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ABSTRACT. As Lie algebra, we add the center c1 (and the outer derivation d1) to the

quantum torus Cq to give the extended torus Lie algebra Ĉq (and C̃q respectively). Before

the present paper, only some level 1 vertex operator representations for some Ĉq (and C̃q)

were constructed. In this paper, we first give vertex operator representations for glI×∞(C)

where I is an arbitrary index set. By embedding some Ĉq into glI×∞(C), we obtain a series

of higher level vertex operator representations for Ĉq and C̃q. Most of these vertex operator

representations yield irreducible highest weight modules over these C̃q. Also their character

formulas follow directly.

§1. Introduction

Let q = (qi,j)
n
i,j=0 be an (n+1)× (n+1) matrix over the complex number field C satisfying

qi,i = 1, qi,j = q−1
j,i , (1.1)

where n is a positive integer. The q-quantum torus Cq which was studied in [MP] is the unital

associative algebra over C generated by t±1
0 , ..., t±1

n and subject to the defining relations

titj = qi,jtjti. (1.2)
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NSF of China.
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For any a ∈ ZZn+1, we always write a = (a0, ..., an), and denote ta = ta0
0 ...tan

n . For any

a, b ∈ ZZn+1, we define the functions σ(a, b) and f(a, b) by

tatb = σ(a, b)ta+b, tatb = f(a, b)tbta. (1.3)

We also define |α| = α0 + α1 + ... + αn. Then

σ(a, b) =
∏

0≤i<j≤n

q
ajbi

j,i , f(a, b) =
n∏

i,j=0

q
ajbi

j,i , (1.4)

and f(a, b) = σ(a, b)σ(b, a)−1. We define radf = {a ∈ ZZn|f(a, ZZn) = 1} and the Kronecker

delta

δ
α,radf

=
{

1, if α ∈ radf
0, otherwise.

For properties of Cq, f, σ, please refer to [BGK] or [Z].

In most part of this paper we assume that

qi,j = 1, ∀ 1 ≤ i, j ≤ n. (1.5)

Note that (1.5) implies σ(α, ZZn+1) = 1 for all α ∈ radf . Under this assumption we have the

1-dimensional central extension Ĉq = Cq ⊕ Cc of Cq with

[tα, tβ] = tαtβ − tβtα + δα0,−β0δα+β,radf
σ(α, β)α0c, ∀ α, β ∈ ZZn+1. (1.6)

We extend Ĉq by a derivation d0 with

[d0, t
α] = α0t

α, ∀ α ∈ ZZn+1

to give the Lie algebra C̃q = Ĉq ⊕ Cd0. For any nonnegative integer m, and l ∈ {1, 2, ..., n},

we modify (1.6) into

[tα, tβ] = tαtβ − tβtα + δα0,−β0δα+β,radf
δ−β̄l,ᾱl

σ(α, β)α0c, ∀ α, β ∈ ZZn+1, (1.6′)

where β̄l, ᾱl ∈ ZZm, to get Lie algebras Ĉ
(l)

q (m) and C̃
(l)

q (m) correspondingly. In some cases,

C̃
(l)

q (m) ' C̃
(l)

q (m′) for some different m and m′. For example, if n = 1 and qk
1,0 6= 1 for all

k ∈ IN , then C̃
(1)

q (m) ' C̃q for all m ∈ ZZ+. We know that Ĉq, C̃q, C̃
(l)

q (m) have a ZZ-gradation

with respect to d0:

C̃q = C̃
(l)

q (m) = ⊕
k∈ZZLk, (1.7)
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where Lk = ⊕
α∈ZZnCtk0t

α1
1 ...tαn

n ⊕ δk,0(⊕Cc⊕Cd0). For a ZZ-graded module V = ⊕
i∈ZZVk, its

character is defined as

chV =
∑

k∈ZZ
(dim Vk)x

−k. (1.8)

In [BGT, BS, G1, G2, GL], level 1 vertex operator representations of the Lie algebras C̃q

were constructed, where they assumed qα = qα1
1,0...q

αn
n,0 6= 1 if α 6= 0. In this paper, we give not

only higher level vertex operator representations of these Lie algebras C̃q (Theorems 2.2, 3.4),

but also construct higher level vertex operator representations of the Lie algebras C̃q with

q1,2 being root of unity and all other qi,j being 1 for i, j ∈ 1, 2, ..., n (Theorems 4.1 and 4.5).

Most of these vertex operator representations constructed are irreducible (Theorems 2.2, 3.6,

4.4, 4.6). The character formulas of these representations follow easily. All irreducible vertex

operator representations constructed in this paper are highest weight modules (Theorem 5.1),

thus the isomorphisms between these modules are clear.

§2. Principal vertex operator representations for C̃q

In this section we shall embed some Ĉq in gl∞(C) to give principal vertex operator rep-

resentations for Ĉq and C̃q. Let us first recall a vertex operator representation theorem from

[DJKM]. Let

Ā∞ = {(ai,j)i,j∈ZZ | ai,j ∈ C, and ai,j = 0 if |i − j| � 0}

be the infinite matrix Lie algebra. We use Ei,j to denote the matrix unit, i.e., the matrix with

1 in (i,j)-entry, and 0 elsewhere. Let A∞ = Ā∞ + Cc be the 1-dimensional central extension

with

[X, Y ] = XY − Y X + φ(X, Y )c, ∀ X, Y ∈ Ā∞

where the 2-cocycle φ is given by

φ(Ei,j, Ek,l) =





δi,lδj,k, if i ≤ 0, j ≥ 1
−δi,lδj,k, if j ≤ 0, i ≥ 1,
0, otherwise.

Theorem 2.1 [DJMK] For any m ∈ ZZ, the Lie algebra A∞ has an irreducible vertex

operator representation Rm on the Fock space B = C[x1, x2, x3, ...] so that

Rm(
∑

i,j∈ZZ
uiv−jEi,j)
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=
1

1 − v/u


(u/v)m exp

( ∑

j∈IN
(uj − vj)xj

)
exp

(
−

∑

j∈IN

(u−j − v−j)

j

∂

∂xj

)
− 1


 , (2.1)

Rm(c) = 1, Rm(
∑

j∈ZZ
Ej,i+j) =





∂
∂xi

, if i > 0,
−ix−i, if i < 0,
m, if i = 0,

where IN is the set of natural numbers.

Part of the following theorem (qα = qα1
1,0...q

αn
n,0 6= 1 if α 6= 0) was proved in [G1] and [GL].

The proof here is slightly different from that in [GL].

Theorem 2.2([GL]) Suppose q = (qi,j)
n
i,j=0 satisfies (1.1) and (1.5). Then Ĉq has an irre-

ducible vertex operator representation Rm for any m ∈ ZZ on the Fock space B =

C[x1, x2, x3, ...] so that for any α = (α1, ..., αn) ∈ ZZn, we have

Rm(
∑

j∈ZZ
tj0t

αz−j) =
q−mα

1 − qα
exp

( ∑

j∈IN
(1−qjα)xjz

j
)

exp
(
−

∑

j∈IN

1 − q−jα

j

∂

∂xj
z−j

)
, if qα 6= 1,

(2.2)

Rm(c) = 1, Rm(ti0t
α) =





∂
∂xi

, if i > 0, qα = 1,
−ix−i, if i < 0, qα = 1,
m, if i = 0, qα = 1,

where tα = tα1
1 ...tαn

n , qα = qα1
1,0...q

αn
n,0. In (2.2) q−mα can be replaced by any multiplicative

function γ(α) ∈ C∗. If we define

Rm(d0)(x
k1
1 ...xkl

l ) = −(k1 + 2k2 + ... + lkl)(x
k1
1 ...xkl

l ),

then B becomes a C̃q-module with character formula

ch(B) =
1

ϕ(x−1)
=

1
∏

i∈IN (1 − x−i)
. (2.3)

Proof. It is straightforward to verify that the following linear map is a Lie algebra homo-

morphism:

η : Ĉq → A∞,

ti0t
α →

∑

j∈ZZ
q−jαEj−i,j + δi,0(1 − δqα,1)

c

1 − qα
, ∀ (i, α) ∈ ZZn+1, (2.4)

c → c.
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Since Rm is a product of R0 and a Lie automorphism, it suffices to show the theorem for only

R0. Letting u = z, v = qαz in (2.1) we deduce that (for qα 6= 0 and R0)

1

1 − qα
exp

( ∑

j∈IN
(1 − qjα)xjz

j
)

exp
(
−

∑

j∈IN

(1 − q−jα)

j

∂

∂xj
z−j

)

= R0(
∑

i,j∈ZZ
q−jαzi−jEi,j) +

1

1 − qα
= R0(

∑

l,j∈ZZ
q−jαz−lEj−l,j) +

1

1 − qα

= R0(
∑

l∈ZZ
(

∑

j∈ZZ
q−jαEj−l,j + δl,0

c

1 − qα
)z−l)

= R0(
∑

l∈ZZ
η(tl0t

α)z−l).

The other parts of the theorem are quite clear.

Remark 2.3. The embedding (2.4) without center can be regarded as the following string

representation of Cq on C∞ = ⊕
i∈ZZCvi given by

(tk0t
α)vi = q−iαvi−k, ∀ i, k ∈ ZZ, α ∈ ZZn.

When Gq = ZZn ⊕ ZZm, Theorem 2.2 is one of the main theorems in [G1], although they

are slightly different in appearance.

Remark 2.4. If n=1 and q1,0 is a root of unity of order r, then representation R0 is the

level 1 representation of the affine Lie algebra ĝlr.

§3. Homogeneous vertex operator representations for Ĉq and C̃q

In this section we shall first construct a vertex operator representation for glI×∞(C) where

I is an index set, then embed Ĉq in glI×∞(C) to give a series of higher level vertex operator

representations for Ĉq and C̃q satisfying (1.5).

Let

ĀI×∞ = {(ak,l
i,j ) | i, j ∈ I, k, l ∈ ZZ, ak,l

i,j ∈ C, and ak,l
i,j = 0

if |k − l| � 0, and for fixed (k, l) ak,l
i,j 6= 0 only for finitely many (i, j)}

be the infinite matrix Lie algebra. Note that we allow I to be an infinite set. We use Ek,l
i,j

to denote the matrix unit, i.e., the matrix with 1 in (k,l)-(i,j)-entry, and 0 elsewhere. The

products are given by

Ek,l
i,j E

k′,l′

i′,j′ = δj,i′δl,k′Ek,l′

i,j′ ,
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[Ek,l
i,j , E

k′,l′

i′,j′ ] = δj,i′δl,k′Ek,l′

i,j′ − δj′,iδl′,kE
k′,l
i′,j .

Let AI×∞ = ĀI×∞ + Cc be the 1-dimensional central extension with

[X, Y ] = XY − Y X + φ(X, Y )c, (3.1)

where the 2-cocycle φ is given by

φ(Ek,l
i,j , E

k′,l′

i′,j′ ) =





δi,j′δl′,kδi′,jδl,k′, if k ≤ 0, l ≥ 1
−δi,j′δl′,kδi′,jδl,k′, if l ≤ 0, k ≥ 1,
0, otherwise.

(3.2)

Let PI = ⊕i∈IZZεi be a free abelian additive group with a symmetric ZZ-bilinear form (·|·)

defined by (εi|εj) = δi,j for all i, j ∈ I. Let

QI = ⊕i,j∈IZZ(εi − εj) (3.3)

be a subgroup of PI . We see that

(α|β) ∈ 2ZZ, ∀ α, β ∈ QI . (3.4)

Let ε : QI × QI → {±1} be a bimultiplicative function in the sense that

ε(α + β, γ) = ε(α, γ)ε(β, γ), ε(α, β + γ) = ε(α, β)ε(α, γ) (3.5)

for all α, β, γ ∈ QI , and with the property

ε(α, α) = (−1)(α|α)/2, ∀ α ∈ QI . (3.6)

It follows from (3.6) that

ε(α, β)ε(β, α) = (−1)(α|β), ∀ α, β ∈ QI . (3.7)

Set HI = PI ⊗ZZ C, and extend the ZZ-bilinear form (·|·) to get a symmetric C-bilinear form

(·|·) on HI . Let ĤI = HI ⊗ C[t, t−1] ⊕ Cc ⊕ Cd0 be the Heisenberg Lie algebra with

[α(m), β(n)] = δm,−nm(α, β)c, ∀ α, β ∈ HI , m, n ∈ ZZ, (3.8)

[d0, c] = 0, [d0, α(m)] = mα(m), ∀ α ∈ HI , m ∈ ZZ,

where α(n) = α⊗ tn. Let Ĥ+
I =

∑
i>0 HI ⊗ ti, Ĥ−

I =
∑

i<0 HI ⊗ ti, then we have a subalgebra

HI = Ĥ+
I ⊕ Ĥ−

I ⊕ Cc ⊕ Cd0. (3.9)
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Let

S(Ĥ−
I ) = C[εi(−n)|i ∈ I, n ∈ IN ]. (3.10)

Define the degree deg(εi1(−n1)εi2(−n2)...εir(−nr)) to be

deg(εi1(−n1)εi2(−n2)...εir(−nr)) = −(n1 + n2 + ... + nr).

Then HI has the natural representation on S(Ĥ−
I ) in the sense that εi(n) acts as multiplication

operator for n < 0, εi(n) acts as differential operator n∂
∂εi(−n)

for n > 0, while c acts as the

identity, and d0 acts as the degree operator.

Let
C[QI ] = ⊕α∈QI

Ceα (3.11)

be the group algebra of QI . For any β ∈ QI , define eβ ∈ EndC[QI ] by

eβeα = ε(β, α)eα+β, ∀ α ∈ QI . (3.12)

We see that
eαeβ = ε(α, β)eα+β, ∀ α, β ∈ QI . (3.13)

For any β ∈ H , define β(0) ∈ EndC[QI ] by

β(0)eα = (β|α)eα, ∀ α ∈ QI . (3.14)

It is clear that
[β(0), eα] = (β|α)eα, ∀ α ∈ QI . (3.15)

We define

d0e
α = −

(α|α)

2
eα, ∀ α ∈ QI . (3.16)

Then

[d0, eα] = eα(−α(0) −
(α|α)

2
), ∀ α ∈ QI . (3.17)

Set

VQI
= S(H−

I ) ⊗C C[QI ], (3.18)

be the Fock space. We embed EndS(H−
I ) and EndC[QI ] (respectively (EndS(H−

I ))[[z]] and

(EndC[QI ])[[z]]) canonically into EndVQI
(respectively (EndVQI

)[[z]]), for instance,

β(l) =
{

β(l) ⊗ 1, if l 6= 0,
1 ⊗ β(l), if l = 0

, ∀ β ∈ HI .

We define the action of d0 on VQI
by

d0 = d0 ⊗ 1 + 1 ⊗ d0. (3.19)
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Recall that zα ∈ EndC[QI ])[[z]] is given by

zαeβ = z(α|β)eβ, ∀ α, β ∈ QI . (3.20)

Thus we have

[α(0), zβ] = 0, zαeβ = eβzα+(α|β), ∀ α, β ∈ QI . (3.21)

Similarly, for any nonzero complex number a, we have the evaluation aα of zα so that aα ∈

End(C[QI ]).

Now we modify AI×∞ to give the Lie algebra AI×∞(ε) as follows. As vector spaces,

AI×∞ = AI×∞(ε). But the Lie bracket is given by

[Ėk,l
i,j , Ė

k′,l′

i′,j′ ] = ε(εi − εj , εi′ − εj′)δj,i′δl,k′Ėk,l′

i,j′ − ε(εi′ − εj′, εi − εj)δj′,iδl′,kĖ
k′,l
i′,j

+ε(εi − εj , εi′ − εj′)φ(Ek,l
i,j , E

k′,l′

i′,j′ )c, ∀ , i, j, i′, j′ ∈ I, k, l, k′, l′ ∈ ZZ. (3.22)

Here we used Ėk,l
i,j (which is viewed as matrix unit in AI×∞(ε)) to distinguish the matrix unit

with the ordinary one Ek,l
i,j which is viewed as matrix unit in AI×∞). We know that the Lie

algebras AI×∞ and AI×∞(ε) are isomorphic.

The following theorem is inspired by Theorem 2.1, [Theorem 1.2, TV], and the results in

[F].

Theorem 3.1 The Lie algebra AI×∞(ε) has an irreducible vertex operator representation

Rm for any m ∈ ZZ on the Fock space VQI
given by

Rm(
∑

k,l∈ZZ
Ėk,l

i,j z
k
1z

−l
2 ) = −

δi,j

(1 − z2/z1)
+ eεi−εj

z
εi+1+m−δi,j

1 z
−εj−m
2 (1 − z2/z1)

−δi,j ·

· exp
(
−

∑

p∈−IN

z−p
1 εi(p) − z−p

2 εj(p)

p

)
exp

(
−

∑

p∈IN

z−p
1 εi(p) − z−p

2 εj(p)

p

)
, ∀ i, j ∈ I, (3.23)

Rm(c) = 1, Rm(
∑

k∈ZZ
Ėk,k+l

i,i ) = εi(l), ∀ l ∈ ZZ.

Proof. Since the proof of this theorem is quite standard (although onerous), instead of

giving the detailed proof we shall only sketch the proof.

We can verify (via a lot of computations) that

[Rm(
∑

k,l∈ZZ
Ėk,l

i,j z
k
1z−l

2 ), Rm(
∑

k,l∈ZZ
Ėk,l

j,j′z
k
3z−l

4 )] = Rm([
∑

k,l∈ZZ
Ėk,l

i,j z
k
1z

−l
2 ,

∑

k,l∈ZZ
Ėk,l

j,j′z
k
3z

−l
4 ]),
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for all cases: (1) i 6= j 6= j′ 6= i, (2) i 6= j = j′, (3) j′ = i 6= j, (4) i = j = j′ separately by

using formula (3.37). So the first and the second formulas in (3.23) follow. The third formulas

in (3.23) with l 6= 0 are clear from Theorem 2.1. The third formulas in (3.23) with l = 0

follow from the facts that [Rm(
∑

k∈ZZ Ėk,k
i,i ), Rm(

∑
k∈ZZ Ėk,k+l

i,i )] = 0 for all l ∈ ZZ, and

[Rm(
∑

k∈ZZ
Ėk,k

i,i ), Rm(
∑

k,l∈ZZ
Ėk,l

i′,j′z
k
1z

−l
2 )] = (δi,i′ − δi,j′)Rm(

∑

k,l∈ZZ
Ėk,l

i′,j′z
k
1z−l

2 )].

The irreducibility follows from the last equation of (3.23) and the action of eεi−εj
.

Theorem 3.2 Suppose q satisfies

qi,0 = q−1
0,i , q0,0 = qi,j = qj,i = 1, ∀ i, j ∈ {1, 2, ..., n}. (3.24)

Let ĝlm(Cq, ε) = glm(Cq) ⊕ Cc be the 1-dimensional central extension with

[Ėi,j(t
α), Ėi′,j′(t

β)] = δj,i′ε(εi − εj , εi′ − εj′)Ėi,j′(t
αtβ) − δj′,iε(εi′ − εj′, εi − εj)Ėi′,j(t

βtα)

−ε(εi − εj , εi′ − εj′)δj,i′δj′,iδα0+β0,0δq−β ,qασ(α, β)α0c, ∀ α, β ∈ Zn+1, i, j, i′, j′ ∈ I.

Then ĝlm(Cq, ε) has an irreducible vertex operator representation R on the Fock space VQI

with I = {1, 2, ..., m} so that for any α = (α1, ..., αn) ∈ ZZn, any i 6= j ∈ I, we have

R(
∑

p∈ZZ
Ėi,j(t

p
0t

α)z−p) = eεi−εj
zεi−εj+1−δi,j (qα)−εj(1 − qα)−δi,j ·

· exp
(
−

∑

p∈−IN

(εi(p) − q−pαεj(p))

p
z−p

)
exp

(
−

∑

p∈IN

(εi(p) − q−pαεj(p))

p
z−p

)
, if qα 6= 1,

(3.25)

R(c) = 1, R(Ėi,i(t
l
0t

α)) = εi(l), if qα = 1.

If we extend ĝlm(Cq, ε) by d0 to get the Lie algebra g̃lm(Cq, ε) with

[d0, Ėi,j(t
α)] = α0Ėi,j(t

α), ∀ α ∈ ZZn+1,

then VQI
is a module over g̃l(Cq) via (3.19), and

chVQI
= (

∑

α∈QI

x−(α|α)/2)φ(x−1)−m. (3.26)
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Proof. It is straightforward to verify that the following linear map is a Lie algebra homo-

morphism:

τ : ĝlm(Cq, ε) → AI×∞(ε),

Ėi,j(t
k
0t

α) →
∑

p∈ZZ
q−pαĖp−k,p

i,j +
δk,0δi,j(1 − δ1,qα)c

1 − qα
, ∀ (k, α) ∈ ZZn+1, i, j ∈ I (3.27)

c → c.

Letting z1 = z, z2 = qαz in (2.23) we deduce that (for qα 6= 1 and R0)

eεi−εj
zεi−εj+1−δi,j (qα)−εj(1 − qα)−δi,j ·

· exp
(
−

∑

p∈−IN

(εi(p) − q−pαεj(p))

p
z−p

)
exp

(
−

∑

p∈IN

(εi(p) − q−pαεj(p))

p
z−p

)

= R0(
∑

k,l∈ZZ
q−lαzk−lĖk,l

i,j ) +
δi,j

1 − qα

= R0(
∑

l,k∈ZZ
q−lαz−kĖl−k,l

i,j ) +
δi,j

1 − qα

= R0((
∑

k∈ZZ
(

∑

l∈ZZ
q−lαĖl−k,l

i,j ) + δk,0
δi,jc

1 − qα
)z−k)

= R0(
∑

k∈ZZ
τ(Ėi,j(t

k
0t

α)z−k)).

The other formulas of (3.25) are quite clear. To see that VQI
is a module over g̃l(Cq), we need

to show that

[R(d0), R(
∑

p∈ZZ
Ėi,j(t

p
0t

α)z−p)] = R(
∑

p∈ZZ
Ėi,j(t

p
0t

α)pz−p) = −
z∂

∂z
R(

∑

p∈ZZ
Ėi,j(t

p
0t

α)z−p),

which can be verified by using (3.17) and (the action on C[QI ])

z
∂

∂z
zα = α(0)zα, ∀ α ∈ QI .

Other parts of the theorem follows easily. Thus we complete the proof of this theorem.

Remark 3.3. The embedding (3.27) without center is inspired by the following string

representation of glm(Cq) on Cm×∞ = ⊕
i∈ZZm

, j∈ZZCvi,j given by

(Ek,l(t
p
0t

α))vi,j = δi,lq
−jαvk,j−p.
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When Gq = ZZ2 or ZZ3, I is finite, and qi
1,0q

j
2,0 6= 1 for (i, j) 6= (0, 0), Theorem 3.2 is one of

the main theorems in [G2], although they are slightly different in appearance.

Theorem 3.4 Let q satisfy (3.24). For any positive integer m, let ωm be the primitive

root of unity of order m, I = ZZ/mZZ = {1, 2, ..., m}. Then Ĉ
(1)

q (m) has a vertex operator

representation Rm on the Fock space S(Ĥ−
I ) so that for any α = (α1, ..., αn) ∈ ZZn, we have

Rm(
∑

p∈ZZ
(tp0t

α)z−p) =
m∑

j=1

ω−jα1
m

(1 − qα)
· exp

(
−

∑

p∈−IN

(1 − q−pα)εj(p)

p
z−p

)
·

· exp
(
−

∑

p∈IN

(1 − q−pα)εj(p)

p
z−p

)
, if qα 6= 1, (3.28)

Rm(c) = m, Rm(tl0t
α) =

m∑

j=1

ω−jα1
m εj(l), if qα = 1.

Proof. It is straightforward to verify that the following linear map is a Lie algebra homo-

morphism:

τ : Ĉ
(1)

q (m) → AI×∞(ε),

ti0t
α →

m∑

j=1

ω−jα1
m

∑

k∈ZZ
q−kαĖk−i,k

j,j +
δi,0δα1,0(1 − δqα,1)mc

1 − qα
, (3.29)

c → mc,

where α1 ∈ ZZm. If qα 6= 1, using R0 in Theorem 3.1 we deduce that

Rm(
∑

k∈ZZ
(tk0t

α)z−k) := R0(
∑

k∈ZZ
τ(tk0t

α)z−k)

=
∑

k∈ZZ
z−kR0




m∑

j=1

ω−jα1
m

∑

p∈ZZ
q−pαĖp−k,p

j,j +
δk,0δα1,0mc

1 − qα




=
m∑

j=1

ω−jα1
m

∑

k∈ZZ
z−k


R0(

∑

p∈ZZ
q−pαĖp−k,p

j,j ) +
δk,0

1 − qα




(letting z1 = z, z2 = qαz in (3.23) with i = j, acting on S(Ĥ−
I ) ⊗ 1)

=
m∑

j=1

ω−jα1
m

(1 − qα)
· exp

(
−

∑

p∈−IN

(1 − q−pα)εj(p)

p
z−p

)
exp

(
−

∑

p∈IN

(1 − q−pα)εj(p)

p
z−p

)
.
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The other parts of the theorem are quite clear.

The following Lemma is very useful to further study on the structure of the module in

Theorem 3.4.

Lemma 3.5. Let ωm be given as in Theorem 3.4, q1,0, ..., qn,0 be nonzero numbers, W ⊂ V

be vector spaces. Suppose the set {qα = qα1
1,0...q

αn
n,0|α ∈ ZZn} is infinite. Let fj(q

α) =
∑

i q
iαv

(j)
i ∈

V for all j = 1, 2..., m, α ∈ ZZn. If
∑m

j=1 ωjα1
m fj(q

α) ∈ W for all α ∈ ZZn, then fj(q
α) ∈ W

for all j and all α ∈ ZZn.

Proof. We know that

∑

i

qiα
m∑

j=1

ωjα1
m v

(j)
i =

m∑

j=1

ωjα1
m fj(q

α) ∈ W, ∀ α ∈ ZZn. (3.30)

By letting α1 = km + i0 where i0 = 0, 1, ..., m − 1 and k ∈ ZZ, and changing other αi ∈ ZZ in

(3.30), we obtain that

∑

i

qiα
m∑

j=1

ωji0
m v

(j)
i ∈ W, ∀ α ∈ ZZn with α1 = km + i0.

From the hypothesis we know that the set {qα = qα1
1,0...q

αn
n,0|α ∈ ZZn with a1 = i0 mod m} is

infinite. We deduce that

m∑

j=1

ωji0
m v

(j)
i ∈ W, ∀ i0 ∈ {0, 1, ..., m− 1}, i ∈ ZZ.

It follows that v
(j)
i ∈ W, ∀ i, j ∈ ZZ. The lemma follows.

Theorem 3.6 S(Ĥ−
I ) in Theorem 3.4 is a C̃

(1)

q (m)-module. If, in addition to the assump-

tions in Theorem 3.4, we assume that the set {qα = qα1
1,0...q

αn
n,0|α ∈ ZZn} is infinite, or there

exists α ∈ ZZn such that (α1, m) = 1 and qα = 1, then C̃
(1)

q (m)-module S(Ĥ−
I ) is irreducible,

and

ch(S(Ĥ−
I )) = ϕ(x−1)−m. (3.31)

Proof. It is clear that S(Ĥ−
I ) is a C̃

(1)

q (m)-module. If there exists α ∈ ZZn such that

(α1, m) = 1 and qα = 1, from the third equation of (3.28) we see that

εj(l) ∈ Rm(C̃
(1)

q (m)), ∀ j ∈ I, l ∈ ZZ. (3.32)

12



Thus C̃
(1)

q (m)-module S(Ĥ−
I ) in Theorem 3.4 is irreducible. Next we suppose {qα|α ∈ ZZn} is

infinite. For qα 6= 1, let

fj(q
α, z) =

1

(1 − qα)
exp

(
−

∑

p∈−IN

(1 − q−pα)εj(p)

p
z−p

)
exp

(
−

∑

p∈IN

(1 − q−pα)εj(p)

p
z−p

)
.

For any v ∈ S(Ĥ−
I ), from (3.28) we know that

m∑

j=1

ω−jα1
m fj(q

α, z)v ∈ (Rm(C̃q
(1)

(m))v)[z, z−1], ∀ α ∈ ZZn with qα 6= 1. (3.33)

Using Lemma 3.5, we see that, for any j,

fj(q
α, z)v ∈ (Rm(C̃q

(1)
(m))v)[z, z−1], ∀ v ∈ S(Ĥ−

I ), α ∈ ZZn with qα 6= 1. (3.34)

It is clear that, for any j,

[fj(q
α, z1), fj(q

−α, z2)]v ∈ (Rm(U(C̃q
(1)

(m)))v)[z±1
1 , z±1

2 ],

∀ v ∈ S(Ĥ−
I ), α ∈ ZZn with qα 6= 1. (3.35)

By using the following well known formulas

f(z1, z2)Dδ(
z2

qαz1

) = f(z1, q
αz1)Dδ(

z2

qαz1

) − qαz1(
∂

∂z2

f(z1, z2))δ(
z2

qαz1

), (3.36)

f(z1, z2)δ(
z2

qαz1

) = f(z1, q
αz1)δ(

z2

qαz1

), (3.37)

where

δ(z) =
∑

p∈ZZ
zp, (Dδ)(z) =

∑

p∈ZZ
pzp, (3.38)

it is standard to show that, if qα 6= 1, then

[fj(q
α, z1), fj(q

−α, z2)] =
∑

p,p′∈ZZ
q−pα(q(p+p′)α − 1)εj(p + p′)z−p

1 z−p′

2 + (Dδ)(
z2

qαz1

).

Since {qα|α ∈ ZZn} is infinite, we see that for any i 6= 0, there exists α ∈ ZZn such that

qiα 6= 1. Thus

εj(p) ∈ Rm(U(C̃q

(1)
(m))), ∀ p ∈ ZZ \ {0}, j ∈ I.

The irreducibility of the module S(Ĥ−
I ) follows. The character formula (3.31) is clear.
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Remark 3.7. R1 in Theorem 3.4 is R0 in Theorem 2.2. If qk
1,0 6= 1 for all k ∈ IN , then the

conditions in Theorem 3.6 are satisfied. If the conditions in Theorem 3.6 are not satisfied, we

do not know when the C̃q

(1)
(m)-module S(Ĥ−

I ) is reducible except for some special cases. For

example, if n = 1, and q1,0 is a primitive root of unity of order m ≥ 2, we know that S(Ĥ−
I ) is

a highest weight module of level m over the affine algebra ĝlm with character formula (3.31)

which is the m-power of the character of level one highest weight module over ĝlm. Clearly

S(Ĥ−
I ) is a reducible module over ĝlm (also over C̃q

(1)
(m) = C̃q).
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§4. Vertex operator representations of quantum tori at root of unity

The quantum tori Cq studied in Theorems 2.2, 3.2, 3.4, 3.5 (also in [BGT, BS, G1, G2, GL])

have only t0 which does not commute with the remaining commuting variables. Next we shall

present vertex operator representations for quantum tori which have more non-commuting

variables.

From now on in this section, we fix I = ZZ/mZZ = {1, 2, ..., m} where m ∈ IN , and ε in

(3.5) so that

ε(εi − εi+1, εj − εj+1) =
{
−1, if j = i or i − 1,
1 otherwise,

(4.1)

where i = 1, 2, ..., m − 1. Let

η(εi − εj) =
{
−1, if j < i,
1 otherwise,

(4.2)

where i, j ∈ {1, 2, ..., m}. It is easy to see that

η(εi − εj)Ė
k,l
i,j η(εj − εj′)Ė

l,l′

j,j′ = η(εi − εj′)Ė
k,l′

i,j′ , (4.3)

η(εi − εj)eεi−εj
η(εj − εj′)eεj−εj′

= η(εi − εj′)eεi−εj′
.

Also from now on we fix q = (qi,j)
n
i,j=0 satisfying n > 1,





qi,j = q−1
j,i , qi,i = 1, ∀ i, j ∈ {0, 1, ..., n},

qi,j = 1, ∀ i, j ∈ {2, ..., n},
q1,i = 1, ∀ i ∈ {3, ..., n},
and q−1

1,2 = q2,1 = ωm is a primitive root of unity of order m.

(4.4)

For this q, generally, (1.6) and (1.6’) do not define Lie algebras. We have to modify them to

give Lie algebras. For this q and any nonnegative integer r we define Ĉ
(l)

q (r) and C̃
(l)

q (r) by

modifying (1.6’) into

[tα, tβ] = tαtβ − tβtα

+δα0,−β0δᾱ1,−β̄1
δᾱ2,−β̄2

δ
α+β,radf

δ−β̄l,ᾱl
σ(α, β)α0c, ∀ α, β ∈ ZZn+1, (4.5)

where β̄l, ᾱl ∈ ZZr, β̄1, ᾱ1, β̄2, ᾱ2 ∈ ZZm.

Theorem 4.1 Suppose q = (qi,j)
n
i,j=0 satisfies (4.4). Set I = ZZ/mZZ = {1, 2, ..., m}.

Then Ĉq = Ĉq
(1)

(0) has a vertex operator representation R on the Fock space VQI
so that for

any α = (α1, ..., αn) ∈ ZZn, we have

R(
∑

p∈ZZ
(tp0t

α)z−p) =
m∑

j=1

η(εj−α1 − εj)ω
−jα2
m

[
eεj−α1

−εj
zεj−α1

−εj+1−δᾱ1,0(qα)−εj(1 − qα)−δᾱ1,0 ·
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· exp
(
−

∑

p∈−IN

(εj−α1(p) − q−pαεj(p))

p
z−p

)
exp

(
−

∑

p∈IN

(εj−α1(p) − q−pαεj(p))

p
z−p

)]
,

if qα 6= 1 or ᾱ1 6= 0, (4.6)

R(c) = m, R(tl0t
α) =

m∑

j=1

ω−jα2
m εj(l), if qα = 1 and ᾱ1 = 0,

where ᾱ1 ∈ ZZm. Via (3.19), VQI
is a weight module over C̃q and

chVQI
= (

∑

α∈QI

x−(α|α)/2)φ(x−1)−m. (4.7)

Proof. It is straightforward to verify that the following linear map is a Lie algebra homo-

morphism:

τ : Ĉq → AI×∞(ε),

ti0t
α →

m∑

j=1

ω−jα2
m η(εj−α1 − εj)

∑

k∈ZZ
q−kαĖk−i,k

j−α1,j +
δi,0δα1,0δα2,0(1 − δqα,1)mc

1 − qα
, (4.8)

c → mc.

If qα 6= 1, using R0 in Theorem 3.1 we deduce that

R(
∑

k∈ZZ
(tk0t

α)z−k) := R0(
∑

k∈ZZ
τ(tk0t

α)z−k)

=
∑

k∈ZZ
z−kR0




m∑

j=1

ω−jα2
m η(εj−α1 − εj)

∑

p∈ZZ
q−pαĖp−k,p

j−α1,j +
δk,0δα1,0δα2,0mc

1 − qα




=
∑

k∈ZZ
z−k

m∑

j=1

ω−jα2
m η(εj−α1 − εj)


R0(

∑

p∈ZZ
(q−pαĖp−k,p

j−α1,j) +
δk,0δα1,0c

1 − qα
)




(letting z1 = z, z2 = qαz in (3.23) for R0)

=
m∑

j=1

ω−jα2
m η(εj−α1 − εj)

[
eεj−α1

−εj
zεj−α1

−εj+1−δᾱ1,0(qα)−εj(1 − qα)−δᾱ1,0 ·

· exp
(
−

∑

p∈−IN

(εj−α1(p) − q−pαεj(p))

p
z−p

)
exp

(
−

∑

p∈IN

(εj−α1(p) − q−pαεj(p))

p
z−p

)]
.
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The other formulas of (4.6) are quite clear. To see that VQI
is a weight module over C̃q, we

need to show that

[R(d0), R(
∑

p∈ZZ
(tp0t

α)z−p)] = R(
∑

p∈ZZ
(tp0t

α)pz−p) = −
z∂

∂z
R(

∑

p∈ZZ
(tp0t

α)z−p),

similar to Theorem 3.4, which can be verified by using (3.17) and

z
∂

∂z
zα = α(0)zα, ∀ α ∈ QI .

Other parts of the theorem follows easily. Thus we complete the proof of this theorem.

Remark 4.2. The embedding (4.8) without center is inspired by the following string

representation of Cq on Cm×∞ = ⊕
i∈ZZm, j∈ZZCvi,j given by

(tp0t
α)vi,j = ω−iα2

m q−jαvi−α1,j−p. (4.9)

Remark 4.3. The Lie algebras considered in Theorems 3.2 and 4.1 are not isomorphic.

Indeed, it follows by examining the maximal abelian subalgebras M satisfying c /∈ [Ĉq, M ].

But some of them have isomorphic quotients.

Theorem 4.4 In addition to the assumptions in Theorem 4.1, if one of the following holds

then C̃q-module VQI
in Theorem 4.1 is irreducible:

(1) {qα = qα1
1,0...q

αn
n,0|α = (α1, α2, ..., αn) ∈ ZZn} is infinite;

(2) there exists α = (α1, ..., αn) ∈ ZZn such that m|α1, (α2, m) = 1 and qα = 1.

Proof. Claim 1. εj(l) ∈ U(Rm(C̃q)), the universal enveloping algebra of Rm(C̃q), ∀ j ∈

I, l ∈ ZZ \ {0}.

If Condition (2) holds, Claim 1 follows from the third equation of (4.6), furthermore,

εj(0) ∈ U(Rm(C̃q)), ∀ j ∈ I. Next we suppose Condition (1) holds. Fix l ∈ ZZ. Then the set

{qα = qα1
1,0...q

αn
n,0

∣∣∣α = (α1, ..., αn) ∈ ZZn with m|α1 − l} is infinite. For each α = (α1, ...αn) ∈

ZZn with m|α1 − l, let

fj(q
α, l, z) = η(εj−α1 − εj)eεj−α1

−εj
zεj−α1

−εj+1−δᾱ1,0(qα)−εj(1 − qα)−δᾱ1,0·

· exp
(
−

∑

p∈−IN

(εj−α1(p) − q−pαεj(p))

p
z−p

)
exp

(
−

∑

p∈IN

(εj−α1(p) − q−pαεj(p))

p
z−p

)
,
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where qα = qα1
1,0...q

αn

n,0 and we require qα 6= 1 if ᾱ1 = 0. For any v ∈ VQI
, from (4.6) we know

that
m∑

j=1

ω−jα2
m fj(q

α, l, z)v ∈ (Rm(C̃q)v)[z, z−1], ∀ l ∈ ZZ, α ∈ ZZn.

Note that fj(q
α, l, z)v ∈ VQI

[z, z−1] is indeed a vector valued function of qα. Thus using

Lemma 3.5, we see that, for any j,

fj(q
α, l, z)v ∈ (Rm(C̃q)v)[z, z−1], ∀ l ∈ ZZ, α ∈ ZZn, v ∈ VQI

. (4.10)

It is clear that, for any j,

[fj(q
α, 0, z1), fj(q

−α, 0, z2)]v ∈ (Rm(U(C̃q))v)[z±1
1 , z±1

2 ],

∀ α ∈ ZZn with m|α1, q
α1
1,0...q

αn

n,0 6= 1, ∀ v ∈ VQI
. (4.11)

As in the proof of Theorem 3.6, we have

[fj(q
α, 0, z1), fj(q

−α, 0, z2)] =
∑

p,p′∈ZZ
q−pα(q(p+p′)α − 1)εj(p + p′)z−p

1 z−p′

2 + (Dδ)(
z2

qαz1
).

Since Condition (1) holds, then

εj(p) ∈ Rm(U(L)), ∀ p ∈ ZZ \ {0}, j ∈ I. (4.12)

Claim 1 follows as well.

Claim 2. eεi−εj
zεi−εjq

(i−j)εj

1,0 ∈ U(Rm(C̃q))[z, z
−1], ∀ i, j ∈ I.

Equation (4.10) with ᾱ1 6= 0 holds even when Condition (2) is true. Indeed, it follows from

the fact

ad(εj(0))kR(
∑

p∈ZZ
(tp0t

α)z−p) ∈ (U(Rm(C̃q))v)[z, z−1], ∀ k ∈ IN, α ∈ ZZn with ᾱ1 6= 0.

From (4.10) with ᾱ1 6= 0 and Claim 1, we know that, if ᾱ1 6= 0, for any v ∈ VQI
,

eεj−α1
−εj

zεj−α1
−εjq

−α1εj

1,0 v = η(εj−α1 − εj)z
−1 exp

( ∑

p∈−IN

(εj−α1(p) − q−p(α1,0...0)εj(p))

p
z−p

)
·

·fj(q
(α1,0...0), α1, z) exp

( ∑

p∈IN

(εj−α1(p) − q−p(α1,0...0)εj(p))

p
z−p

)
v ∈ (U(Rm(C̃q))v)[z, z−1].
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Thus

eεj−α1
−εj

zεj−α1
−εjq

−α1εj

1,0 ∈ (U(Rm(C̃q)))[z, z
−1].

Claim 2 follows.

Now we are ready to show the irreducibility of C̃q-module VQI
. Suppose W is a nonzero

C̃q-submodule of VQI
. Then d0 acts diagonally on W . From Claim 1 we can choose a nonzero

weight element in W of the form

w =
r∑

i=1

ui ⊗ eγi ∈ W, (4.13)

where ui ∈ S(Ĥ−
I ), γi ∈ QI , such that r is minimal.

Suppose r ≥ 2. We see that any two of γi’s are distinct and

deg(u1) −
(γ1|γ1)

2
= deg(ui) −

(γi|γi)

2
, ∀ i = 1, ..., r.

Since γ1 6= γ2, there exist k, l ∈ I such that

(εk − εl|γ1) 6= (εk − εl|γ2).

From Claim 2, we deduce that

eεk−εl
zεk−εlq

(l−k)εj

1,0 w =
r∑

i=1

ε(εk − εl, γi)z
(εk−εl|γi)q

(l−k)(εj |γi)
1,0 ui ⊗ eεk−εl+γi ∈ W [z, z−1]. (4.14)

Since the powers of z in the right hand side of (4.13) are not the same, we get a nonzero element

in W which has expression like in (4.13) with smaller r. This contradicts the minimality of

r. Consequently r = 1. From Claims 1 and 2, we know that any nonzero element u ⊗ eγ can

generate the whole C̃q-module VQI
, where u ∈ S(Ĥ−

I ), γ ∈ Q, thus W = VQI
. This completes

the proof of this theorem.

Next we shall construct level mr vertex operator representations for the algebra Ĉq
(l)

(r)

for any positive integer r defined in (4.5). For any k ∈ {1, 2, ..., r}, let I = Ik = {1, 2, ..., m}.

For each Ik, along from (3.3) through (3.21), similarly we define PIk
= ⊕j∈IZZε

(k)
j with the

standard bilinear form, QI(k) = ⊕i,j∈Ii
ZZ(ε

(k)
i − ε

(k)
j ), HI(k) and ĤI(k) (with the same c, d0),

the operators eβ ∈ EndC[QI(k) ] for any β ∈ QI(k) , the operators β(0) ∈ EndC[QI(k)] for any

β ∈ HI(k), the operators zβ ∈ EndC[QI(k) ][[z]] for any β ∈ QI(k) (operators for different k are

commutative), and the vector space

VQ
I(k)

= C[QI(k)] ⊗ S(H−
I(k)).
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Then we have the tensor product

(VQI
)r = ⊗r

i=1VQ
I(k)

. (4.15)

Thus we have the representation R(k) of Ĉq
(l)

(0) on each VQ
I(k)

in the sense of Theorem 4.1.

Theorem 4.12 Suppose ωm, q = (qi,j)
n
i,j=0 are given as in Theorem 3.8, l ∈ {1, 2, ..., n}.

For any positive integer r, let Ii = ZZ/mZZ = {1, 2, ..., m} for i ∈ {1, 2, ..., r}, let ωr be the

primitive root of unity of order r. Then Ĉq

(l)
(r) has a vertex operator representation R(l)

r on

the Fock space (4.15) so that for any α = (α1, ..., αn) ∈ ZZn, we have

R(l)
r (

∑

p∈ZZ
(tp0t

α)z−p) =
r∑

k=1

ω−kαl
r

m∑

j=1

η(ε
(k)
j−α1

− ε
(k)
j )ω−jα2

m ·

·
[
e

ε
(k)
j−α1

−ε
(k)
j

zε
(k)
j−α1

−ε
(k)
j

+1−δᾱ1,0(qα)−ε
(k)
j (1 − qα)−δᾱ1,0 ·

· exp
(
−

∑

p∈−IN

(ε
(k)
j−α1

(p) − q−pαε
(k)
j (p))

p
z−p

)
exp

(
−

∑

p∈IN

(ε
(k)
j−α1

(p) − q−pαε
(k)
j (p))

p
z−p

)]
,

if qα 6= 1 or ᾱ1 6= 0, (4.16)

R(l)
r (c) = mr, R(l)

r (ti0t
α) =

r∑

k=1

ω−kαl
r

m∑

j=1

ω−jα2
m ε

(k)
j (i), if qα = 1 and ᾱ1 = 0,

where ᾱ1 ∈ ZZm. Via (3.19), (VQI
)r is a weight module over C̃q

(l)
(r) and

ch(VQI
)r = (

∑

α∈QI

x−(α|α)/2)rφ(x−1)−mr. (4.17)

Proof. We denote by R(k) the vertex operator representation of Ĉq = Ĉq

(1)
(0) on VQ

I(k)
in

the sense of Theorem 4.1. We still use R(k) to denote the extended representation of Ĉq on

⊗r
i=1VQ

I(k)
, for example,

R(1)(tα) = R(1)(tα) ⊗ 1 ⊗ ... ⊗ 1,

R(2)(tα) = 1 ⊗ R(1)(tα) ⊗ 1 ⊗ ... ⊗ 1.

Thus we have

[R(k)(tα), R(j)(tα
′

)] = δk,j[(σ(α, α′) − σ(α′, α))R(k)(tα+a′

)
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+δ
α+α′,radf

δα0,−α′

0
δᾱ1,−ᾱ′

1
δᾱ2,−ᾱ′

2
σ(α, α′)mα0], ∀ α, α′ ∈ ZZn+1.

From (4.6) we know that

Rr(t
α) =

r∑

k=1

ω−kαl
r R(k)(tα) ∀ α ∈ ZZn+1.

Then for any α, α′ ∈ ZZn+1 we deduce that

[Rr(t
α), Rr(t

α′

)] = [
r∑

k=1

ω−kαl
r R(k)(tα),

r∑

k=1

ω
−kα′

l
r R(k)(tα

′

)]

=
r∑

k=1

ω
−k(αl+α′

l
)

r [R(k)(tα), R(k)(tα
′

)]

=
r∑

k=1

ω
−k(αl+α′

l
)

r [(σ(α, α′) − σ(α′, α))R(k)(tα+a′

) + δ
α+α′,radf

δα0,−α′

0
δᾱ1,−ᾱ′

1
δᾱ2,−ᾱ′

2
σ(α, α′)mα0]

= (σ(α, α′) − σ(α′, α))R(l)
r (tα+a′

) + δ
α+α′,radf

δᾱl,−ᾱ′

l
δα0,−α′

0
δᾱ1,−ᾱ′

1
δᾱ2,−ᾱ′

2
σ(α, α′)mrα0

= R(l)
r

(
(σ(α, α′) − σ(α′, α))tα+a′

+ δ
α+α′,radf

δᾱl,−ᾱ′

l
δα0,−α′

0
δᾱ1,−ᾱ′

1
δᾱ2,−ᾱ′

2
σ(α, α′)α0c

)

= R(l)
r ([tα, tα

′

]),

where ᾱl,−ᾱ′
l ∈ ZZr ᾱ1, ᾱ

′
1, ᾱ2,−ᾱ′

2 ∈ ZZm and the last bracket is in C̃q

(l)
(r). So R(l)

r is a

representation of C̃q
(l)

(r). The character formula (4.17) is clear. Thus we proved the theorem.

Like in Remark 3.7 for Rm in Theorem 3.4, some representations R(l)
r of C̃q

(l)
(r) are irre-

ducible. Now we give some sufficient conditions for R(l)
r to be irreducible.

Theorem 4.13 The vertex operator representation R(l)
r of C̃q

(l)
(r) in Theorem 4.12 is

irreducible if one of the following holds:

(1) (m, r) = 1 and there exists α = (α1, ..., αn) ∈ ZZn such that m|α1, (αl, r) = (α2, m) = 1,

and qα = 1;

(2) l > 2 and the set {qα = qα1
1,0...q

αn

n,0|α = (α1, ..., αn) ∈ ZZn} is infinite;

(3) l ∈ {1, 2}, (m, r) = 1 and the set {qα = qα1
1,0...q

αn
n,0|α = (α1, ..., αn) ∈ ZZn} is infinite.

Proof. The proof of this theorem is very similar to that of Theorem 3.6. So here we only

outline the proof for Cases (1) and (2).
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(1) From the hypothesis and the third equation of (4.16), we deduce that ε
(k)
j (i) ∈

U(R(l)
r (C̃q

(l)
(r))), the universal enveloping algebra of R(l)

r (C̃q

(l)
(r)), ∀ j ∈ I, i ∈ ZZ, k ∈

{1, 2, ..., r}. From

ad(ε
(k)
j (0))iR(l)

r (
∑

p∈ZZ
(tp0t

α)z−p) ∈ U(R(l)
r (C̃q

(l)
(r)))[z, z−1], ∀ i ∈ IN, α ∈ ZZn with α1 6= 0,

we deduce that, if ᾱ1 6= 0, then

f
(k)
j (α, z) = e

ε
(k)
j−α1

−ε
(k)
j

zε
(k)
j−α1

−ε
(k)
j

+1(qα)−ε
(k)
j ·

· exp
(
−

∑

p∈−IN

(ε
(k)
j−α1

(p) − q−pαε
(k)
j (p))

p
z−p

)
exp

(
−

∑

p∈IN

(ε
(k)
j−α1

(p) − q−pαε
(k)
j (p))

p
z−p

)

∈ U(R(l)
r (C̃q

(l)
(r)))[z, z−1];

e
ε
(k)
j−α1

−ε
(k)
j

zε
(k)
j−α1

−ε
(k)
j q

−α1ε
(k)
j

1,0 = z−1 exp
( ∑

p∈−IN

(ε
(k)
j−α1

(p) − q−pα1
1,0 ε

(k)
j (p))

p
z−p

)
·

·f
(k)
j ((α1, 0, ..., 0), z) exp

( ∑

p∈IN

(ε
(k)
j−α1

(p) − q−pα1
1,0 ε

(k)
j (p))

p
z−p

)
∈ U(Rm(C̃q))[z, z

−1].

Thus

e
ε
(k)
i

−ε
(k)
j

zε
(k)
i

−ε
(k)
j q

(i−j)ε
(k)
j

1,0 ∈ U(R(l)
r (C̃q

(l)
(r)))[z, z−1], ∀ ī 6= j̄ ∈ ZZm.

Suppose W is a nonzero C̃q
(l)

(r)-submodule of (VQI
)r. Then d0 acts diagonally on W . We

can choose a nonzero weight element in W of the form

w =
r∑

i=1

ui ⊗ eγi ∈ W, (4.18)

where ui ∈ S(⊗r
j=1Ĥ

−
Ij

), γi ∈ ⊗r
j=1QI(j), such that r is minimal.

Repeat the last paragraph of the proof of Theorem 4.12 we see that W = (VQI
)r.

(2) From the hypothesis we know that for any fixed s1, s2, sl, the set {qα = qα1
1,0...q

αn
n,0|α =

(α1, ..., αn) ∈ ZZn with α1 = s1(mod m), α2 = s2(mod m), αl = sl(mod r)} is infinite. Using

Lemma 3.5 we deduce that

f
(k)
j (α, z) = e

ε
(k)
j−α1

−ε
(k)
j

zε
(k)
j−α1

−ε
(k)
j

+1−δᾱ1,0(qα)−ε
(k)
j (1 − qα)−δᾱ1,0·
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· exp
(
−

∑

p∈−IN

(ε
(k)
j−α1

(p) − q−pαε
(k)
j (p))

p
z−p

)
exp

(
−

∑

p∈IN

(ε
(k)
j−α1

(p) − q−pαε
(k)
j (p))

p
z−p

)

∈ U(R(l)
r (C̃q))[z, z

−1], ∀ α ∈ ZZn with qα 6= 1 or ᾱ1 6= 0.

For any α ∈ ZZn with α1 = 0(mod m) and qα 6= 1, similar to (4.12) by computing

[f
(k)
j (α, z1), f

(k)
j (−α, z2)] ∈ U(R(l)

r (C̃q))[z, z
−1],

we deduce that

ε
(k)
j (p) ∈ Rm(U(L)), ∀ p ∈ ZZ \ {0}, j, k. (4.19)

Similar to Claim 2 in the proof of Theorem 4.11, we can also show that

e
ε
(k)
i

−ε
(k)
j

zε
(k)
i

−ε
(k)
j q

(i−j)ε
(k)
j

1,0 ∈ U(R(l)
r (C̃q))[z, z

−1], ∀ i, j ∈ I, ∀ k.

Then we repeat the remaining discussion for Condition (1) to see the irreducibility of the

representation.

Remark 4.14 If we assume that qα1
1,0...q

αn
n,0 = 1 implies α = (α1, α2, ..., αn) = 0, then

C̃q
(l)

(r) ' C̃
(l)

q (r) ' C̃q and Ĉq
(l)

(r) ' Ĉ
(l)

q (r) ' Ĉq for all the algebras discussed in this

section, and all the modules constructed in this paper for these algebras are irreducible.

§5. Highest weight modules

For brevity, we denote L = Ĉq , C̃q, Ĉ
(l)

q (r) , C̃
(l)

q (r), defined by (1.6) and (1.6’) under the

condition (1.5), or defined by (4.5) under the condition (4.4). With respect to d0, L has the

ZZ-gradation (1.7). Let L+ = ⊕
i∈ZZ+

Li, L− = ⊕i<0Li.

Now we define highest weight modules over L. Suppose ċ, ḋ ∈ C, λ = (λα) where λα ∈ C,

α = (α1, ..., αn) ∈ ZZn (λα ∈ C can be arbitrary if qα = 1). We can define the 1-dimensional

L+-module Cv0 via

Liv0 = 0, if i > 0; cv0 = ċv0, dv = ḋv0, tαv0 = λαv0, ∀ α ∈ ZZn. (5.1)

This implies that [L0, L0]v0 = 0. Then we have the induced L-module

V̄ (λ, ċ, ḋ) = Ind
L+

L Cv0 = U(L) ⊗U(L++L0) Cv0,

where U(L) is the universal enveloping algebra of the Lie algebra L. It is clear that, as vector

spaces, V̄ (λ, ċ, ḋ) ' U(L−). The module V̄ (λ, ċ, ḋ) has a unique maximal proper submodule
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J . Then we obtain the irreducible module

V (λ, ċ, ḋ) =
V̄ (λ, ċ, ḋ)

J
. (5.2)

It is clear that V (λ, ċ, ḋ) is uniquely determined by the parameters λ, ċ, ḋ. Since the structure

of V (λ, ċ, ḋ) is independent of ḋ, so we shall always assume that ḋ = 0, and simply denote

V (λ, ċ, ḋ) by V (λ, ċ). Generally, not all weight spaces of V (λ, ċ, ḋ) are finite-dimensional.

Recently, the necessary and sufficient conditions for V (λ, ċ) to have finite-dimensional weight

spaces were determined for n = 1 in [RZ]. All the modules constructed in Sections 2 and 3

have finite-dimensional weight spaces. The following result is quite clear.

Theorem 5.1 (a) In Theorem 2.2, B ' V (λ, 1, 0), where λα = q−mα

1−qα for all α = (α1, ..., αn)

∈ ZZn with qα 6= 1, and λα = m otherwise. The highest weight vector in B is 1.

(b) In Theorem 3.6 (or 3.4), S(Ĥ−
I ) ' V (λ, m, 0), where

λα =
m∑

j=1

ω−jα1
m

(1 − qα)
= δᾱ1,0

m

(1 − qα)
, ∀ α = (α1, ..., αn) ∈ ZZn with qα 6= 1,

and λα = 0 otherwise. The highest weight vector in S(Ĥ−
I ) is 1.

(c) In Theorem 4.4 (or 4.1), VQI
' V (λ, m, 0), where

λα = δᾱ1,0

m∑

j=1

ω−jα2
m

(1 − qα)
= δᾱ1,0δᾱ2,0

m

(1 − qα)
, ∀ α = (α1, ..., αn) ∈ ZZn with qα 6= 1,

and λα = 0 otherwise. The highest weight vector in VQI
is 1 ⊗ 1.

(d) In Theorem 4.6 (or 4.5), (VQI
)r ' V (λ, mr, 0), where

λα = δᾱ1,0

r∑

i=1

ω−iαl
r

m∑

j=1

ω−jα2
m

(1 − qα)

= δᾱ1,0δᾱ2,0δᾱl,0
mr

(1 − qα)
, ∀ α = (α1, ..., αn) ∈ ZZn with qα 6= 1,

and λα = 0 otherwise. The highest weight vector in (VQI
)r is 1 = (1 ⊗ 1)r.

We cannot ignore the fact that the character formulas in Theorems 3.2 and 4.1 are the

same. This coincidence suggests that some isomorphism may exist. This is indeed the case.

In Theorem 3.2 we know that VQI
is an irreducible highest weight module with highest weight
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vector 1 ⊗ 1 by the following sense





(Ei,j(t
k
0t

a))(1 ⊗ 1) = 0, if k ∈ IN,
(Ei,j(t

0
0t

a))(1 ⊗ 1) = 0, if i 6= j,
c(1 ⊗ 1) = 1,

(Ei,i(t
0
0t

a))1 ⊗ 1 =

{
1⊗1

(1−qα)
, if qα 6= 1,

0, if qα = 1,

(5.3)

for all α = (α1, α2, ..., αn) ∈ ZZ . Now we construct a new quantum torus Cq′ from Cq in Theo-

rem 3.2 as follows: Cq′ is generated by generators t±1
0 , E±1, F±1, t±1

1 , ...t±1
n , where t0, t1, ...tn has

the same relations as in Cq, E and F commute with t0, t1, ...tn, but EF = ωnFE. Homogeneous

elements in Cq′ are written as tα0
0 Eα1F α2tα3

1 ...tαn+2
n for α = (α0, α1, α2, α3, ...αn+2) ∈ ZZn+3.

Then we have the irreducible highest weight C̃q′-module with highest weight vector 1 ⊗ 1 in

Theorem 4.1 such that





c(1 ⊗ 1) = m, (tα0
0 Eα1F α2tα3

1 ...tαn+2
n )(1 ⊗ 1) = 0, if α0 ∈ IN,

(t00E
α1F α2tα3

1 ...tαn+2
n )1 ⊗ 1 =

{
δᾱ1,0δᾱ2,0

m
(1−qα)

, if qα 6= 1,
0, if qα = 1,

(5.4)

where qα = qα3
1,0...q

αn+3

n,0 . Via the Lie homomorphism





g̃lm(Cq) → C̃q′,
c → c

m
, d0 → d0,

Ei,j(t
k
0t

a) → 1
m

tk0E
j−i(ω−j

m F + (ω−j
m F )2 + ... + (ω−j

m F )m)tα1
1 ...tαn

n ,

(5.5)

one can verify that the modules defined in (5.3) and (5.4) are the same. Thus the module in

Theorem 3.2 is a module in Theorem 4.1 with q1,0 = q2,0 = 1. Thus we have proved

Theorem 5.2 The module in Theorem 3.2 is a module in Theorem 4.1 with q1,0 = q2,0 = 1.
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