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Introduction.

In [PK] Peterson and Kac proved the conjugacy theorem for the Cartan sub-
algebras of a symmetrizable Kac-Moody algebra. This theorem allows in particular
to describe the group of the automorphisms of a Kac-Moody algebra.

The Peterson-Kac proof involves an interesting analysis of the action of a Kac-
Moody group on the Kostant cone. To any element of the Kostant cone one asso-
ciates a polyhedron which is a convex closure of the support of this element in the
weight lattice. Peterson and Kac prove that
(i) every vertex of this polyhedron belongs to the W-orbit of the highest weight
(ii) every edge is parallel to a real root.

This allows us to apply the procedure of “stripping off edges” which is the
crucial part of the proof.

The detailed version of the Peterson-Kac proof is presented in the book [MP].

In order to deal with the sophisticated construction of the Kostant cone one
needs to use strong technical machinery, so the restriction to the symmetrizable
Kac-Moody algebras seems to be unavoidable.

In this article we prove the conjugacy theorem for the strictly hyperbolic (non -
symmetrizable) Kac-Moody algebras, i.e., corresponding to the generalized Cartan
matricies with no rank 2 submatricies of finite type.

Our idea is to work directly with the convex closure of the support of an ad-
locally finite element in the root space. We prove that
(’) every vertex of this polyhedron is a real root
(ii’) every edge is parallel to some (not necessarily real) root.

This allows us to apply the same procedure of “stripping off the edges”. Un-
fortunately, in the finite root system, edges may be not parallel to any root, so this

proof doesn’t work in the finite type case.
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Definitions and notations.

Let A be a generalized Cartan matrix, i.e., a;; € Z; a4 = 2; a;; < 0 if
1#7;, a; =04 a;;=0;4757=1,...L

Fix a base field, IF , of characteristic zero. A realization of A is a triple
< By, ILIIY >, where b, isa vector space over I | dim b, = [+corank(A), II =
{ag,...,q} C f)z and IIV = {hq,..., 4} C b, , satisfying a;(h;) = a;; .

Introduce first the Lie algebra § = §(A) over IF with the generators e;, f; and

bo , t=1,...,1 and the following defining relations:
[h,ei] = ai(h)ei, [h, fi] = —ai(h) fi,

les, f3]1 = bijhis (Do, Bol = 0.

There exists the unique maximal ideal (radical) I in @ that intersects with b,
trivially. The factor-algebra g(A) = g/I is called the Kac-Moody algebra.
The following relations hold in g(A) :

(ade;) ™5 ey = (adfi) "5 1 f; = 0, i #J.

Denote by g, (resp. g_ ) the subalgebra in g, generated by ey, ..., e; (resp.

f1,---, fi )- Then we have a triangular decomposition for g:

g=g_obyeg,.

The Borel subalgebra b is defined as h, @ g_,..
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We also have a root decomposition for g:
g= & @, Where
ac ;

g,={zeglforal heb,:[hz]=ah)z}

The root system A = A(A) is the set of all o € By such that g, # 0.
Obviously, A is a subset of the lattice 7! generated by the fundamental roots
{£a;}, @ =1,...,1. It follows from the triangular decomposition for g that
A=A_U{0}UA,, where Ay =ANN" and AL =—-A, .

Let (V, p) be an infinite-dimensional g -module. An element x € g is called
p-locally finite if for any v € V the linear span of {p(z)"v},n € N | is finite-
dimensional.

An element x € g is called p-locally nilpotent if for any v € V there exists
n € N such that p(z)"v = 0.

We shall call x € g locally finite (resp. locally nilpotent) if it is ad-locally
finite (resp. ad-locally nilpotent).

Let W denote the subgroup of AutF(f);;) generated by the “simple reflec-
tions” B — B — (B,av)a for o € II. The set {wa | w € W, a € I} of real
roots will be denoted A™. Define positive and negative real roots as usual by
Al = AT N AL

A g-module V, or (V; p) where p: g — Endp(V), is said to be integrable if
g, is p-locally nilpotent for all @ € A™¢. One associates a Kac-Moody group G(A)
to g(A) as in [PK]; G(A) is the quotient G = G*/N of the free product G* of
the root subgroups g, (for real roots ) by the largest normal subgroup N of G*
acting trivially on all integrable g-modules V' (where g, C G* acts on each such
(V,p) by (e,v) — exp(p(e))v). For real roots c, one has the canonical injection

(also denoted exp) g, — G* — G with image the one-parameter subgroup.
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Highest weight representations for sl; and for the Heisenberg
algebra n.

Consider Lie algebra slowith the basis {e, h, f} and relations [h,e] = 2e ,
h,f1=2f, le,f]=h.

Let (V, p) be an sla-module generated by a highest weight vector v : p(e)v =
0, p(h)v = cv.

The space V is a linear span of {p(f)*v},k > 0. We can compute the action

of p(e) on these vecors:

k—1

= (D (c=20)p()F v

= k(c— (k= 1))p(f)* v,

k—1
p(e)*p(f)Fv = k! H(C — 1)v.

This computation shows that if ¢ is not a non-negative integer then p(e)¥v # 0
for all k € N and V is an infinite-dimensional simple module.

If V is a finite-dimensional module then ¢ € NU {0} and p(f)**lv =0,
so {p(f)*v},k=0,...,c,is a basis for V.

We can rewrite the last formula as follows:

Pl o) =

Denote vy = 7;p(f)*v . Then

p(fvk = (k+ Dok, k<e,
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p(e)vr = (¢ = (k= 1)vgss, k>0,
p(f)ve = ple)vo = 0.

As the action of p(e) and p(f) on V is nilpotent, we can consider exponentials
of these operators:
(¢4
1
E()) = exp(Ap(e)) = ) p(e)",

k=0
FO) = exp((f) = 3 10"
k=0

The families of operators {F(A)} and {F(A)},A € [, form abelian (additive)
groups and together generate a group SLy(IF) acting on V' (if dim V' > 1).
Consider now a 3-dimensional nilpotent Heisenberg algebra 1 with the basis
{z,y, 2z} , where z is a central element of N and [z, y] = z.
Let (V, p) be a highest weight 1 -module generated by vector v : p(z)v =
0, p(z)v = cv. As p(z) commutes with p(z) and p(y) we have p(z) = ¢ Idy .
The space V is a linear span of {p(y)*v}, k > 0. Also,

= kep(y)*'v, and
p(x)*p(y)*v = kickv,

so , if ¢ # 0, then p(y)¥v # 0 and {p(y)*v} are linearly independent. Hence V is
an infinite-dimensional simple N-module.

Conjugacy Theorem.

Theorem 1. Let A be a generalized Cartan matriz such that a;ja;; > 4

foralli,j and let g(A) be the corresponding Kac-Moody algebra over the field
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Fof characteristic 0. Then all Cartan subalgebras in §(A) are conjugated under
the action of a Kac-Moody group G(A).

For an element z € g consider a decomposition in homogeneous components:

T = E To-

For a subset P of A denote

rp = E To-

a€eP

Define the support of = in A as follows:

supp(z) = {a € Az, # 0},

and if [ is a subalgebra in @ then define

supp(h) = U supp().
z€

Let S(x) be a convex closure of supp(z) in 7! . As supp(x) is finite it follows
that S(z) is a polyhedron in Z!'. Note that every vertex of S(z) belongs to supp(z).

Proposition 1. Let z be a locally finite element in g and let T' be a
generalized face of S(x).
(i) If T' contains 0 then xr is locally finite.
(ii)) If T' doesn’t contain 0 then xr is locally nilpotent.

Proof. Clearly, in order to prove local finitness (nilpotency) of an element, it
is sufficient to consider its action on homogeneous elements.

(i). Let m be a linear subspace spanned by I' and let u € g,. Then

((adx)"u) q+r = (adzr) u.
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As the linear span of {(adz)"u},n € N | is finite-dimensional then its projection
on o + 7 is also finite-dimensional, hence x. is locally finite.

(ii). In the same way
((adx)"u) g 4nr = (adzr)™u.

As T doesn’t contain 0 there exists n € N such that a+nl' = {a+vy1+. . .4+v,. |7 €
I'} doesn’t intersect with the support of the span of {(adz)™u} . Consequently,
(adzp)"™u = 0.

Two following lemmas supply us with our main technical tools.

Lemma 1. Let V. = & Vi be a graded sly-module for which p(h)vg =
ke
2kvy, for all v, € V. If dimVy < oo and dimVy, > 0 for all k > 0 then p(e) is

not locally nilpotent.

Proof. Suppose, by contradiction, that p(e) is locally nilpotent. As dimVj <
oo then there exists m € N such that p(e)™Vy = 0. Consider a non-zero element
vp, € Vj, for some n > m. Again using local nilpotency of p(e) we can find s > 0
such that p(e)*T1v, = 0 and u = p(e)®v, # 0. Note that p(f)"**u € Vp, hence
p(e)" e p(f)™"Tsu = 0, but p(e)"*p(f)"T¥u = (2(n + s))lu # 0 . This is a
contradiction.

Lemma 2. Let V = @ Vi be a graded n-module for which p(z)Vy C
Vier1, p(y) Vi C Vi1 and fof“eall veV , p(z)v=cv,c#0. If dimVy < oo and
dimVy, > 0 for all k > 0 then p(z) is not locally nilpotent.

Proof. The proof is essentially the same as for the previous lemma. Assume,
by contradiction, that p(z) is locally nilpotent, then for some m > 0 p(e)™Vy = 0.
Let u be a non-zero element in Vj, for some k& > m such that p(x)u = 0. Then

p(z)*p(y)*u = 0. On the other hand, p(z)*p(y)*u = k!cFu # 0, a contradiction.
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Lemma 3. Let o, € A™, a # £ and let hy,hg be generators of
(8,:8_,] and [85,8 5] , respectively. If some non-zero linear combi-
nation ci1hg + cahg belongs to the center of g(A) then g(A) is an affine Lie
algebra.

Proof. Considering the action of W on g we may assume that « is a funda-

mental root: a = a4 € I, hq = h; and 8 € A’’. From the action of W on the real
l
co-roots we can deduce that in the decomposition cahg = > b;h; all coefficients b;
i=1
have the same sign, so we may assume that they are all non-negative. The element

l
c1hi+ ) bjh; belongs to Z(g) if and only if the corresponding linear combination
i=1
of rows of the generalized Cartan matrix A is zero.

l
If ¢1 +b; < 0 then for the -th column of A we have ) bja;; +2(c1+b;) <0,
j=1

J#i
so this linear combination of rows of A is not a zero row.

If ¢ + b; > 0 then this linear combination has all coefficients non-negative, so
A is of affine type [K].

Lemma 4. Let g be a non-affine Kac-Moody algebra and let B €
A, a; €ell, B—a; € A, a=B+ny € A, Ifz € g,,x # 0, then
there erists y € g_, such that [z,y] &€ Z(g).

Proof. Consider the finite-dimensional < e;, h;, f; > = slp-module V =
® Bpika, - Without loss of generality we may assume that a(h;) = —m < 0.

k>0
As V is completely reducible, x can be written as the following sum:

n
x = Z(adei)"_kvk,

k=0

where v € gﬁHm, [fz, ’Uk] = 0.
Let ug be a non-zero element of a real root space g_4 and let y = (ad f;)™uyp.

We shall prove that [z, y] € Z(g).



We have
[(adei)"_kvk, (adfz)”uo]

= (=1)C7 _, (ade;)" %77 (adwy) (ade;)? (ad f;)"uo

(adei)"_k_j (adwg) (adfi)"_juo =

(n = 4)(m —n)!

nl(m — j)!

(adei)"_k_j(adfi)”_j [Vk, wo)-

As [Vk, Uo] € Grq, » it follows [vg, ug] = 0 when k # 0, 1.

If k = 0 then [vo, uo] € B , 5o (adf;)" 7 [vg, ug] = 0 when n — j > 1.
If k =1 then [v1, uo] € §,, , s0 (adf;)" I[v1, uo] = 0 when n — j > 2.
Hence,

[z,y] = (—1)" (adwo) (ade;)™ (ad fi) " uo+
+(—1)"_1n(adei) (adwp) (adei)”_1 (adf;)"uop+

+(=1)""!(adwy ) (ade;)" " (ad f; ) ug

nlm!
= (-

(m —n)!

no1_ nl(m—1)!

[vo, o)+

+(-1) (ade;) (ad f;)[vo, uo]+

(m —n)!

+(—1) (adfi)[vl, Uo]-

(m —n)!
Note that [vo, uo] is a non-zero element of [gg, @_g]. As [vo,uo] € by and

[v1,u0] € @y, , We have [e;] fi[vo, uo]]], [fi[v1, uo]] € Fhs.

As g is non-affine , applying Lemma 3 we conclude that [z,y] & Z(g).

10



Proposition 2. If z, is a non-zero homogeneous locally-nilpotent element
of g(A) and o € A, then « is a real root.

Proof. This statement is obvious for affine Kac-Moody algebras, so we may
assume that g(A) is not affine. Suppose, by contradiction, that there exist imagi-
nary roots in A with non-zero locally nilpotent elements in the corresponding root
spaces. Let a be minimal with this property and let z, € g, be locally nilpotent.
Considering the action of the Weyl group we get that & € —CV. Since g(A) is
radical-free, [f;, o] # 0 for some ¢ = 1,... 1.

Consider an automorphism F;(1) of g(A):

oo a \k
Pz, =3 B4,

k!
k=0

Let n be the maximal integer for which (adf;)"z # 0,n > 1. According to Propo-
sition 1(ii) (adf;)™z, is locally nilpotent. As « is the minimal positive imaginary
root with non-zero locally nilpotent elements, o — na; should be a real root. Now,
by Lemma 4 , there exists y_o € g_,, such that hoy = [Za,y—a] € Z(9).

Consider a 3-dimensional subalgebra < x4, hq,y—q > . If this subalgebra is
isomorphic to slathen taking a graded module @ @, and applying Lemma 1 we
get a contradiction to local nilpotency of x. ke

If < z4,ha,Y—o > is isomorphic to the Heisenberg algebra then choose § €
Ai}rnﬂ—CV such that § has the full support (i.e. all coefficients in the decomposition
of 0 as a linear combination of {c; } are non-zero) and forall j =1,...,1 d+a; €
A¥ U —CV [K]. Since ho & Z(g) then for at least one of these roots = 6 + ;
we have p(hg) # 0.

As p, a0 € Ai_lr_“ U—CV and p has the full support it follows that p+ka € Ai_ll_“

for all k € N.
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Now we can get a contradiction to the local nilpotency of z, if we apply
Lemma 2 to < Ty, hg,Y—q > -module & [ B This completes the proof of
Proposition 2. kel

Proposition 3. Let generalized Cartan matriz A satisfy a;ja;; > 4 for
alli,j. If x is a locally finite element of §(A) and T is an edge of S(x) then T’
is parallel to some root in A(A).

Proof. If ' contains 0 then the proposition is obvious. If I' doesn’t con-
tain 0 then according to Proposition 1(ii) zr is locally nilpotent. It follows from
Proposition 2 that the vertices {3,7v} of edge I' are real roots.

Consider now non-zero elements y_g € 9 5 and y_, € g_., - Let y =
Y- + C2Y—n.

Suppose, by contradiction, that I' is not parallel to any root. Then (I' +
(-=I')) N A = {0}, hence

[Tr,y] = c1[Tg, y—p] + cal®y, y—y] = c1hp + cah,.

As I doesn’t contain 0 then 3 and 7y (resp. hg and h., ) are linearly independent. It
is possible to see that a subalgebra g, in g(A) , generated by < g, Z, y—g, Y-y >,
is isomorphic to a rank 2 Kac-Moody algebra, corresponding to a rank 2 root sub-
system in A(A).

Since A doesn’t contain submatrices of rank 2 of finite type, A(A) doesn’t con-
tain rank 2 root subsystems of finite type [HMR] . Hence g, is infinite-dimensional.

If g, is a Kac-Moody algebra of indefinite type then

B(hg)  B(hy)
det p ~v(h

vhg) (k)| 7"

and there exist constants ¢y, cg such that B(ci1hg + cah,y) = y(c1hg + c2hy) = 2.
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The subalgebra < x,c1hg + c2h~,y > is isomorphic to slpand the module

® ( @ @i,) , where 7 is a line through I' , satisfies the conditions of Lemma
keZi +cQ
1 which gives a contradiction.

If g, is affine then

IB(hﬁ) 6(h’y)
v(hg) y(hy)

hence there exist constants ¢y, cg such that B(c1hg +cahy) = y(c1hg +c2hy) = 0.

det =0,

If algebra g(A) itself is non-affine then by Lemma 3 c1hg + c2h, € Z(9)
and again there exists y € Ai}rn N —CV such that g has the full support amd
p(cihg + cahy) # 0. If 6 is a null-root of g, then p + kd € A for all k > 0.
Now the algebra < xr,ci1hg + cah.,y > is isomorphic to the Heisenberg algebra
and the module @ @, satisfies the conditions of Lemma 2, which leads again
to a contradictiog.e

Finally, suppose that both g, and g(A) are affine. As a;jaj; > 4 for all 4, j
we have that g(A) should have rank 2. In this case the required statement may be
obtained by direct computation.

Lemma 5. Let a; be a fundamental root and let the root string through a

real root 81 along «a; contains four real roots 1 < Ba < B3 < B4; P2 — f1 =
n
Bas— Ps = ;03 — P2 = nay. If £ = Y 2p,14a, # 0 then x is not locally

7=0
nilpotent.

Proof. Roots ta;, £0; generate a rank 2 subsystem A; in A(A).

Consider y = c1y_p, + c2y_g, + c3Y_p; + cay_p,. Then
[z,y] = [$ﬂ2 ) y—ﬂ1] +c2 [.T:g2 ) y—ﬂ2] +co [-T,B2+al- ) y—ﬂ2]+

+cs3 ['Tﬁs—aw y—ﬁs] +c3 [-T,Bg,, y—ﬂs] + C4[.’E53 ’ y—ﬂ4]'
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If Aq is of indefinite type (resp. affine type) then there exist constants ¢y and
c3 such that h = ca[zg,, y—p,] + c3]s,, Y—p, | satisfies Ba(h) = B3(h) = 2 (resp.
Pa(h) = B3(h) =0 ).

Choose now constants c; and c4 satisfying
c1lTp,, Y—pi] + C2[Tpstai: Y—p.] = 0,

C3[$,33_ai ) y—ﬁs] + 64[3733; y—ﬂ4] = 0.

If A, is of indefinite type then < x,y, h >= sly and applying Lemma 1 to the

module @ ( ®  Op, 1ma,) We get that z is not locally nilpotent.

ke me .
If A1 is of affine type and A(A) is non-affine then again choose y € A™N—-CV

with full support and satisfying u(h) # 0. Now applying Lemma 2 to the module

® (& 9 +kB +ma;) WE get the required statement.

kEZ me

If, finally, both Ay and A(A) are affine then A, is of type AgZ) and A(A) is
of type Agﬂ) . In this case the statement of the lemma may be obtained by direct
computation.

Now we have all requisites to prove the theorem if the field [F is uncountable
and algebraically closed. The idea could be the following: over an uncountable field
every finite-dimensional abelian Cartan subalgebra [) contains a regular element z,
such that Cg (r) = b, then applying the procedure of “ stripping off edges ” [PK]
to S(x) we construct an automorphism g € G(A) such that g(z) € f, , hence
g(h) = b,. However, to be able to prove the theorem over an arbitrary field of
characteristic 0 a little more work needs to be done.

Let V' be a finite-dimensional slo-module with the set of weights P and the

highest weight p. Let v € V,v = ) v, # 0. Consider a convex closure S(v) of the
yEP

support of v in P, so S(v) is a segment or a point. Let IF be an algebraic closure
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of Fand let V =V O IF. Consider non-zero vectors in V with the following

property:

For every g € SLy(IF) vertices of S(gv) belong to the set {£u}. (%)

Lemma 6. Let V be a finite-dimensional < ey, ha, fa >= sla-module
over the field I with the highest weight u, 21 = na,n > 2, dimV,, = 1. Let v be
a non-zero vector in'V , satisfying the property (*). Then
(i). There ezists go € SLy(IF) such that gov € V_,,.

(ii). If for vector w € V. w + cv satisfies (*) for all c € F then gow € V_,,.

Proof. (i) If p is not a vertex of S(v) then —p is the only vertex, hence
v € V_,, and there is nothing to prove.

If 1 is a vertex of S(v) , take a highest weight vector ug and construct a basis

for the irreducible submodule U generated by V,:

(adfq)"

AT

Since V is completely reducible, there exists a canonical projection 7 : V +— U.
n

Let 7(v) = ) agug, ap # 0. Note that for every w € V, 7(w)1, = wi,.
k=0
Consider an automorphism F'(\) applied to 7(v) :

(PO () = 3 Chax™*.
k=0

As ag # 0 , there exists Ao € IF such that (F(Xo)T(v))—p = 0 . Consequently,
(F(Xo)v) € V,, and 7(v) = v. Note that (F(Ao)v)u—a = a1 + Aoag = 0, hence Ag
in fact belongs to IF.

Finally, 0o F(Ao)v € V_,, as was to be proven.
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(ii). Now we may assume that v € V_,. Asin (i) we can prove that w € U, w =

n
> brug. As the vertices of S(cv + w) belong to {£p} then w = boug + bty
k=0

However, F'(1)v = v and F(1)w = by Y ux +bpuy , hence bp =0 and w € V_,,.

k=0
Consider now non-zero vectors in slo-module V' with the following property:

For every g € SLy(IF) vertices of S(gv) belong to the set

{£p, +(p — @)}, but S(gv) is not a segment [av — p,  — ). (%)

The following lemma is an analogue of Lemma 6 adjusted for the situation of
four real roots in a root string.

Lemma 7. Let V be a finite-dimensional < ey, hq, fo >= sla-module over
the field I with the highest weight p,2pu = na,n > 3, dimV, = dimV,,_, = 1.
Let v be a non-zero vector in'V , satisfying property (**). Then
(i). There ezists go € SL2(IF) such that gov € V_,, ® V_,11q.
(ii). If for vector w € V. w + cv satisfies property (**) for all ¢ € IF then
gow € V_, ®V_,1q.

Proof. (i) Let T(v) = i arug. Ifap=a; =0thenv e V_, & V_,4,.

If ap = 0,a1 # 0 tflgl(i as in Lemma 6 there exists A\g € [ such that
(F'(Mo)v)—p = 0 and hence F(Ao)v € V,_q , 50 0o F (Ao)v € Vo_,,.

If ap # O then there exists Ao € I such that (F(Xo)v)—p = 0. If
(F(X0)v)—pt+a = 0 then F(Ag)v € V, ®V,_4 and 0o F (Ao)v € V_,, ® V..

If (F(Xo)v)—pta 7 0 then there exists €y € IF such that (E(e0)F(Xo)v), = 0.
Hence E(€0)F(Ao)v € V-

We proved that there exists g1 € SLo (F) such that g1v € V_M & Va_u , let

us prove now that the required element can be found in SLo(IF) .
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Using the Bruhat decomposition for S'Lgy (F) we get that g; ! may be written
in the form o F(k)H(n) or in the form E(X)F(x)H(n) for some A, s, 7 € IF.

Note that F(k)H(n)g1(v) € V_, & Vo

If g7 " = 0o F(k)H(n) then o, v € V_, ® V.

If 7' = E(NF(k)H(n) then v = g7 'g1v = E(\)(aun_1 + buy,) , where
aty_1 + bup, = F(k)H(n)g1(v), a,b e F.

To prove that A, a,b € IF let us compute several components of v : Vo, =

(E(A\)(atn—1+ buy))—, = buy, , hence b € [F as v € V. Also,
V_pta = (@ + Ab)up_1,

V_praa = (2Aa + A2b)uy o,
v = (3\2 3
—p+3a = ( a+ A b)un_g.

Consequently, c; = a + Ab;ca = A(2a + Ab);c3 = A?(3a + \b) € IF.
Clearly, we may assume that b # 0.
We get:
A(2¢1 — Ab) = ¢z, A%(3c; —2)b) = c3

and

A2y = 2Xey — cs.

Ife; =0then A= 52 € P ora=0,A\b=0.1fc; # O then \? = 22 )& —
—%" — ¢ , hence a, A € IF. Consequently, E(—A)v € V_, ® Vo, A € F | as
was to be proven.

The proof of part (ii) is analogous to the proof of (ii) of the previous lemma.

Proof of the Theorem 1. 1t is sufficient to prove that every finite-dimensional

abelian subalgebra b acting on g(A) semisimply can be conjugated into f,. This
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will imply that every Cartan subalgebra in g(A) is finite-dimensional and hence is
conjugated with b,

The arguments from [PK] show that it is enough to prove that f) can be
conjugated into b_ .

Since f is finite-dimensional, supp(f)) is finite and there exists x € [) such
that supp(z) = supp()). As z is locally finite then by Proposition 2 all non-zero
vertices of S(x) are real roots.

Consider a natural partial ordering on 7' > A. Let us prove that S(x) has a
unique maximal vertex with respect to this partial ordering.

Indeed, let @ be a maximal vertex of S(z). By Proposition 3 all edges going
out of v are parallel to some roots, but A = Ay U{0}UA_, Ay C Zli. As ais
maximal then no edges from « go in a positive direction, hence all edges from a go
in a negative direction. This implies that « is the unique maximal vertex as S(x)
is convex.

Applying the procedure of “stripping off edges” we shall show that we can
always lower the maximal positive vertex a of supp(f)) .

Let 0; be a fundamental reflection such that o;(a) < a. The root string I'
through « along «; in A contains either 2 or 4 real roots. Due to Proposition 2 and
Lemma 5, x satisfies the conditions of Lemma 6 or Lemma 7. By these lemmas
there exists go € SLa(IF); such that supp(go(z)) has a maximal vertex in I" which
is lower than . Moreower , by Lemmas 6,7 (ii) the maximal vertex of supp(go(h))
is strictly less than a.

Continuing the process of lowering the maximal vertex of supp(f)) we shall

eventually construct g € G(A) such that g(f)) C b_ | as was to be proven.

18



References
[HMR]. J. Hurrelbrink, J. Morita and U. Rehmann, On the homological g of Kac-
Moody groups over fields, Cont. Math., 126(1992) 71-77.
[K]. V.G. Kagc, Infinite-dimensional Lie algebras, Birkhauser, Boston, 1983.
[MP]. R. V. Moody and A. Pianzola, Lie algebras with triangular decomposition,
to appear.
[PK]. D. H. Peterson and V. G. Kac, Infinite dimensional flag varieties and conju-

gacy theorems, Proc. Nat. Acad. Sci. U. S. A.,80 (1983)1778-1782.

19



