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Introduction. There are several versions of the decompositions of Bruhat
type for the Kac-Moody groups; the most important of them are the Bruhat de-
composition and the Birkhoff decomposition [2], [13], [18]. These decompositions
are powerful tools for the study of the Kac-Moody groups from both algebraic
and geometric points of view.

Here we construct a new family of Bruhat type decompositions, including clas-
sical Bruhat and Birkhoff decompositions as special cases, and study the closure
patterns of the double cosets involved. The decompositions are associated with
(non-standard) positive root systems.

Positive root systems were studied in [9] and [10] , where the highest weight
representation theory with respect to a positive root system is developed. It is
known that in the finite-dimensional case all positive root systems are conjugate
under the action of the Weyl group, so all decompositions are equivalent to classical
Bruhat decomposition. In the affine case all positive root systems are classified.
There exist, up to conjugation, a finite number of them, so we get a finite number
of corresponding non-equivalent decompositions. For the Kac-Moody groups of
indefinite type, the number of non-equivalent decompositions may be infinite.

The idea of the proof of the generalized Bruhat decomposition is the same as
in Kac-Peterson paper [13], where the Birkhoff decomposition is proven. Victor Kac
wrote us that this generalization was known to him.

Finite and cofinite Schubert varieties in the flag variety of a Kac-Moody group
have been studied extensively (see e.g. [14, 15]). The closure patterns are described
by Chevalley (Bruhat) order. We show here that closure patterns for the decom-
positions of flag varieties arising from the generalized Bruhat decompositions are
described by the “twisted orders”on the Weyl group studied in [6,7].

The main results of the paper are as follows. Let G be a Kac-Moody group
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with standard Borel subgroup B. In Theorem 1 we prove that G decomposes as
the product of its subgroups:
G = BWQ,

where ( is an arbitrary subgroup of G that contains “one half of all the real roots”.
Theorem 2 states that the natural map from W to the set of double cosets B\G/Q is
a bijection. Theorem 3 provides a canonical form of such a presentation of elements
of G. Theorem 4 describes the closure patterns of the double cosets QwB in the
“Zariski” topology considered by Kac-Peterson [14], and Theorem 5 gives results
similar to those of Curtis [4] in this context.

The first author would like to thank Professors Jacques Tits and Robert
Moody for helpful discussions. The second author was partially supported by NSF
grant DMS90-12836.

Definitions and notations. It will be convenient for us to use the version of
the Kac-Moody groups studied in [14, 15] over fields of characteristic zero. However,
most results not involving the “Zariski topology” defined there can be proved by
essentially identical arguments for some similar versions of the groups (e.g. those
constructed over arbitrary fields in [11] using one of Tits’ Z-forms for enveloping
algebras of Kac-Moody Lie algebras).

Let A be a symmetrizable generalized Cartan matrix and let (f), TI,TIV) be a
realization of A over a field [ of characteristic zero, (symmetrizability is required
only for some of our results involving the Zariski topology). One then has the
corresponding Kac-Moody Lie algebra g = g(A) over [F generated by [) and symbols
€a, fo for a € II with the usual relations [15, (1.1), (1.2)]. One has the root space
decomposition § = @aehPa, and we denote the roots (resp. positive roots) by A
(resp., AL ).

Let W denote the subgroup of AutIF(b) generated by the “simple reflections”
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v v —(v,aY)a for a € II. The set {wa | w € W, a € I1} of real roots will be
denoted A"®. Define positive and negative real roots as usual by A%® = A™N+A,.

A g'-module V, or (V, m) where m: g’ — Endp(V), is said to be integrable if
for all @ € A™ and v € V, there exists N with 7(gs)"™ (v) = 0. One associates a
group G to g(A) as in [14, 15]; here we recall only that G is the quotient G = G* /N
of the free product G* of the root subgroups g, (for real roots «) by the largest
normal subgroup N of G* acting trivially on all integrable g'-modules V' (where
8o C G* acts on each such (V,7) by (e,v) — exp(n(e))v). For real roots a,
one has the canonical injection (also denoted exp) go — G* — G with image the
one-parameter subgroup U,. Then G is generated by the U, for real roots o, and
denoting the natural action of G on an integrable g’-module (V) 7) also by &, one
has w(exp e) = exp w(e) for € € gq.

We abbreviate z,(t) := exp(teq) and T_,(t) := exp(tfy) for a € II, t € ¥,
For o € II, there is a unique homomorphism ¢, : SLo(IF) — G with ¢, (3 D =
Zo(t) and ¢q (i?) = 2_4(t); ¢q is actually an isomorphism onto its image G-

Let H,(t) = ¢o(diag(t,t™") for t € F* and s, = ¢q (_(i B), so one has
TaMNT_a(=2A"Hze(A) = Hy(N) 4. (1)

Let H be the (abelian) subgroup of G generated by the images of the H, for
a € II, and N be the sugroup generated by H and the s, for @ € II. Then N
normalizes H, and one may identify W and the group N/H so that for a € II,
the simple reflection v — v — (v, @" )« identifies with the coset s, H € N/H (we
often denote a coset representative for w € W still by w). We may also identify
W with the contragredient subgroup of Aut]F(f]*), where h* is the dual space.
Then the bijection IT — IIV given by o — " extends to a W-invariant bijection

AT = WII — WIIY (from the real roots to the real coroots) which we still denote
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by a — aV. For o € A", we have the corresponding reflection v — v — (v, a¥)a,
forv € ), in W. We let S denote the set of simple reflections of W, and l : W — N
denote the usual length function of the Coxeter system (W, S).

The following relation holds for all w € W,~v € A"¢ :

wUWw_l = U (y)- (2)

The subgroup of G generated by all U, , where o € A”® (resp. o € AT®), is
denoted by U4 (resp. U_ ). The subgroup H normalizes each U, for @ € A",
hence also Uy and U_ . Define the Borel subgroup B (resp. B_) as the product
B:=HU,; =U;H (resp. B_:=HU_=U_H ).

The Bruhat decomposition for a Kac-Moody group is a presentation of G' as a

product of the subgroups:
G = BWB. ()

However, the presentation of g € G in the form ¢ = bywby; b1,b2 € B is not

unique. The following version of Bruhat decomposition gives unique presentation:

G= u BwU,, (4)
weW

where U, = Uy N (w™U_w).
Denote by U/, the subgroup Uy N (w='U;w). The group U, is the product
of these subgroups:

Uy = U,U., =U.U,.

The group U,, is nilpotent and may be presented as a product of those groups
U, that are contained in U,, . Precisely, let w = s,,55,_1 . .. S251 be the presentation

of w as a product of the elements from S of minimal length: {(w) = n. Then
Uw =Us, ...Up,Up,, (5)
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with uniqueness of expression, where 1 = a1 , Bk = $1...Sk-1(ag) , for

k=2,...,n.

Bruhat-type Decompositions.
Theorem 1. Let Q be a subgroup of a Kac-Moody group G, such that
for all o € A™¢ either U, C Q or U_, C Q. Then

G = BWQ.
Proof. 1t is sufficient to prove that
BwU,WQ C BWQ. (6)
Then, using the Bruhat decomposition (4) we get:

G= U BuwU, ¢ U BuwU,WQ C BWQ. (7)
weW weW

We shall prove (6) by induction on I(w).
If {(w) =0, then w = e and U,, = {e} , so

BwU,WQ = BWQ.

Suppose [(w) = n and the induction assumption holds for all elements of the
Weyl group of smaller length.

Let v € U, and w; € W. We shall prove that Bwuw1Q) C BWQ.

We use (5) to present w as a product: « = U, ...ugu; , where ug € Up, .

Now we will consider three cases:



3) uy #e, U_wl—l(al) C Q.
Case 1. If uy = e thenu € Ug, ...Usg, .
Let w' = wsy = 8p...82; l(w')=n—1.
Then
Ug, ---Ug, = s1Ug,8,) - - - Us, (85)51 = 81U 51.

Hence,

BwuwiQ C Bws1Uy s1w1Q = Bw' Uy s1wi Q.

As l(w") < l(w) , we may apply the induction assumption.
Case 2. Let U, -1 ) C Q. Then

w (e
uw1Q C Uy, w1Q = wy(w] 'Ug,w1)Q = wlle—l(al)Q = w1Q.
Consequently,
Bwuw,Q) = Bwuy, ... usuiw1Q C Bwu,, ...uswi1Q.

So, this case reduces to Case 1.
Case 3. Let U_wfl(al) C @ and u; # e. Then u; = x4, (A), for some A # 0.
Then (2) yields:

—1 - —1
Wiz o, (A" Hwy € wiU_g,wy = U_yo(ar) © Q,

hence,

w1Q = w1 (W] ', (A"Hw1)Q = 2_q, (A" Hun Q.

Thus, applying (1) we get:
Bwuw,Q =

= Bwy, ... UpTe, (A)T_q, (A" Hwi1Q =
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= Bwuy, ... usHy, (A)$1Z0, () w1Q C
C BHwUg,, ...Ug,51Up, w1 Q = Bws151Ug, ...Ug, 51Uy, w1Q =
= Bw'Upy Uy, w1Q C Bw'Uyw1Q C Bw'UywiQ .

As l(w') < l(w), we are able to apply the induction assumption. This com-

pletes the proof.

Corollary 1. (of the proof). If s = s, € S, where a € I, and w e W

then
_ BwQU Bsw@ if U_wfl(a) cqQ
BsBuw(@ = {BS’U)Q if Uw—l(a) CqQ.

Corollary 2. Let QQ satisfy the condition of Theorem 1, and let P be a

parabolic subgroup of G containing B . Suppose PNW =W ,QNW = W,.
Then

G= U Pw@
’wEWl\W/WQ

Examples.

1. If Q = B then the decomposition (6)
G =BWQ=BWB

is the Bruhat decomposition (3) for G .
2. If Q@ = B_ then (6) gives the Birkhoff decomposition for G :

G=BWDB_ .

3. Let G be an affine Kac-Moody group. Consider the realization of the
corresponding Kac-Moody algebra as a subalgebra in gO ® F[t, t_l] dFcolFd,
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where g° is a simple finite-dimensional Lie algebra. Define ¥ to be the set of real
roots of the subalgebra N @ IF[t, ¢ .

Consider in the corresponding group G the subgroup ) generated by all U,
such that & € W. The decomposition (6) we obtain in this way is known as the
Iwasawa decomposition.

Now suppose that A is the extended Cartan matrix of SLy. The affine Weyl
group W has the corresponding finite Weyl group as parabolic subgroup in the
usual way; taking P D B to be the corresponding parabolic subgroup of G, the
decomposition of G/IF* 2 SLo(IF[t,t~1]) from Corollary 2 is:

SLﬂJﬂqu]):kSZSLQ(FM) (i t9k> (é Fﬁf‘ﬂ)::

_ UZ SLy( TF[t] ) ((1) t—llﬁl[t—l]> (t(’)“ tf)k) :

ke

Definition. A (non-standard) set of positive roots W is defined as an arbitrary
subset in A with the following properties:

a) U —T = A\{0}.

b) T N—" =0

c) ¥is closed, i.e. if a,f € Vand a+ S € A, then a+ 3 € U .

Consider for some ordered basis over the reals of the real span of the roots,
the set ¥ of all roots whose first non-zero component in that basis is positive
(lexicographically positive roots with respect to this basis). Then ¥ is a set of
positive roots. Let us prove that all positive root systems arise this way.

For the following results, it is convenient to identify the root lattice with Z"

so the simple roots coorespond to the standard coordinate vectors.



Proposition 1. If U is a positive root system in A then there exists a
basis B in R™ such that U is the set of roots that are lexicographically positive
with respect to B.

To prove this proposition we need the following lemma.

k
Lemma 1. Let Uy = {Y ngu; | k>1, 0<n; € N, p; € U} be the
=1
semigroup in 7" generated by U. Then U1 N (=) = ().

k s k
Proof. 1f Z Nil; = Z m]ﬂj, where p; € U, ﬂj € —V | then Z n; ;i +
i=1 5=1 i=1

e

mj(—pB;) = 0, with (=3;) € ¥. So, it is sufficient to consider the case when

<
1
-

nii; = 0 and we may assume that this sum has the minimal possible positive

~.
gl

on
S

N
I
—

Suppose that one of the roots in this sum is real, let say pu1 € A"™¢. Then

k

= O nipi  pY)=nalp,py) an(uz,ul

=1

As {p1,pY) > 0 then for some i we have (u;, uy) < 0, hence p; + pq is a
k
root and p; + p1 € W. This gives us a sum with lesser Y m;. Consequently, all p;
i=1
should be imaginary and hence all n; are equal to 1 as nu; € A for p; € A™,

Now we may present our expression in the form:
k s
Y Bi=> v, where ;€ UNAP, ;€ (-¥)NAY (1)
— =
and we assume that k 4 s is the minimal possible.
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Let us consider two cases:

k k
L. Suppose that »_ B; is not a root. Note that for allw € W, w()_ ;) €
i=1 =1

k
N". Choosing w so this element has minimal height, one has w(Y_ ;) € —CV.
i=1

k k
As w(>] Bi) € A, then the support of w(>_ B;) decomposes into several
i=1 i=1
connected components. Choosing those f; and y; for which the support of w(f;)
and w(vy;) belongs to one of the connected components we get the equality of type

(1) with lesser k + s , which is a contradiction.

k
II. Suppose that Y. 3; is a root. Then k¥ = 1 or s = 1 because of the

i=1
minimality of k + s. Without a loss of generality we can assume that
k
Y Bi=04, BeUNAT, §e(-T)nAP™
i=1

It follows from the axioms of the positive root system that k& > 2. As k is the
minimal possible then no subsum in Zk: B; with more than one summand may be
equal to a root. =

Following a similar argument as in (I) we conclude that there exists w € W
such that wps,...,wBk_1,wPr belong to —CV and their supports are pairwise
non-connected. Consequently, supp(w/3;) connects all of them. In the same way
there exists wy; € W such that w81, w182 € —CV and their supports are non-
connected. Since CV is a fundamental domain for W on the (dual) Tits’ cone,
wfy = wi B2, hence ww; 1 ¢ Staby (wP2) which is generated by reflections in W
that stabilize wBs. As wBs € —CV then Staby (wfs) is generated by reflections
with respect to the simple roots that are non-connected to the supp(wfs) or

belong to the supp(wfz). Consequently, the support of wB; = wwj wiPy is

non-connected to the support of wf3s, this is a contradiction.
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Corollary 3. Let Uy = {fj @Bi | k>1,¢,€ Q.,B € U}. Then
Ty (—Ty) = 0. =

Proof of the proposition. Let’s prove by induction on n that for any semigroup
U, C Z" such that ¥y N (=¥;) =@ there exists a basis B in R™ with respect
to which W, is lexicographically positive.

If n =1 then this statement is evident.

Without the loss of generality we may assume that ¥, spans R".

Consider

m
Q = {Zriai | rieRy, o €Uy, (ai,...,q,) span R"}.
=1

Note that €2 is an open convex cone in R"™ and ¥y C Q. It can be easily seen
that QN (—Q) # @ implies ¥y N (—Ws) # () which contradicts the previous
corollary. Consequently, QN (=) = 0.

Now we use one of the basic theorems of convex analysis which states that if
2 is an open cone in R" such that QN (—€) = @ then Q and — can be separated
by some hyperplane H. Choose as the first vector for basis B the vector normal to
H in the direction of €2. Due to the induction assumption there exists a basis in H
such that H N Wy consists of lexicographically positive vectors with respect to this
basis. This completes the proof of the proposition.

For any set of positive roots ¥ we let (Qy denote the subgroup of G' generated
by all U, such that « € ¥ N A™. Then Quv = wQgw ™!, and we get the
decomposition for G :

G =BWQy .
Lemma 2. Let ¥ be a set of positive roots. Then BQgy NW = {e} .
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Proof. This follows immediately from representation theory. Consider an ir-
reducible right highest weight g-module L(A) with integral strictly dominant high-
est weight A. This @-module is integrable. Suppose that w = bqg, where
w € W, b€ B, ¢ € Qg . Then for the highest weight vector vy we have
vab € F*vy and consequently vpbg has a non-zero A-component as according to
Lemma 1 no linear combination of elements of ¥ with positive coeflicients equals
zero. However, vaw € (L(A))y(a), hence vaw has a non-zero A-component only

if w=e.

Theorem 2. Let U be a set of positive roots, and QQ = Qy be the corre-
sponding subgroup of G. Then the map w — BwQ s a bijection of W onto the
double cosets B\G/Q .

The proof of this theorem may be easily derived now as a modification of the
corresponding proof from [1] for the Bruhat decomposition applying Corollary 1

and the previous lemma.

We now investigate the structure of Q. Let Q1+ = QNUL , Q- =QNU_ .

Lemma 3. Let o be a simple root.

i) If Uy C Q, then Qy = Uy(U; NQ).
ii) If Ua ¢ Q, then Q4 = (U, NQ).
Proof. As U, = U,Uj_, then i) is evident.

Let us prove ii). Consider a lowest weight module L(A) , where A is a strictly
antidominant integral weight. Consider the action of the subgroup G = SLo(IF)
on L(A) and let V' be the G,-submodule

V= Y L(A)A-l-na )

neclsy
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of L(A). There is a natural projection p : L(A) — V, which is an identity on the
appropriate weight spaces and zero on the others.

Consider the action of the subgroups U = U,U;_ and @ on the vector vj.
Let u € U. Note that u € U,_ if and only if p(uvs) = p(va). At the same time
if a weight v belongs to the support of qua, then v — A can be represented as a
linear combination of elements of ¥ with non-negative coefficients. As o ¢ U, then

m(qua) = m(vy) for all ¢ € Q. Consequently, Uy NQ =U; NQ.
Corollary 4. Uy NQ = (U, NQ) (U, N Q).

Theorem 3. Let Q = Qg be associated to a set of positive roots ¥ . Then

Q=0Q+Q- .

Corollary 5. An element g € G may be uniquely represented in the form
g=Bwq , where BE B,weW andqe QN (w lU_w) .

Proof of the Corollary. By Theorem 1 an element g € G may be presented
in the form g = Bwq = B(wqw~!)w. Let us consider the positive root system

wPw~!. By Theorem 3, wQgw ! is the product of subgroups:
wQuw™ ' = (Uy NwQuw™ ) (U- NwQgw™"),

so wqw~! = qyq_ , where g+ € UL N (wQgw™1) .

Hence, g = (Bgy)w(w~'q_w). Remark that w™lqg_w € Q N (w™U_w).
This proves the existence of this presentation. Let us prove uniqueness. Sup-
pose g = bywy1qy = bawsaqs. By Theorem 2 we have w; = wy . Consequently,
bl(wlqlwl_l) = bg(w1QQ’w1_1) and bl_lbg = wlqlqglwl_l. But b1_1b2 € B and
w1q1q; "wit € U_. As BNU_ = {e} , we get b by = g;'qs = e . This

completes the proof of the corollary.
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Proof of Theorem 3. Let g € Q . Consider the Bruhat decomposition for g:
q = bowgug, where ug € Uy .

Let us prove that ¢ € @+ Q_ by induction on I(wy}) .

If I(wy) =0, then wy, =ug=e, hence g€ BNQR=U,NQ =Q+

Let {(wy) =n >0, w) = $ySp—1-..51 . Consider the procedure of reduction
of bow{ugy to the form b,w,q, , described in the proof of the Theorem 1, using

at each step the following presentations :
q = bywiuiwig; (8)

by gradual elimination of w] = s, ...$;+1 . Theorem 2 implies that we shall
eventually get w, = e, as ¢ € Q.

If we use Cases 1 or 2 for the reduction of (8) then g¢;11q; ' € U,, and
Wit1 = Siy1w; , hence wi  w;y1 = wjw; . Note that if Case 3 works then
Wi+1 = w; . So, if this process involves Cases 1 or 2 only then w, = w,w, =
=...=wiwy = w( , which is impossible as w, =e .

Consequently, Case 3 is involved in this process. Suppose that Case 3 occurs
in (8) for the first time. Then in (8) we have w; = s;s;—1...51, ¢ € QNU,, .

Let a be a simple root, corresponding to s;4+1 . Note that 'wi_lU_a’wi C Q. We
have w; = w; ;si41 and u; = wju, , where uy € Uy and u; € 31‘+1Uw;+18¢+1 )

Hence, q = b;w; ;1 (Si+1U;Si+1)Sit1UaWid; -

Following the arguments the proof of Theorem 1 we find u_, € U_, such
that siy1UaU_o = Ho(A)uy! .

Consequently,

/ ! —1
q = biw; 1 (Si+1U;8i41)Sit1Ual—aU_ o Wig; =
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1

= byw] 1 (sit1U8i41) Ha (N ug 'wi(w;  uZ,

U_ Wi G -

Hence, qit1 = (wj'u”jwi)g; € (wj 'U—_qwi)(Uw,NQ) C
- wz-_l(U_ N (wiQwi_l))wi.

Applying Corollary 4 to U_, w; ' and w;Qw;” b we get

U_ N (w;Quw; ") =

=(U-nN (wiUeri_l) N (wiQwi_l))(U_ N (wiU_wi_l) N (wiQwi_l)).

Consequently,

w; N (U_ N (w;Qui ")) w; C
C (w7 U_w; NUL NQ)(w; ' U_w; NU_NQ) C
CU,,(U-NnQ)=U,,Q_-.

Thus, q € Bw§+1Uw;+1wiUwiQ_. Using Corollary 1 for the Bruhat decom-
position we conclude that ¢ € BwU,Q_ for some w € W with l(w) <
Hwjy ) + Hws) < (wg) -

Let ¢ = bwuq_ , where b € B, u € U, and q_ € Q_ . We have
buu = qq~' € Q. As I(w) < l(w)) we may apply the induction assumption.
Hence qq_' € QLQ_ , consequently ¢ € Q.Q_ , as was to be proven.

Remark. If we replace both Borel subgroups with () in the Bruhat decom-
position (3) we do not in general obtain a decomposition for G. In particular, for
the affine case if we take @) as in Example 3 then G # QWQ .

Closure patterns. We fix a system of positive roots ¥ and let <y denote
the partial order on W generated by the relations s,w <g w for w € W and

v € A\ wV; this is the order denoted <4 in [6, 1.5], where A is the “initial

16



section” A = {5, | AT\ U } of the reflections of W. An alternative description of
<g may sometimes be useful. Define a (non-standard) length function lg: W — Z
by setting

ly(w) = L(w) — 28((A%\ ) Nw ™' (AT?))

for w € W. Then by [6, 1.7], one has v <g w in W iff there is a sequence
v = Vg, V1,...,U, = w of elements of W with vivi__ll a reflection in W (i.e. a
conjugate of a simple reflection) and ly(v;) = lg(v) + 4 for ¢ = 1,...,n. If
U = Ay (resp., ¥ = A_) then <y is the usual Chevalley (Bruhat) order on W
(resp., reverse Chevalley order).

We may now restate Corollary 1 more familiarly as

Corollary 1'. Let Q = Q. If s=5, € S wherea € Il and w e W

then
| BwQU BswQ if sw <g w
BsBuwQ = { BswQ if sw >y w.

Proof. One has w™!(a) € ¥ iff o € w¥ NA”C ie. iff sw >¢ w.

Example. For ¥ as in example 3, the order <y on W is isomorphic to the
order on the alcoves of an affine Weyl group considered by Lusztig in [17] (by [7]).

We now wish to extend to the orders <y the usual interpretation of Chevalley
(Bruhat) order in terms of closure patterns (of Schubert cells, or (B, B)-double
cosets). To this end, we introduce on G the Zariski topology defined by strongly
regular functions as in [15, 2E]. We recall here that Zariski topology is G- biinvari-
ant, that ¢o: SLa(IF) — Gy is a homeomorphism (where SLj has the usual Zariski
topology), and that U, = '™ We now prove

Theorem 4. Let Q = Qg. Then for any w € W,

QuB = U QuB.

v~ 1<gw—1
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Note that v=! <y w~! is not equivalent to v <y w in general. The proof
of Theorem 4 is essentially the same as that of [14, 3.4], using integrable highest
weight modules. We fix a strictly dominant integral weight A, and consider the
corresponding integrable highest weight (left) g-module L(A), with highest weight
vector vp € L(A)x. We endow L(A) with the Zariski topology defined by strongly
regular functions [15, 3A].

Introduce the partial order <y on the W-orbit WA of A, generated by u <g A
ifu—Xe QZO\I/ and g = 4 () for some o € A™. The map W — WA given by

w — wA is a bijection, and we claim that

wA <g vA iff w <gov L 9)

To check (9), one may assume by definition of the orders <y that w = vs4 for
some & € A€ Then wA <g vA iff —(A,aV)va € Q5o ¥ ie. iff @ € AT\ v~ 1T,
as needed.

Let V = G(IFv,); as shown in [14], this is a Zariski closed subset of L(A)
(defined by quadratic “Plucker polynomials”), and the group ™ x U_ acts simply
transitively on V \ {0}. We recall an important fact concerning V from [14]. For
v € L(A), write v = ), vx with vy € L(A)x, put supp(v) = {A | vx # 0} and
let S(v) denote the convex hull of supp(v). Then

for v € V, the vertices of the polyhedron S(v) lie in the W-orbit of A, and the
edges of S(v) are parallel to real roots. (10)

For A € WA, set

VN)w ={veV|Xesupp(v), supp(v)—AcC Q¥ }. (11)

Now we have the following analogue of [14, Theorem 1].

Proposition 2. i) V\ {0} is the disjoint union of the V(A)g for A € WA
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ii) for A = wA € WA, the group Qg NwU_w™! acts simply transitively
on V(A)w.

iii) for A € WA, one has V(A g \ {0} = Up<y A V(1) w-

Proof. Write @ for Qg. The assertion i) follows from (10) above; note also

the V(A)g are Q-invariant. For ii), observe one has a decomposition
Q=QnuwU_wHQnNwU,w™?)

using Theorem 3, so it suffices to show that

F* x Q acts transitively on V(\)y. (12)

This is proved as in [14] by “killing edges of S(v).” More precisely, for v €
V(A w, set @A) ={a € ¥ [ s,(A) <u A) },

®'(v) ={ae ®(N) | [N s4(N)]is an edge of S(v)}

and ®(v) = ®(A)N QZO(S(’U) —A). If & € ®'(v), the argument of loc. cit. shows
that there exists t € F so o € ®(w4(t)v) C ®(v). Using this repeatedly, one finds
u € Q so D' (uv) =0, so uv € L(A)y by (10), proving (12). Finally, iii) is proved
from 1), ii) in exactly the same way as Theorem 1(c) of [14].

Proof of Theorem 4. Themap ¢ : G — V with g — gvp is Zariski continuous,
with ¢~ (Q(L(A)y(a))) = QwB by Theorems 1 and 2. Taking (9) into account,

part (iii) of Proposition 2 gives

QwB C U QuB.
viv-1<gw—1
To prove the reverse inclusion, its sufficient to show for w € W and a € Afl_e \

w1 (¥), that QuwB D Qws,B. Since Q,,-1¢ = w~'Qw and the Zariski topology
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is G-biinvariant, one may even assume in addition that w = 1. Write a = w(f)
for some w € W and 8 € II. Then Uy, = wUigw ™! and we set H, = wHaw™".
Recall ¢pg: SLa(IF) — G is a Zariski homeomorphism. Now @ D U_, and B D

H,U,, so one has by biinvariance again that

@B D QU-_oHyUsB D QsaB.

Intersection Patterns. In this section, ¥ is a fixed set of positive roots.
For A C G, write A- B :={gB | g € A} C G/B. Here, we study intersection
patterns amongst the sets By - B, Qgw - B and Q_gx - B for x,y,w € W. The
basic result is Theorem 5, which is similar to [4] (cf. also [5], [11]). The proof here
is very similar to that in [5], but we give the details involving the ordering <gy.

Fix y € W and a reduced expression y = s1...s;. Let D, be the set of
sequences 0 = (09, 01, . ..,0k) € W*T! satisfying the conditions (a)-(c) below;

(a) op = e, the identity element of W

(b) oj € {0j_1,sj05_1} for 7 =1,...,k

(c) if sjo05_1 >w 0j_1, then 0 = s550;_1.

For o0 € D, we set m(o) =#{j | 0; >y 0j_1}, n(oc) =#{j | 0; = 0j_1} and
m(o)=0, €W,

Now we define a map  : Uy—1 — D, by n(u1) = (0o,...,0x) where the
o; € W are determined by u1s1...5; € Qq,aj_lB (the conditions (a)—(c) are
easily verified, using Corollary 1’ for (c)).

Theorem 5. i) For any o € D,, the set n~'(c) is a locally closed subset
of Uy—1 homeomorphic to ™) x (F*yn(o),

ii) For any x € W,

By-BNQgz ' -B= U n~ (o) - B.
c€D:w(o)=x
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Corollary 6. For z,y € W, one has
i) By- BNQuz-B =10 unless y=! <¢ 7" and x < y, where < denotes
Chevalley (Bruhat) order on W
i)
Q_yy-BNQgz-BC |J Bv-B
vel(y,z)

where I(y,z) ={veW |y ! <gv ! <gzl}
Proof of the Corollary. Part ii) follows immediately from i) on noting that

<_y is the reverse of the order <y. For one part of i), one shows

ByB C | QueB
z<ly

by induction on [(y) using Corollary 1. For the remaining part, suppose that the
intersection in i) is non-empty. Then Theorem 5 implies that there exists o =
(00,...,0%) € Dy with 7(0) :0;1 =x. Sety; =sj...5for j=1,...,k+1,
with yg41 = e. For j = 0,...,k, let t; = yj__ﬁlaj. Then t;_; = t; unless
0j—1 = 0j,in which case t;_1 = yj__:lsjaj <y yj_+11(7j =1, since o1 <y 0j_1

and s;Y;4+1 > yYj+1. This gives, as needed,

y l=to<eti<g...<gtp=z"".

For the proof of the theorem, we keep the notation y; = s; ... sy from above,
and also abbreviate Uy;1 as U; and Uz,/j as Uj, for j = 1,...,k + 1, so one has
U, = ijjUJ'yj_1 with uniqueness of expression. For w € W, s € S with [(sw) >
I(w), one has U,, C Uy, by (5), and then Corollary 4 with Q = w™1s7 U, sw
gives U, C U, . Hence U; C Uj C ...

Lemma 4. Fiz o € D, and an integer j with 1 < j < k. Set Q(o, j)

equal to F, {0} C IF or F* according as whether 0j >w 0j_1, 05 <y 0j_1 OT
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oj = 0j_1. Then there is an injective map f; : Q(o,j) x Ujy1 — U; with the
following properties:

(a) the image of f; is either Uj, sjUj+1sj_1 or U; \ sjUj_Hsj_l according
as 0; >y 0j_1, 05 <w 0j_1 or 0; = 0j_1, and f; is a homeomorphism onto
its image

(b) one has O'j__llfj (t,ujt1)y; = bjaj_luijjHUjH for some bj € By :=
HQgu and vji € UJI'+1'

Proof of the Lemma. Write s; = 54, a € 1L

First, suppose that o; >¢ 0;_1, so 0; = s;0_1 and « ¢ 0;j—1¥. Define
it ujs1) = .'L'a(t)SjUj+1S;1. The required properties of f; follow immediately
on noting that z4(t) € Qo;_, v = Jj_1Qq,0j__11.

The second case is 0; <y 0j_1; one again has 0; = sj0;_1. The map f;
defined by f;(0,u;4+1) = sjuj+1sj_1 has the required properties.

The remaining case is that o; = 0_1; here, sjo0;_1 <y $j_1,50 @ € 0;_1 V.
Write zq4(t)ujy1 = u;+1yj+1vj_4}1yj_+ll for some (uniquely determined) u},, €
Ujt1 and vj1 € Uj,q, and set fi(t,ujq1) = xa(t_l)sju;-+1s;1 € Uj. As in the
proof of (3.2) in [5], f; is a homeomorphism onto its image U; \ sjUj_lr_]_Sj_l. Now

we compute
-1 _ -1 -1 /
Uj—1fj(ta Ujt1)y; = j—1$a<t )Sj“j+1yj+1
— j__lll‘a(t_l)s_jﬂfa(t)Uj+1yj_|_11)j_|_1.

We may write T (t71)sjz4(t) = hsja:a(—t_l)sj_l for some h € H. Setting

_ 1. —1y.—1
bj = 0, 1hsjza(—t"")s; "0j,

we have
_1 — . _1 . . .
o 1 fi(t uj11)y; = bjo; ujr1y5410541.
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Finally, observe that b; € By since —a € 0;_1¥ implies
—1 -1
Uj—lbjaj—l e HU_, C Baj_l'll = Jj—lB‘IJSj_l-

Proof of Theorem 5. The map U,-1+ = Uy — By - B given by u — u - B is
bijective, and clearly maps ™! (c) into Qg () - B by definition of 1 and m. Since
U, is the disjoint union of the sets n~!(c) for ¢ € D, we need only prove (1).

Fix ¢ € D and define subsets A; C U; for K+ 1 > j > 1 by setting
Agt1 ={e} and A; = f;(Q(o,7) x Aj41) for kK > j > 1. The lemma implies that

A; is a locally closed subset of U; homeomorphic to Fm0) o (IF*)(:9) where
m(j,0) =t{p|j <p <kand Qo,p)=F},

n(j,o)=#{p|j<p<kand Q(U,p)zF*}.

Since m(c) = m(1,0) and n(o) = n(1, ), the theorem will be proved if we show
that A; =~ 1(0). Fix uy € U;.

Suppose for j = 1,...,p we have uj1 € Ujyq and t; € Q(o,j) with
uj = fj(tj,uj4+1). Choosing b; € By and v; € Uj as in the lemma, it follows

immediately by induction on j that for 1 < 5 < p,

U15182...85 = bibsy ... bja-_luj+1yj+1vj+1 ... U31)2y-_11. (13)
J J+

Recalling Uy C Uj C ..., the right hand side of (13) is an element of Qq;O'j_lB. In
particular, if u; € A1, one can take p = k in the above and deduce that n(u;) = o.

Conversely, suppose that uq € 7~ (c). We prove we have u; 41 and t; as in
the previous paragraph, for j = 1,...,p, by induction on p. Suppose inductively
this is true for p— 1, so in particular (13) holds if j = p—1. Choose § € W so that

UpSp € Q(,p_qu(s_lB = ap_qu,ap__ll(S_lB. Then, recalling U C U}, one has
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U181...5p—15p € Q\pap_llé_lB so 60p—1 = 0p. To complete the proof, we just
need to show that u, is in the image of f,, which is given in the Lemma. Write
8p = 8o for a € II. We must show that

i)if 0 =sp and a € op_1V, then u, € spUpHs;l and

ii) if § = 1 then up € Up \ spUpy15, "
(the other case being trivial).

Consider the situation i). We have s;lupsp € Qsp0, ;9B = Q,,uB. Since

up € Up, we may write s, 'upsy = £_o(t)v for some t € F and v € Upy1, and we

must show ¢t = 0. But if ¢t # 0, we get
$;B = 2o (=t 1) (@_a(t)v)v  zo(—t")B C QpuB

(since a € 0, ¥ N A”?), contrary to Theorem 2. In the other situation ii), one has

. —1 _ .
> UpSp € Qspo,_,wspB. Write s, ups, = x_q(t)v as in

UpSp € Qp,_,uB 50 s
casei). Then z_o(t) € Qs,0, ,w5pB so Theorem 2 impliest # 0, s, upsy & Upy1
as required. This completes the proof.

Additional Remarks. We make some remarks concerning non-standard
Schubert-type decompositions of G/B. Fix a strictly dominant integral weight A,
and endow L(A) with the Zariski topology. Recall the notations V, V(A)g from
the proof of Theorem 4, and note that G/ B injects naturally into the set IP(L(A))
of lines of L(A) as in [14].

For any A € WA, one has the closed subset C'y g := P(V(\)g) of the (infinite-
dimensional) projective space PL(A). For ¥g = A, Cj g, is the the finite Schu-
bert variety C'y and C _yg, is the the cofinite Schubert variety " of [14, 15].
In general, Cy g is the directed union of its intersections with the finite Schubert

varieties, these intersections being finite-dimensional projective varieties.

For certain W of particular interest for the representation theory of g, every
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interval in the order <g on W is finite (see [6, 6.4 and 6.7]). We suppose hencefor-
ward for simplicity that W has this property. Since the ordinary Chevalley order is
directed, Corollary 6(b) implies that each (closed) intersection

Crpw=CronNC, v (15)

will be contained in some finite Schubert variety, and hence aquires a natural struc-
ture of finite-dimensional projective variety (essentially independent of the choice
of A, since this is known for the finite Schubert varieties). One has that Cy ,, v is
non-empty precisely when g <g A (but see the example following).

By [6,7] the (non-empty, finite) open intervals (i, A) in the order <y on WA
(or <g on W) are of two types; spherical (i.e the order complex of the open interval
is a combinatorial sphere) or non-spherical (the order complex is a combinatorial
ball); many very interesting constructions (e.g. Kazhdan-Lusztig polynomials, see
[6]) can be extended to the former, but either fail or give pathological results for
non-spherical intervals. It can be shown (cf. [8]) that for a non-empty spherical

interval (v, w) in W, one has
Hae Al [v <y squ <y w} > ly(w) — ly(v) (16)

for all v <g u <g w in W, but that this result need not hold for a non-spherical
interval. Now (16) has been established for ordinary Chevalley order [3] by studying
H-invariant curves in the intersections of finite and cofinite Schubert varieties,,
and one might therefore expect similar results to apply to 6,\%\1, for spherical
intervals (u, A) in WA in the order < W. It seems likely that (also only for spherical
intervals) there should be a decomposition of 6)\““,’\11 into locally closed subsets
(parametrized by the data in [6, 3.1] used to construct the R-polynomial) similar
to that in Theorem 5.
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Example. Here we show that, in contrast to the classical situation (where
U = A’€), one can have Cy v := V(A)g N V(1)—w = @ even though p <g A
(notation as in the above remark). First, note that by (2) in the proof of Theorem

4 and the definition of <y, one has that

C)\,p,,\ll = {U % ‘ {,U,, )‘} - supp(v) - [,U,, )‘]}

where I = [p, A\ = {v € WA | p <g v <g A}; also, for v in C) , psi, the edges
of supp(v) are parallel to real roots. Suppose now that the poset I is a chain of
cardinality three (by [6] any finite non-spherical interval in an order <y contains
such a chain as a subinterval). Then g — A is a linear combination with strictly
positive coefficients of two “adjacent” real roots lying on a plane in f), so it is not
a multiple of a real root, and hence Cy , v = 0. As a specific example, for ¥ as
in Example 3 in the case of SLs, every length two subinterval of <y is a chain of
cardinality three.

To conclude these remarks, we make an observation on a relationship of the
decompositions here to certain Hecke algebra modules associated to the orders <g
on W.

The results of this paper excepting Theorems 4 and Proposition 2 can be
proved by essentially identical arguments for the version of G in [11]. (For the
topological statements in Theorem 5, one should take the field algebraically closed;
then the sets 7~ (c) are locally closed subvarieties of Uy-1 in a natural structure
of unipotent algebraic group. We haven’t pursued rationality questions over other
fields.) For the following remark, consider the group G from [11] for [F' a finite field

of q elements.

Let F denote the set of complex-valued functions on G/B. For x € W, define
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a C-linear map Ty: F — F by the formula

(T./)g-B)= Y. [f(2)
z€g(Bz-B)
for g € G.
It is easily checked (cf. [12]) that the T} span over C a copy H of the Iwahori-
Hecke algebra of W, with parameter ¢. In fact, for s € § and x € W one has

Tso if sx >x

I.T. = {qug6 +(@-1)T, ifsr<x

where < denotes Chevalley order.
Setting t,, = ql‘l’(“’)XAw for w € W, where x4, is the characteristic function
of the subset A, := Qgw™' - B of G/B, one can show similarly (or deduce from

Theorem 5) that for s € S,

T — tsw if sw >g w
ST gqtsw + (@ — D)ty if sw <g w.

In [6], a module H 4 for the generic Iwahori-Hecke algebra of W was associated to
the initial section A = {5, | @ € A’®\ ¥}. Specializing the indeterminate there
to ¢ € C, the resulting H-module is a natural “completion” of the H-submodule

of F spanned here by the t,, for w € W.
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