the cost is either attained on an n-optimal word,

or is a limit of costs for a sequence of reduced words of length k which are k-optimal with
k → ∞.
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In the first case, the n-optimal word must satisfy the conditions in (a) above by
Corollaries 2.3, 2.4, 2.6 and 2.7.

Alternatively, if for g ∈ SU2 the infinum of the cost is the limit of costs for a sequence
of k-optimal words of increasing length,

g = exp(t
(j)
1 C

(j)
1 ) exp(t

(j)
2 C

(j)
2 ) · . . . · exp(t

(j)
kj
C

(j)
kj

), j = 1, 2, 3 . . . , (2.17)

there will be a subsequence with the fixed first and last generators, C
(j)
1 = C′, C

(j)
kj

= C′′.

Since all time parameters belong to the compact set [0, 2π], there is a subsequence where

{t
(j)
1 } and {t

(j)
kj

} converge,

lim
j→∞

t
(j)
1 = t′, lim

j→∞
t
(j)
kj

= t′′.

Time parameters in k-optimal words satisfy the conditions of Corollaries 2.3 and 2.4.

Denote by t
(j)
x the middle X-times and by t

(j)
y the middle Y -times in (2.17). Then

g = lim
j→∞

exp(t′C′)
(

exp(t(j)x X) exp(t(j)y Y )
)

[

kj

2

]

exp(t′′C′′).

Since the total cost is bounded, we can choose a subsequence for which the sequence
[

kj

2

]

t
(j)
x converges, and let

lim
j→∞

[

kj

2

]

t(j)x = tx.

By Corollary 2.3

tan(t
(j)
y )

tan(t
(j)
x )

= λ, λ =
κ− cos(α)

1 − κ cos(α)
,

and using the fact that arctan(λ tan(t)) = λt+ o(t) as t→ 0, we get that lim
j→∞

[

kj

2

]

t
(j)
y =

λtx .
By (1.3) we get that

g = exp(t′C′) exp(tx(X + λY )) exp(t′′C′′).

Finally, we note that tx(X + λY ) = t̃W , where W = (1− κ cos(α))X + (κ− cos(α))Y and
t̃ = tx/(1 − κ cos(α)).

Remark 2.9. The vector W is orthogonal to the line passing through X and Y/κ.
Remark 2.10. Time-optimal decompositions that appear in Theorem 2.8 involve at

most three independent time parameters. Since the group SU2 is 3-dimensional, there will
be a finite number of such decompositions of each length. Moreover, since middle times in
the decomposition (a) above are at least π

2 , any given decomposition of g gives a bound
on the length of an optimal decomposition of type (a).
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Theorem 2.11. Suppose 0 < κ < cos(α). Then the infinum of the cost of admissible
decompositions of a given element of SU2 is attained on a reduced n-optimal word

exp(t1C1) exp(t2C2) · . . . · exp(tnCn)

satisfying the π-condition, (2.7) with π
2 ≤ ty < π, and when n ≥ 4 the conditions 0 < tx ≤

π
2

and (2.8).
Proof. In this case the infinum of the cost can not be realized as a limit cost of a

sequence of n-optimal words of increasing lengths since by Corollary 2.4 in an n-optimal
word we have either tx ≥ π

2 or ty ≥ π
2 , which implies that the cost would go to infinity as

n→ ∞.
Applying Proposition 2.1 and Corollary 2.6, we see that for a reduced optimal word

of length n the claim of the theorem holds.

Theorem 2.12. Suppose κ = cos(α) > 0. Then the infinum of the cost of admissible
decompositions of a given element of SU2 is attained on a reduced n-optimal word

exp(t1C1) exp(t2C2) · . . . · exp(tnCn)

satisfying the π-condition, (2.7) with π
2 ≤ ty < π, and when n ≥ 4 the condition tx = π

2 .
Proof. Applying Proposition 2.1 (see also Remark 2.2), n-optimal words with n ≥ 4

have middle X-times equal to π
2
. This implies that the infinum of cost is attained on an

n-optimal word and is not a limit for a sequence of n-optimal words of increasing length.
It remains to show that the middle Y -times are all equal to each other. This can be
done using the same method as in the proof of Lemma 2.6, by considering a the following
variation of a 5-optimal word:

exp((t1 + ǫ1)X) exp((t2 + ǫ2)Y ) exp
(π

2
X
)

exp((t3 + ǫ3)Y ) exp((t4 + ǫ4)X).

Evaluating the resulting 4 × 4 determinant, we get

8 cos(α) sin2(α) sin(t2) sin(t3) sin(t2 − t3) = 0,

which implies t2 = t3.

Finally let us consider the case when the cost associated with the generator Y is zero.
In this case we have the freedom of replacing the generator Y with −Y since exp(−tY ) =
exp((2π− t)Y ). Thus without loss of generality we may assume that cos(α) ≤ 0. The case
when cos(α) < 0 is then covered by Theorem 2.8.

Theorem 2.13. Let cos(α) = 0 and κ = 0. For any g ∈ SU2 the infinum cost is
attained on a word of length at most 3.

Proof. By Proposition 2.1, in an n-optimal word of length n ≥ 4, the middle X-times
are equal to π

2
. Thus the infinum cost is attained on an n-optimal word for some n. Let for

a given g, n be the smallest length such that the infinum cost is attained on an n-optimal
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word. Suppose the optimal word has a middle factor of exp(π
2X). Applying the following

identity

exp(t1Y ) exp
(π

2
X
)

exp(t2Y ) = exp((t1 − t2)Y ) exp
(π

2
X
)

= exp
(π

2
X
)

exp((t2 − t1)Y ),

we see that such a word is not optimal. This implies n ≤ 3.

In conclusion, let us consider a particular case.
Example 2.14. Let X = i, Y = j and κ = 1. Then an optimal decomposition of any

g ∈ SU2 is given by words of the following types:

(a) exp(t1C1), where 0 ≤ t1 < 2π;

(b) exp(t1C1) exp(t2C2), where 0 < t1, t2 ≤ π;

(c) exp(t1C1) exp(t2C2) exp(t3C1), where t2 ≥
π

2
, t1, t2, t3 ≤ π;

(d) exp(t1C1) exp(t2C2) exp(t2C1) exp(t3C2), where t2 ≥
π

2
, t1, t2, t3 ≤ π;

or

(e) exp(t1C1) exp

(

t2
i+ j

2

)

exp(t3C3),

where Ci ∈ {X, Y }, C1 6= C2, with the infinum time
∑

k tk. Here exp
(

t i+j
2

)

may be viewed
as

exp

(

t
i+ j

2

)

= lim
N→∞

[

exp

(

ti

2N

)

exp

(

tj

2N

)]N

.

We obtain this result by applying Theorem 2.8. The only thing we need to show is
that there are no optimal words of length n ≥ 5. Suppose such a word is indeed optimal.
Then it is also n-optimal and by Theorem 2.8, all middle times satisfy π

2
≤ tx = ty < π.

However,

exp
(π

2
i
)

exp(tyj) exp
(π

2
i
)

= exp(πi) exp(−tyj) = exp(πj) exp(−tyj) = exp((π − ty)j),

which has a lower total time. The analogous equality holds if i and j are switched. This
shows that if the infinum time is attained on a word of length n then n ≤ 4.

It is fairly straightforward to write down explicit formulas for t1, t2, t3 in (a)-(e) above
for a given g ∈ SU2.
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