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In this paper we study equations of magnetic hydrodynamics with a stress tensor. We interpret

this system as the generalized Euler equation associated with an abelian extension of the Lie

algebra of vector fields with a non-trivial 2-cocycle. We use the Lie algebra approach to prove

the energy conservation law and the conservation of cross-helicity.

1. Introduction.

Magnetic hydrodynamics (MHD) describes evolution of a fluid or plasma, carrying
a magnetic field. This theory is used to model the processes in the Solar corona [17], as
well as to design tokamaks [10]. There are numerous books treating various aspects of the
subject, see e.g., [8], [15].

The MHD equations are derived from the Euler equation of motion of an incompress-
ible fluid and the Maxwell’s electrodynamics equations, and describe evolution of a fluid
with the velocity vector field v and the magnetic field B:





∂v

∂t
= −(v · ∇)v + (B · ∇)B−∇p,

∂B

∂t
= −{v,B} ,

div(v) = 0, div(B) = 0.

(1.1)

In this paper we study another system of PDEs, where we add extra terms into the
evolution equation for the velocity:

∂v

∂t
= −(v · ∇)v + (B · ∇)B +

∑

i,j

∂Bi

∂xj

∇
∂vj

∂xi

−∇p. (1.2)

The additional terms here are of the third degree in derivatives and one can draw certain
parallels between (1.2) and the Korteweg - de Vries equation

ut = uux + uxxx. (1.3)

We interpret the extra terms in (1.2) as a contribution of a stress tensor

Tki =
∑

j

∂Bi

∂xj

∂vj

∂xk

. (1.4)

This stress tensor is not symmetric, which indicates that the particles of the fluid should
possess electric or magnetic momentum.
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In spite of the additional higher-order terms, the new system of PDEs retains many
features of the original system. In particular, we show that it still admits the Alfvȩn wave
solutions.

We follow an approach developed by Arnold to give an interpretation of the MHD
equations with the stress tensor as a generalized Euler equation. A generalized Euler
equation is an equation for the geodesics on a (possibly infinite-dimensional) Lie group
supplied with a Riemannian structure. This equation describes the evolution of a tangent
vector of the geodesic in the Lie algebra of the Lie group (see Section 3 for details).

The Lie algebra that corresponds to the MHD equations with the stress tensor is an
abelian extension g(τ) of the Lie algebra of the divergence zero vector fields twisted with a
non-trivial 2-cocycle τ . This Lie algebra was studied in the framework of the representation
theory of the toroidal Lie algebras and the cocycle plays a prominent role there.

Infinite-dimensional groups associated with abelian extensions of the Lie algebra of
vector fields are discussed in [7].

The Lie algebra g(τ) has nice properties and this translates into nice properties of
the PDEs. In particular we establish the energy conservation law and the cross-helicity
conservation for MHD with the stress tensor.

Ovsienko and Khesin showed in [16] that the generalized Euler equation for the Lie
algebra of vector fields on a circle yields the non-linear wave equation ut = uux, while
incorporation of the Virasoro cocycle into the Lie algebra leads to the Korteweg - de
Vries equation (1.3). In a way, the present paper may be viewed as a higher-dimensional
generalization of [16].

The paper is organized as follows: in Section 2 we discuss the properties of the system
(1.2), derive the expression for the stress tensor, list the conservation laws and describe
the Alfvȩn wave solutions. In Section 3 we review the generalized Euler equation for an
arbitrary Lie algebra and we apply this method in Section 4 to an abelian extension of
the Lie algebra of the divergence zero vector fields, deriving (1.2), and establishing the
conservation laws in a purely algebraic way.

2. Magnetic hydrodynamics with a stress tensor and its properties.

Evolution of an incompressible fluid carrying a magnetic filed is given by the equations
of magnetic hydrodynamics (MHD):






∂v

∂t
= −(v · ∇)v + (B · ∇)B−∇p,

∂B

∂t
= −{v,B} ,

div(v) = 0, div(B) = 0.

(2.1)

Here B is the magnetic field, v is the velocity vector field of the fluid and p (pressure) is an
auxiliary function which is chosen in such a way that the equation div(v) = 0 is satisfied.
The formal dot product v · ∇ represents the differential operator

v · ∇ =
∑

j

vj

∂

∂xj

.
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The Poisson (Lie) bracket {v,B} of two vector fields v =
∑
j

vj(x) ∂
∂xj

and B =
∑
j

Bj(x) ∂
∂xj

is given by

{v,B} = ad(v)B = (v · ∇)B − (B · ∇)v =
∑

j

(
vj

∂B

∂xj

− Bj

∂v

∂xj

)
.

In the three-dimensional space, the first equation in (2.1) may be also written as

∂v

∂t
= v × curl(v) + curl(B) × B−∇p.

For a conducting medium, the curl of the magnetic field is equal to the electric current
(Ampère’s law), and so the expression curl(B)×B represents the Lorentz force, with which
the magnetic field acts on the current.

The configuration space for a flow of an incompressible fluid is the group of volume-
preserving diffeomorphisms. In his remarkable paper [2], Arnold interpreted the Euler
equation for an ideal fluid as the geodesic equation on this Lie group. The geodesic
equation describes the evolution of the tangent vector of the geodesic curve, and this
tangent vector belongs to the Lie algebra, which is the Lie algebra SVect of the divergence
zero vector fields, in case of the group of volume preserving diffeomorphisms.

Using Arnold’s method, Vishik and Dolzhanskii [19] (see also [12]) showed that the
MHD equations (2.1) also may be interpreted as a geodesic equation for a certain infinite-
dimensional Lie group. The Lie algebra that is used to write this equation is the semidirect
product

SVect ⊕ Ω1/dΩ0

of the Lie algebra of divergence zero vector fields SVect with its dual space – the factor
Ω1/dΩ0 of the differential 1-forms modulo the exact 1-forms. We review this construction
in detail in Section 3.

The Lie algebra that is associated with the MHD equations,

g = SVect ⊕ Ω1/dΩ0,

has recently attracted much interest in representation theory. It turns out that represen-
tations of g may be used for constructing modules for toroidal Lie algebras (see e.g., [4],
[5], [9]). It was also discovered that this Lie algebra has an important deformation – the
Lie bracket in g may be twisted with a Virasoro-like 2-cocycle τ . The twisted Lie algebra
g(τ) still has nice properties, and its representation theory is even better than of g itself.

In this paper we study the system of PDEs that comes from the geodesic equation for
g(τ). In Section 4 we show that this Lie algebra yields the following system of PDEs:





∂v

∂t
= −(v · ∇)v + (B · ∇)B +

∑
i,j

∂Bi

∂xj
∇

∂vj

∂xi
−∇p,

∂B

∂t
= −{v,B} ,

div(v) = 0, div(B) = 0.

(2.2)
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Let us discuss the properties of this system of PDEs.
First of all, we note that the new term

∑

i,j

∂Bi

∂xj

∇
∂vj

∂xi

=
∑

i,j

∂2

∂xi∂xj

(Bi∇vj) (2.3)

can also be written as

−
∑

i,j

∂vj

∂xi

∇
∂Bi

∂xj

, (2.3′)

since the difference of the two expressions is the gradient of
∑
i,j

∂vj

∂xi

∂Bi

∂xj
and may be absorbed

into ∇p.
It is curious to note here that in the one-dimensional case the passage from the Lie

algebra of vector fields to the Virasoro algebra leads to the transition from the non-linear
wave equation

ut = uux

to the Korteweg-de Vries equation

ut = uux + uxxx,

as shown by Ovsienko and Khesin in [16].

Just like the dispersion term uxxx in the KdV, the new term
∑
i,j

∂Bi

∂xj
∇

∂vj

dxi
that we get

in (2.2) has a triple derivative in x.
Next we are going to show that (2.2) describes magnetic hydrodynamics with a stress

tensor. Indeed, for a stress tensor Tki, the equations on the velocity field in (2.1) will
become (see e.g. Section 1.7 in [18])

∂vk

∂t
= −(v · ∇)vk + (B · ∇)Bk +

∑

i

∂Tki

∂xi

−
∂p

∂xk

. (2.4)

Proposition 1. The system (2.2) describes magnetic hydrodynamics with a stress
tensor. The stress tensor Tki may be written as

Tki =
∑

j

∂Bi

∂xj

∂vj

∂xk

(2.5)

or as

T ′

ki = −
∑

j

∂vi

∂xj

∂Bj

∂xk

(2.5′)

or as a linear combination αTki + βT ′

ki with α + β = 1.
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Proof. We will prove the statement of the Proposition for tensor Tki given by (2.5). We
write the contribution in (2.4) from the stress tensor (2.5):

∑

i

∂Tki

∂xi

=
∑

i,j

∂2Bi

∂xi∂xj

∂vj

∂xk

+
∑

i,j

∂Bi

∂xj

∂2vj

∂xi∂xk

.

Since div(B) = 0, the first term in the right hand side vanishes, and we get precisely the
first equation from (2.2).

The stress tensor (2.5′) will yield the additional term written in the form (2.3′). The
proof in this case is completely analogous.

We point out that the stress tensors we obtain here are not symmetric: Tki 6= Tik.
Asymmetric stress tensors occur when the particles of the fluid are polar, i.e., possess
electric or magnetic momentum (see Chapter 8 in [18]). The derivation of the stress tensor
from the first principles is rather delicate (see e.g., Chapters 7 in [18]), and I am unable
to describe precisely the physical situations when the stress tensors (2.5) or (2.5′) would
occur.

Introduction of the term (2.3) which has the 3rd order in derivatives, into the equations
will clearly change the behaviour of the solutions in a substantial way. I view of that, it
is quite surprising that the conservation laws of magnetic hydrodynamics still hold for the
system (2.2).

Our next goal is to study the conservation laws for magnetic hydrodynamics with the
stress tensor (2.2). However before we do that, let us discuss the class of solutions that we
consider here.

We require that the functions vi(x), Bi(x) are defined in a domain D ⊂ R
n and belong

to the intersection of the Sobolev spaces
∞

∩
k=1

Hk
0
(D). We recall that the space Hk

0
(D) is the

closure in the Sobolev space Hk(D) of the functions of class Ck with compact support (see
e.g. [1]). This will ensure that all functions and their partial derivatives of all orders are
square-integrable (belong to L2(D)) and satisfy the vanishing conditions on the boundary
of D (if D is unbounded this means that at infinity the functions go to zero faster than
the inverse of any polynomial). Choosing this class of functions will allow us to carry out
integration by parts with the boundary term vanishing.

Alternatively, we may consider periodic boundary conditions, as it is often done in
turbulence theory.

There are several conserved quantities for the MHD system – mass, momentum, mag-
netic helicity, as well as energy and cross-helicity. It turns out that all of these are also
conserved for the MHD with the stress tensor. Since we consider the case of an incom-
pressible fluid, the conservation of mass (volume) holds trivially. The derivation of the
conservation of magnetic helicity involves only the evolution equation on magnetic field B,
and is exactly the same for both systems. Let us prove the conservation of momentum for
the new system.

Proposition 2. The total momentum is a conserved quantity for the MHD system
with the stress tensor (2.2): ∫

D

v(x)dV ≡ Const.
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Proof. With the help of Proposition 1, we can write the first equation using the
divergence operator:

∂vk

∂t
=
∑

i

∂

∂xi

(−vivk + BiBk + Tki − pδki) .

By the divergence theorem, we get

∂

∂t

∫

D

vk(x)dV =

∮

∂D

Rkiei · dn,

where R is a 2-tensor
Rki = −vivk + BiBk + Tki − pδki,

n denotes the unit outward normal vector, and ei’s are the standard basis vectors. Since
the vector fields we consider vanish on the boundary of D, the last integral is zero.

Next we state the corresponding theorem for the conservation of energy and the cross-
helicity conservation:

Theorem 3. The system (2.2) of magnetic hydrodynamics with stress tensor (2.5)
in a domain D ⊂ R

n with appropriate boundary conditions (see discussion above) has the
following two first integrals:

∫

D

∑

i

vi(x)2 +
∑

i

Bi(x)2dV ≡ Const (energy conservation) (2.6)

and ∫

D

∑

i

vi(x)Bi(x)dV ≡ Const (cross-helicity conservation). (2.7)

We will give the proof of this theorem in Section 4. These conservation laws will be
derived from the properties of the Lie algebra g(τ).

It is interesting to note that unlike the case of the Navier-Stokes equation, introduction
of the stress tensor in (2.2) does not lead to the dissipation of energy, and the energy
conservation law still holds.

For the topological interpretation of helicity and cross-helicity, see [13], [14].
In conclusion of this section we are going to show that system (2.2) admits Alfvȩn

wave solutions.
Alfvȩn waves solutions are obtained as a perturbation of a steady-state constant so-

lution v(x) = 0, B(x) = B0. If we take an expansion v = ṽ(x), B = B0 + B̃(x) near this
equilibrium state, we will get the following system:





∂ṽ

∂t
= −(ṽ · ∇)ṽ + (B0 · ∇)B̃ + (B̃ · ∇)B̃ +

∑
i,j

∂B̃i

∂xj
∇

∂ṽj

∂xi
−∇p,

∂B̃

∂t
= −(ṽ · ∇)B̃ + (B0 · ∇)ṽ + (B̃ · ∇)ṽ,

div(ṽ) = 0, div(B̃) = 0.

(2.8)
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Next we set B̃ = ṽ. In this case the term
∑
i,j

∂B̃i

∂xj
∇

∂ṽj

∂xi
is a gradient of

∑
i,j

∂ṽi

∂xj

∂ṽj

∂xi
, and we

can eliminate it by setting

p =
∑

i,j

∂ṽi

∂xj

∂ṽj

∂xi

. (2.9)

Now the first two equations in (2.8) reduce to a single equation

∂ṽ

∂t
= (B0 · ∇)ṽ. (2.10)

Finally, by taking an arbitrary divergence zero vector field w(x), we can construct a
solution of (2.8):

ṽ(x, t) = w(x + B0t).

This traveling wave solution is called the Alfvȩn wave. The only difference with the classical
MHD system (2.1) is the change of the pressure term (2.9).

3. Generalized Euler equation.

In this section we are going to review the geodesic equation approach to hydrodynamics
developed by Arnold. In the key paper [2], Arnold gave an interpretation of the Euler
equation for an incompressible ideal fluid

{
∂v

∂t
= −(v · ∇)v −∇p

div(v) = 0,
(3.1)

from the perspective of infinite-dimensional Lie groups. He showed that the Euler equation
may be interpreted as the geodesic equation on the group of diffeomorphisms, where the
Riemannian structure on the group is given by the energy functional.

We will describe this approach here following the book [3].
Let G be a Lie group (possibly infinite-dimensional), and let g be its Lie algebra.

Consider a map from g to its dual

A : g → g
∗ (inertia operator),

such that it defines a positive-definite symmetric bilinear form on g:

< X |Y >=
1

2
A(X)Y +

1

2
A(Y )X, X, Y ∈ g.

The corresponding quadratic form < X |X >= A(X)X is called the energy functional.
The Lie algebra g acts on its dual space via the coadjoint action:

(ad∗(X)u) (Y ) = −u ([X, Y ]) for X, Y ∈ g, u ∈ g
∗.
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We assume that the space A(g) is invariant under the coadjoint action, and we make a
convention that in what follows g

∗ stands for A(g) (this is a slight abuse of notations
since in the infinite-dimensional case A(g) is typically smaller than the formal dual of g).
Since the kernel of A is trivial (otherwise, the quadratic form < X |X >= A(X)X is not
positive-definite), then with the above convention the operator A is invertible.

The bilinear form < ·|· > may be left-translated from g = Te(G) to the tangent spaces
at all points of G. This gives a Riemannian structure on G, and allows us to consider the
geodesics on this group.

Next we are going to write the equation for the geodesics on G, which describes the
evolution of the tangent vector X ∈ g to the geodesic curve. It turns out however, that it
is easier to write the evolution equation for the covector u = A(X) ∈ g

∗ rather than for
X itself. The generalized Euler equation is the evolution equation for u = A(X) which is
written using the coadjoint action (see (6.4) in [3]):

ut = −ad∗
(
A−1u

)
u. (3.2)

When G = SO(3) this equation turns into the equations of motion of a rigid body
with a fixed point.

Let us discuss equation (3.2) in the context of fluid dynamics. Evolution of an
incompressible fluid in domain D ⊂ R

n from time 0 to time t is given by a volume-
preserving diffeomorphism of D. Thus the group of the volume preserving diffeomorphisms
G = SDiff(D) is the configuration space for this motion. The Lie algebra of the group
SDiff(D) is the Lie algebra of the divergence zero vector fields SVect(D). As the energy
functional we take the kinetic energy:

〈
∑

i

vi(x)
∂

∂xi

∣∣∑

i

vi(x)
∂

∂xi

〉
=

∫

D

∑

i

vi(x)2dV. (3.3)

The dual space for the divergence zero vector fields is the factor space of differential
1-forms on D by exact 1-forms:

SVect(D)∗ = Ω1(D)/dΩ0(D).

The pairing between SVect(D) and Ω1(D)/dΩ0(D) is given by the integral:

∑

j

wj(x)dxj

(
∑

i

vi(x)
∂

∂xi

)
=

∫

D

∑

j

wj(x)vj(x)dV. (3.4)

It is easy to check that exact 1-forms vanish on the divergence zero vector fields, and so
the value of the integral on the right is independent of the choice of a representative in a
class of 1-forms modulo dΩ0(D).

The inertia operator

A : SVect(D) → Ω1(D)/dΩ0(D)
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that corresponds to the energy functional (3.3) is written as follows:

A

(
∑

i

vi(x)
∂

∂xi

)
=
∑

i

vi(x)dxi.

It is possible to check that in these settings, equation (3.2) turns into the Euler equations
of motion of an ideal fluid.

The equations of the magnetic hydrodynamics (2.1) can also be obtained as a special
case of the generalized Euler equation (3.2). To construct the corresponding Lie algebra
we take the Lie algebra SVect(D) together with its dual space:

g = SVect(D) ⊕ Ω1(D)/dΩ0(D).

The Lie bracket of two 1-forms is set to be zero. The Lie bracket of two vector fields is
defined in the usual way:



∑

i

vi(x)
∂

∂xi

,
∑

j

wj(x)
∂

∂xj


 =

∑

i,j

vi

∂wj

∂xi

∂

∂xj

− wj

∂vi

∂xj

∂

∂xi

, (3.5)

and the Lie bracket of a vector field with a 1-form is given by the Lie derivative:



∑

i

vi(x)
∂

∂xi

,
∑

j

wj(x)dxj


 =

∑

i,j

vi

∂wj

∂xi

dxj +
∑

j

wjd(vj). (3.6)

It is easy to see that the space dΩ0(D) is invariant under the Lie derivative action, so the
above formula may be taken modulo dΩ0(D).

The Lie algebra g is a semidirect product of SVect(D) with its module Ω1(D)/dΩ0(D).
The space Ω1(D)/dΩ0(D) forms an abelian ideal in g.

A really important feature of the Lie algebra g is the existence of an invariant sym-
metric non-degenerate bilinear form. In contrast, the Lie algebra SVect does not possess
such a form. The invariant form on g is defined as follows (cf. (3.4)):

(
∑
i

vi(x) ∂
∂xi

∣∣∣∣
∑
j

wj(x)dxj

)
=
∫

D

∑
i

vi(x)wi(x)dV,

(
∑
i

vi(x) ∂
∂xi

∣∣∣∣
∑
j

wj(x) ∂
∂xj

)
= 0,

(
∑
i

vi(x)dxi

∣∣∣∣
∑
j

wj(x)dxj

)
= 0.

(3.7)

One can verify that the bilinear form (3.7) satisfies the invariance property:

(
[X, Y ]

∣∣Z
)

=
(
X
∣∣ [Y, Z]

)
for all X, Y, Z ∈ g.

We can use this form to identify each element X ∈ g with a linear functional (X |·)
in g

∗. It is well-known that when the bilinear form that is used to identify g
∗ with g,
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is invariant and non-degenerate, the coadjoint action becomes isomorphic to the adjoint
action. In this case the generalized Euler equation takes form:

Xt = −ad(A−1X)X, (3.8)

where now X ∈ g and the inertia operator A now maps g to g.
The generalized Euler equation (3.8) yields the equations of magnetic hydrodynamics

(2.1) if we choose A to be the following involution on g:

A

(∑
i

vi(x) ∂
∂xi

)
=
∑
i

vi(x)dxi,

A

(∑
i

wi(x)dxi

)
=
∑
i

wi(x) ∂
∂xi

.

(3.9)

Note that in the second equality we choose a (unique) representative in a class modulo
dΩ0 satisfying

∑
i

∂wi

∂xi
= 0, so that the right hand side is a divergence zero vector field.

We see that the inertia operator (3.9) satisfies A−1 = A, and the energy functional
(AX |X) for X =

∑
i

vi(x) ∂
∂xi

+
∑
i

wi(x)dxi ∈ g is given by the integral

∫

D

∑

i

vi(x)2 +
∑

i

wi(x)2dV. (3.10)

The Lie algebra
g = SVect ⊕ Ω1/dΩ0

appears in the study of toroidal Lie algebras ([4], [5], [6], [9], [11]). The representations
of g are an essential ingredient for constructing the representation theory of toroidal Lie
algebras. It was discovered however that g admits a non-trivial deformation with a Ω1/dΩ0-
valued 2-cocycle on SVect, and one gets a better representation theory for the deformed
algebra than for g itself.

In the next Section we will describe this deformation of g and study the associated
generalized Euler equation.

4. Abelian extensions of the Lie algebra of vector fields.

In the previous Section we have constructed a semidirect product g of the Lie algebra
of divergence zero vector fields with Ω1/dΩ0. It turns out that on the same vector space

g = SVect ⊕ Ω1/dΩ0

we may deform the Lie bracket in a non-trivial way. When we define the Lie bracket of two
vector fields, we are going to add to the right hand side of (3.5) a correction term which
has value in Ω1(D)/dΩ0(D):



∑

i

vi(x)
∂

∂xi

,
∑

j

wj(x)
∂

∂xj
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=
∑

i,j

(
vi

∂wj

∂xi

∂

∂xj

− wj

∂vi

∂xj

∂

∂xi

)
+ τ



∑

i

vi(x)
∂

∂xi

,
∑

j

wj(x)
∂

∂xj


 . (4.1)

In order to get a Lie bracket, τ has to be a 2-cocycle on SVect(D) with values in
Ω1(D)/dΩ0(D).

The following cocycle plays an important role in the representation theory:

τ



∑

i

vi(x)
∂

∂xi

,
∑

j

wj(x)
∂

∂xj


 =

∑

i,j

∂vi

∂xj

d

(
∂wj

∂xi

)
. (4.2)

This cocycle may be viewed as a higher-dimensional generalization of the Virasoro
cocycle. Just as the Virasoro cocycle, it has a triple derivative in x, and in fact (4.2)
reduces to the Virasoro cocycle for the Lie algebra of vector fields on a circle.

We will denote the Lie algebra with the Lie bracket deformed by the cocycle τ by
g(τ). Note that

g(τ) = SVect(D) ⊕ Ω1(D)/dΩ0(D)

is no longer a semidirect product, but the subspace Ω1(D)/dΩ0(D) still forms an abelian
ideal. As before, the action of SVect(D) on Ω1(D)/dΩ0(D) is given by the Lie derivative
formula (3.6).

Proposition 4. The bilinear form on g(τ) given by (3.7) is invariant.
Proof. We need to establish the invariance property:

(
[X, Y ]

∣∣Z
)

=
(
X
∣∣ [Y, Z]

)
.

There are three non-trivial cases to be considered:
(i) X, Y ∈ SVect(D), Z ∈ Ω1(D)/dΩ0(D),
(ii) X, Z ∈ SVect(D), Y ∈ Ω1(D)/dΩ0(D),
(iii) X, Y, Z ∈ SVect(D).

We will verify the invariance only for the last case, since only this case will involve
the cocycle τ , and leave the first two cases as an exercise to the reader.

Suppose X =
∑
i

ui
∂

∂xi
, Y =

∑
j

vj
∂

∂xj
, Z =

∑
k

wk
∂

∂xk
. Since

(
SVect

∣∣SVect
)

= 0, then

we get that
(
[X, Y ]

∣∣Z
)

=
(
τ (X, Y )

∣∣Z
)

and
(
X
∣∣ [Y, Z]

)
=
(
X
∣∣τ (Y, Z)

)
.

We have

(
[X, Y ]

∣∣Z
)

=




∑

i,j,s

∂ui

∂xj

∂2vj

∂xi∂xs

dxs

∣∣∑

k

wk

∂

∂xk





=

∫

D

∑

i,j,k

wk

∂ui

∂xj

∂2vj

∂xi∂xk

dV.

Integrating by parts and using the fact that
∑
i

∂ui

∂xi
= 0, we get

(
[X, Y ]

∣∣Z
)

= −

∫

D

∑

i,j,k

∂wk

∂xi

∂ui

∂xj

∂vj

∂xk

dV.

11



On the other hand,

(
X
∣∣τ (Y, Z)

)
=




∑

i

ui

∂

∂xi

∣∣∑

j,k,s

∂vj

∂xk

∂2wk

∂xjdxs

dxs





=

∫

D

∑

i,j,k

ui

∂vj

∂xk

∂2wk

∂xjdxi

dV = −

∫

D

∑

i,j,k

∂ui

∂xj

∂vj

∂xk

∂wk

∂xi

dV.

This proves the invariance property
(
[X, Y ]

∣∣Z
)

=
(
X
∣∣ [Y, Z]

)
in case (iii).

Now we are going to prove the following
Theorem 5. The generalized Euler equation

Xt = − [AX, X ] (4.3)

for the Lie algebra g(τ) with the inertia operator A given by (3.9) yields the equations of
magnetic hydrodynamics with asymmetric stress tensor (2.2).
Proof. We write X =

∑
i

Bi
∂

∂xi
+
∑
j

vjdxj . We will fix representatives of classes of 1-forms

modulo dΩ0(D) by imposing a condition
∑
j

∂vj

∂xj
= 0. Then we have

AX =
∑

j

vj

∂

∂xj

+
∑

i

Bidxi

and

[X, AX ] =
∑

i,j

Bi

∂vj

∂xi

∂

∂xj

−
∑

i,j

vj

∂Bi

∂xj

∂

∂xi

+
∑

i,j,k

∂Bi

∂xj

∂2vj

∂xi∂xk

dxk

+
∑

i,j

Bi

∂Bj

∂xi

dxj +
∑

i

Bid(Bi) −
∑

i,j

vi

∂vj

∂xi

dxj −
∑

i

vid(vi).

Note that the terms Bid(Bi) = 1

2
d(B2

i ) and vid(vi) = 1

2
d(v2

i ) are full differentials and thus
may be dropped.

Substituting the obtained expression into the generalized Euler equation (4.3) and
collecting terms at dxj ,

∂
∂xj

, and taking into account that equality of 1-forms is taken

modulo dΩ0(D), we get the following system of PDEs:

∂vj

∂t
= −

∑

i

vi

∂vj

∂xi

+
∑

i

Bi

∂Bj

∂xi

+
∑

i,k

∂Bi

∂xk

∂2vk

∂xi∂xj

−
∂p

∂xj

,

∂Bj

∂t
= −

∑

i

(
vi

∂Bj

∂xi

− Bi

∂vj

∂xi

)
,
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∑

j

∂vj

∂xj

= 0,
∑

j

∂Bj

∂xj

= 0.

Rewriting this system in a vector form with the vector fields we get (2.2).
Finally let us prove Theorem 3 and establish the energy and the cross-helicity con-

servation laws for MHD equations with the stress tensor (2.2). We will in fact obtain
Theorem 3 as a corollary of the following general

Theorem 6. Let g be a Lie algebra with a non-degenerate symmetric invariant
bilinear form (·|·). Let A be an involution of g preserving the invariant form,

A : g → g, A2 = Id, (AX |AY ) = (X |Y ) for all X, Y ∈ g.

Then the generalized Euler equation Xt = − [AX, X ] has the following two first integrals:

(AX |X) ≡ Const (4.4)

and
(X |X) ≡ Const. (4.5)

Proof. Let us evaluate ∂
∂t

(AX |X):

∂

∂t
(AX |X) = (AXt|X) + (AX |Xt) .

Taking into account that (X |Y ) = (AX |AY ) and A2 = Id, we get that (AXt|X) =
(A2Xt|AX) = (Xt|AX). Thus

∂

∂t
(AX |X) = 2 (AX |Xt) .

Substituting the right hand side of the generalized Euler equation for Xt we obtain

∂

∂t
(AX |X) = −2 (AX | [AX, X ]) .

By invariance of the form we get

(AX | [AX, X ]) = ([AX, AX ] |X) = 0.

Thus ∂
∂t

(AX |X) = 0 and (4.4) is established.
The second conservation law (4.5) is obtained in a similar way:

∂

∂t
(X |X) = 2 (Xt|X) = −2 ([AX, X ] |X) = −2 (AX | [X, X ]) = 0.

This completes the proof of Theorem 6.
Note that for (4.5) we may drop the requirements that A preserves the invariant form

and is an involution.
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We obtain Theorem 3 as an immediate corollary to the previous Theorem, noting that
the bilinear form (3.7) on g(τ) is invariant by Proposition 4 and the inertia operator (3.9)
is an involution and preserves this form.

We can see that for X =
∑
i

Bi
∂

∂xi
+
∑
j

vjdxj, the first integral (4.4) becomes the

energy conservation law:

(AX |X) =

∫

D

∑

i

vi(x)2 +
∑

i

Bi(x)2dV ≡ Const,

and (4.5) becomes the cross-helicity conservation:

(X |X) = 2

∫

D

∑

i

vi(x)Bi(x)dV ≡ Const.
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