Vertex operator representations of quantum tori at roots of unity !
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ABSTRACT. As Lie algebra, we add the center ¢; (and the outer derivation d;) to the
quantum torus €, to give the extended torus Lie algebra @q (and @'q respectively). Before

the present paper, only some level 1 vertex operator representations for some @q (and @q)

were constructed. In this paper, we first give vertex operator representations for gly.s(C)
where [ is an arbitrary index set. By embedding some @ into glrx(C), we obtain a series
of higher level vertex operator representations for G/Z\'q and @vq. Most of these vertex operator

representations yield irreducible highest weight modules over these @vq. Also their character

formulas follow directly.

81. Introduction
Let ¢ = (i)} =0 be an (n+1) x (n+1) matrix over the complex number field C' satisfying
¢Gii=1, ¢ij= qj_,il, (1.1)

where n is a positive integer. The ¢-quantum torus C, which was studied in [MP] is the unital

associative algebra over C' generated by ti', ..., =1 and subject to the defining relations

tit; = qi t;t;. (1.2)
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For any a € Z™!, we always write a = (ao,...,a,), and denote t* = ¢i°...t%. For any
a,b € Z"' we define the functions o(a, b) and f(a,b) by

" = o(a, D), 19" = f(a, b)t"t". (1.3)

We also define |a| = ag + a3 + ... + ;. Then

n

ola,t) = TI & flab) =TI 43", (1.4)

0<i<j<n i,j=0

and f(a,b) = o(a,b)o(b,a)”!. We define radf = {a € Z"|f(a,Z") = 1} and the Kronecker

delta
5 B { 1, if acradf
arads = 0, otherwise.

For properties of Cy, f, o, please refer to [BGK] or [Z].

In most part of this paper we assume that

Note that (1.5) implies o(a, Z™"') =1 for all @ € radf. Under this assumption we have the

1-dimensional central extension @q = C, @ Cc of C; with

[t 7] = 1217 — 1Pt 4 60— 5,0

wisradso(@ Baee, ¥ a, 8 € Z" (1.6)

We extend C'q by a derivation dy with
[do,ta] = Oé()ta, V ae Zn+1

to give the Lie algebra C, = @q @ Cdy. For any nonnegative integer m, and [ € {1,2,...,n},
we modify (1.6) into

[t 7] = 1217 — 1Pt 4 S0y 5,0 0_g,.60(c, Baoe, ¥V o, 8 € Z™, (1.6")

a+grads

where 3, a; € Z,,, to get Lie algebras C;l)(m) and ¢

, (m) correspondingly. In some cases,

Cgl)(m) ~ C’gl) (m') for some different m and m’. For example, if n = 1 and ¢}, # 1 for all

k € IN, then C’gl)(m) ~ O, for allm € Z,. We know that C,, C,, C;l)(m) have a Z-gradation

with respect to dy:

= 30
C(I = Cq (m> = @kEZLk’ (17)
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where L; = @aeant'gt’fl...tg” ® Or,0(PCc® Cdy). For a Z-graded module V' = &,_7V;, its

character is defined as
chV = > (dim Vy)z ™" (1.8)
ke

In [BGT, BS, G1, G2, GL], level 1 vertex operator representations of the Lie algebras @q
were constructed, where they assumed ¢ = ¢7'y...qp # 1 if o # 0. In this paper, we give not
only higher level vertex operator representations of these Lie algebras Cq (Theorems 2.2, 3.4),
but also construct higher level vertex operator representations of the Lie algebras @q with
¢1,2 being root of unity and all other ¢; ; being 1 for 4,5 € 1,2,...,n (Theorems 4.1 and 4.5).
Most of these vertex operator representations constructed are irreducible (Theorems 2.2, 3.6,
4.4, 4.6). The character formulas of these representations follow easily. All irreducible vertex
operator representations constructed in this paper are highest weight modules (Theorem 5.1),

thus the isomorphisms between these modules are clear.

§2. Principal vertex operator representations for C,

In this section we shall embed some Cq in gl (C) to give principal vertex operator rep-

resentations for Cq and @q. Let us first recall a vertex operator representation theorem from
[DJKM]. Let

Aoo - {(aivj>i,jEZ ‘ ai,j - C, and ai,j = 0 Zf ‘Z —j| > 0}

be the infinite matrix Lie algebra. We use E; ; to denote the matrix unit, i.e., the matrix with

1L in (i,j)-entry, and 0 elsewhere. Let A, = Ay + Cc be the 1-dimensional central extension
with
(X, Y]=XY - YX +¢(X,Y)e, V X,Y € A,

where the 2-cocycle ¢ is given by

0i 10, if 1<0,72>1
O(Eij, Eyt) = { =010k, 1f J<0,02>1,

0, otherwise.

Theorem 2.1 [DIJMK] For any m € Z, the Lie algebra Ay has an irreducible vertex

operator representation R, on the Fock space B = C[z1, xq,x3,...] so that

Rm( Z UiU_jEZ'J)
ijeZ



1 S (w7 —v77) 0
= (u/v)™ exp (v —v')x;) exp [ — —_ ) -1}, (2.1)
1—v/u (gi‘v J) ( jeZ]]V J &Ej)
o, if >0,
Rpn(c) =1, Ru( Y Ejiyy) =1 —iz_;, if i <0,
jEZ m, Zf 1= Oa

where IN is the set of natural numbers.
Part of the following theorem (¢* = ¢'y...qn7 # 1 if a # 0) was proved in [G1] and [GL].
The proof here is slightly different from that in [GL].

Theorem 2.2([GL]) Suppose ¢ = (qi ;)i ;o satisfies (1.1) and (1.5). Then C, has an irre-

ducible vertex operator representation R,, for any m € ZZ on the Fock space B =

Clx1, z2, w3, ...] so that for any o = (aq, ..., ) € Z", we have
jra, -5y — L A Ll A SR
Rl X ) = e (X (- esp (- 30 20, iy g,
je q jeIN jeIN J J
(2.2)
| o if >0, ¢*=1,
Rm(c) - 1) Rm(téta) = —Z.x_i, Zf 2 < O, qa = 1,

m, if 1=0, ¢ =1,
where t& = 17"..t5", ¢* = ¢'b...qn%. In (2.2) ¢7 can be replaced by any multiplicative
function v(a) € C*. If we define

R (do)(ah )ty = —(ky + 2k + o+ Uky) (2,

then B becomes a Cq—module with character formula

1 1
ch(B) = G0 = TN (2.3)

Proof. 1t is straightforward to verify that the following linear map is a Lie algebra homo-

morphism:

A

n:Cy— Ax,

Cc

W, A (i,Oé) c Zn+1, (24)

ot — > g7 Ej i+ 0i0(1 — 0ge )
jeZ



Since R,, is a product of Ry and a Lie automorphism, it suffices to show the theorem for only
Ry. Letting u = z,v = ¢“z in (2.1) we deduce that (for ¢* # 0 and Ry)

1 o l—g7%) 0
T aexp(Z(l—q” )szj)exp(—z( , )ax'z J)
q jeIN jeIN J J
—ja i—j 1 —ja -l 1
= Ro( Z q z EZ,]) + 1_70{ = Ro( Z q z Ej—l,j) + 1_704
ije q lLjeZ q
i c _
=Ro(>_ (> ¢7°Ej_; + 5l,01_7a)z 9
e jel q
— Ro( Y m(tht)=""),
e
The other parts of the theorem are quite clear. 1

Remark 2.3. The embedding (2.4) without center can be regarded as the following string
representation of €, on €™ = @,_Cv; given by

(tht Y, = ¢ vy, ¥ i,k € Z, o€ 2"
When G, = Z" @& Z,,, Theorem 2.2 is one of the main theorems in [G1], although they

are slightly different in appearance.

Remark 2.4. If n=1 and ¢, is a root of unity of order r, then representation Ry is the

level 1 representation of the affine Lie algebra élr.

83. Homogeneous vertex operator representations for €, and C|,

In this section we shall first construct a vertex operator representation for gly«o(C) where
I is an index set, then embed C'q in glyvoo(C) to give a series of higher level vertex operator

representations for C, and C, satisfying (1.5).

Let

/IIXOo:{(af,’;) |i,5 €1, k;,lEZ,af”f e C, and aﬁ’;zo

if |k=1>0, and for fized (k,l) af,’; #0 only for finitely many (i,7)}

be the infinite matrix Lie algebra. Note that we allow I to be an infinite set. We use Ef 31

to denote the matrix unit, i.e., the matrix with 1 in (k,1)-(i,j)-entry, and 0 elsewhere. The

products are given by

k1 k!l kI
Ei,j Ei/,j/ - 6j,i'5l,k’Ei7j’7
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k.l % k' Kl
[E4 E-/J/] = (sj,iffsl,k/Ei,j' - 5j/7i5l'7k’Ei/,j‘

2,79 1
Let Ajyoo = Asxoo + Cc be the 1-dimensional central extension with
(X, Y]=XY —-YX +¢(X,Y)c, (3.1)

where the 2-cocycle ¢ is given by

. 0,1 0r k0ir o1k, if kK <0,0>1
qb(Ef;l, Eﬂj;) = { —6i7j/6117k52-/7j5l,k/, iof 1<0,k>1, (32)
0, otherwise.

Let P; = @;c1 Ze; be a free abelian additive group with a symmetric ZZ-bilinear form (-|-)
defined by (¢;le;) = d;; for all 4,j € I. Let

Qr = DijerZ (e — ¢j) (3.3)
be a subgroup of P;. We see that
(o) e2Z, ¥V a,B € Q. (3.4)
Let € : Qr x Qr — {£1} be a bimultiplicative function in the sense that
ela+0,7) =ela,)e(B,7), ela,f+7) =e(e, Blea, ) (3.5)
for all «, 8,7 € Qy, and with the property
g(a,a) = (=1)92 v o € Q. (3.6)
It follows from (3.6) that
s, B)e(B,0) = (1), ¥ o, B € Q1. (3.7)

Set H; = P ® 77 C, and extend the Z-bilinear form (-|-) to get a symmetric C-bilinear form
(|) on Hy. Let H, = H ® C[t,t7 1) & Cc @ Cdy be the Heisenberg Lie algebra with

[a(m), B(n)] = 0pm,—nm(a, B)e, ¥ a,f € H,m,n € Z, (3.8)
[do,c] =0, [do,a(m)] =ma(m), ¥ o€ H,m e Z,

where a(n) = a@t". Let Hf = Y,00 Hy @1, Hy =Y, H; ® t*, then we have a subalgebra

H; = Hf @ Hy @ Ce® Cd,. (3.9)



Let
S(H;) = Clei(—n)|i € I,n € IN]. (3.10)

Define the degree deg(e;, (—n1)€;,(—n2)...€;.(—n,.)) to be
deg(e;, (—n1)€iy (—ng)..6i (—n)) = —(ng + ng + ... +n,.).

Then H; has the natural representation on S(H; ) in the sense that ¢;(n) acts as multiplication

operator for n < 0, ¢(n) acts as differential operator #?n) for n > 0, while ¢ acts as the
identity, and dy acts as the degree operator.
Let
ClQr] = Dacq, Ce” (3.11)

be the group algebra of Q7. For any € @y, define ez € EndC|[Q/] by
ege” = e(B,0)e* . ¥V a € Qr. (3.12)

We see that
eacs = e(a, B)ears, ¥ a,f € Qr. (3.13)

For any # € H, define 5(0) € EndC[Q;] by

B(0)e* = (Bla)e”, ¥V a € Q. (3.14)
It is clear that
[6(0), ea] = (Bla)ea, ¥ a € Q. (3.15)
We define
doe® = —(aéa)eo‘, V o€ Q). (3.16)
Then
o) = eal—0(0) ~ 2 v ac (3.17)
Set
Vo, = S(H?) ©¢ ClQ4] (3.18)

be the Fock space. We embed EndS(H; ) and EndC|[Q] (respectively (EndS(H[))[[z]] and
(EndC[Q/])[[#]]) canonically into EndVy, (respectively (EndVy,)[[#]]), for instance,

(B ®1, if 1#0,
s = {7y STy v e

We define the action of dy on Vg, by

do=do®1+1®do. (3.19)

7



Recall that z* € EndC|[Q])[[2]] is given by

el = 20Bef Y o B e Q. (3.20)
Thus we have
[@(0),2°] =0, 2%p5 = ezt ¥V o, 5€Q). (3.21)

Similarly, for any nonzero complex number a, we have the evaluation a® of 2% so that a® €

End(C[Qr]).

Now we modify Ay to give the Lie algebra Aj.o(c) as follows. As vector spaces,
Arxoo = Arxoo(€). But the Lie bracket is given by

k,l k' l’ Sk, k'l
[E E ] = 8( — €, € — Ej/)(sj,i/(sl,k/Ei,j/ - 8(67;/ — €, €6 — Ej)éj/,iél’,kEi’J

1,50

‘el — ej e — e)(EN L B e, ¥ iygi 5 €1, kLKl € Z. (3.22)

(A ] )
Here we used Ef }l (which is viewed as matrix unit in Aj.(€)) to distinguish the matrix unit

with the ordinary one Ef f which is viewed as matrix unit in Ajxs). We know that the Lie

algebras Ajyo and Ajyoo(g) are isomorphic.

The following theorem is inspired by Theorem 2.1, [Theorem 1.2, TV], and the results in
[F].

Theorem 3.1 The Lie algebra Ajxo(€) has an irreducible vertex operator representation

R,, for any m € ZZ on the Fock space Vi, given by

52’ j € m— —€;

n( X Byazm') = - ’]/ )+662_53211+1+ "2y T (L = 2 ) T
— 292/ 21

kleZ

“Pe(p) — 2 Pe. “Pe(p) — 2 Pe.
oxp(— Y 2 () — 7 6J(p))exp(— y A «(p) — 7 €J(p)), Vi jel, (3.23)
pE—W p peﬂv p
Ru(c)=1, R.(> Ef*hY=¢(), VieZ.

ke

Proof. Since the proof of this theorem is quite standard (although onerous), instead of
giving the detailed proof we shall only sketch the proof.

We can verify (via a lot of computations) that

Joe ) B ko) kol k BRL kL)
Z 22 ), Z irazs )] = Z E 52129 Z i7azr )

kleZ kleZ kleZ kleZ



for all cases: (1) i #j#75 #14,(2) i1 #j=74,3) 7 =1i#j,(4) i =7 = j separately by
using formula (3.37). So the first and the second formulas in (3.23) follow. The third formulas
in (3.23) with [ # 0 are clear from Theorem 2.1. The third formulas in (3.23) with { = 0

follow from the facts that [R,,,(3, .7 Efzk), (e Ek Fhl=0foralll € Z, and

(> Ekk m( > E'fl,zfzz_l = (0; — m( > E'fl/zf 2 H)].
ke, kleZ kleZ
The irreducibility follows from the last equation of (3.23) and the action of e, ;. ]

Theorem 3.2 Suppose q satisfies
Gio =04 G00=0G;=0Gi=1 Vi,je{l,2,..,n} (3.24)
Let gl (Cy,€) = gl,.(C,) ® Cc be the 1-dimensional central extension with
[B35(1%), By (7)) = 8086 — €5, €0 = €) By (1747) = 856 (e — €50, € — ¢) B (1°1%)
—e(€; — €5, € — €1)0;,051 i000+80,004-5 g0 0 (@, B)arge, ¥ a, B € ASER N N2

Then g;lm(Cq,e) has an irreducible vertex operator representation R on the Fock space Vi,

with I ={1,2,...,m} so that for any o = (aq,...,a,) € Z", any i # j € I, we have

R( Z Ei’j(tgta)z—p) — eei_ejzei—ej—i-l—&i,j (qa)—ej(l _ qa)_éi’j~
peZ

exp(— y GPZITG0D, ) oy (50 WDZITGWD ) ey,

pE—ﬂV> p pEﬂV> p
(3.25)
R(c) =1, R(E;;(t1t*) =¢&(l), if ¢*=1.
If we extend gAlm(Cq, e) by dy to get the Lie algebra ﬁlm(Cq,g) with
[do,E@j(ta)] = OéoEZ'7j(ta), V « S Zn+l,
then Vy, is a module over gl(Cy) via (3.19), and
chVg, = (> g~ @2y (=) m, (3.26)

a€Qr



Proof. 1t is straightforward to verify that the following linear map is a Lie algebra homo-

morphism:
T .é\lm(Ctpg) - AIXOO(g)7
@) oy Ep— 05,005 j (1 — 01 40 )c
Z] tOt Z q i Ef?] k’p_}_ ]1(— q* : )
pe
c— c.

Letting 21 = z, 20 = ¢“z in (2.23) we deduce that (for ¢* # 1 and Ry)

.V (kya)e zZ™ i jel (3.27)

Cese; Zei—ﬁj-‘rl—(si,j (qoc)—ej (1 N qo‘)_5i,j )

y, (It PO ) ep (- o =GN, )
pG—W pEW

67]7]

1—q>

exp ((—

:RO( Z q—lazk—lEf}l)_i_
kle

Z q lo —kEll kl)+
lkeZ

Z Z q—lOtEll kl +§k a)z—k)
ke e 4

= Ro( Y 7(Ei (tht*)=%)).
ke

The other formulas of (3.25) are quite clear. To see that V), is a module over gl(C,), we need
to show that
20

[R(do), R( S Eij(tht*)2")] = R( Y. Eij(tht*)pz?) = _(9_R ST OB (tht)zP),
pe pe pe

which can be verified by using (3.17) and (the action on C[Q;])

zﬁz =a(0)2% V ac Q.
0z

Other parts of the theorem follows easily. Thus we complete the proof of this theorem. 1

Remark 3.3. The embedding (3.27) without center is inspired by the following string
representation of gl,,(Cy) on C"*>* = @,_zm jeZCUiJ given by

(Ekl(tgta))vi,j = zlq Ukj —p-
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When G, = Z* or Z*, I is finite, and q{’oqg,o # 1 for (i,7) # (0,0), Theorem 3.2 is one of
the main theorems in [G2], although they are slightly different in appearance.

Theorem 3.4 Let q satisfy (3.24). For any positive integer m, let w,, be the primitive
root of unity of order m, I = Z/mZ = {1,2,....m}. Then C((Il)(m) has a vertex operator

representation R, on the Fock space S(f[f) so that for any a = (aq, ..., o) € Z", we have

w ]al

Ry (D (tht%)z i - exp ( - > (1= q_;a)ej(p)z‘p)-
pe 3:1 pe—IN
- exp ( - > (1= q_po‘)ej(p)z_p)’ if ¢¢ #1, (3.28)
peIN p

m

Ry(c) =m, R,(tht*) = Z w (1), if ¢* =

Proof. 1t is straightforward to verify that the following linear map is a Lie algebra homo-

morphism:
(1)
T:C, (M) = Arxeo(8),
: m : o 0;.00a7.0(1 — dga
tZOtOt N Zw;ﬂal Z q—k’OtE;f’J i,k + ,0 170](_ aq 71)mc, (329)
i=1 keZ —4
c — mc,

where a7 € Z,,. If ¢* # 1, using Ry in Theorem 3.1 we deduce that

Ron(Y (t51%)27F) == Ro( D 7(t6t™)z7")

ke veZ
-~ b Oko0a
= 3 R | Yt B gl 4
keZ j=1 e Z q
= Zw;ﬂal Z 27k Ro( Z q—paEp kp )+ : _k,oa
J=1 ke pGZ q

(letting 2 = 2z, 20 = ¢“z in (3.23) with i=j, acting on S(H;)®1)

i exp ( S (1- q—P“)Ej(P)Z—p) exp ( S (1- q—pa)ej(p)z_p)'

321 pe—IN p pelN p

—]011
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The other parts of the theorem are quite clear. 1

The following Lemma is very useful to further study on the structure of the module in
Theorem 3.4.

Lemma 3.5. Let w,, be given as in Theorem 3.4, q10, ..., qno be nonzero numbers, W C V
be vector spaces. Suppose the set {q® = ¢1'y...qn|oc € Z"} is infinite. Let f;(¢%) = X, qio‘vz-(j) €
V forall j =1,2....m, a € Z"™. If Z;”leﬁflfj(qa) e W for all o € Z", then f;j(¢®) € W
for all j and all « € Z".

Proof. We know that

Soq o whto) = Wl fila) €W, ¥ a €z (8:30)
i j=1 Jj=1

By letting ay = km + ip where 7o =0,1,....,m — 1 and k € Z, and changing other a;; € Z in
(3.30), we obtain that

Zqiazw%%y) eW, VYV aeZ" with a; =km + ig.

i j=1

From the hypothesis we know that the set {¢* = ¢{'y...¢y | € Z"™ with a; = iy mod m} is
infinite. We deduce that

S wi? e W, Vi € {0,1,....,m—1},i € Z.
j=1

It follows that vi(j ) e W, V i,j € Z. The lemma follows. 1

Theorem 3.6 S(HI_) in Theorem 3.4 is a C;l)(m)—module. If, in addition to the assump-

tions in Theorem 3.4, we assume that the set {q* = qi'b...qnb|l € Z"} is infinite, or there

exists o« € ZZ" such that (an,m) =1 and q* = 1, then C;l)(m)-module S(H;) is irreducible,

and

A

ch(S(Hy)) = p(x™)™™. (3.31)

Proof. Tt is clear that S(H;) is a C’((Il)(m)-module. If there exists o € Z" such that
(ay,m) =1 and ¢* = 1, from the third equation of (3.28) we see that

&(1) € Ru(C(m), vV jelle Z. (3.32)

12



Thus C’;l)(m)—module S(H7) in Theorem 3.4 is irreducible. Next we suppose {¢*|a € Z"} is
infinite. For ¢ # 1, let

(1 =g ")e(p) __, (1—¢™)ep) -,
(1—qa)exp(_p§ﬂv r )eXp(_pe%:\, )

fj(qaa Z) =

For any v € S(H;), from (3.28) we know that

~ @)

iw;ljalfj(qa,z)v € (Rn(Cy " (m)))[2,27Y, ¥V a € Z" with ¢* # 1. (3.33)

Using Lemma 3.5, we see that, for any j,

~ (1)

£i(g% 2)v € (Rp(Cy " (m))0)[2,27Y], ¥ ve S(Hy),aeZ" with ¢*# 1. (3.34)

It is clear that, for any 7,

~ (1)

[fi(a®, 1), fi(a7™% z2)]v € (Rn(U(Cq (m)))o) =17, 25°7],

VveSH),aeZ" with ¢ # 1. (3.35)

By using the following well known formulas

Flo1 ) DB(2) = o ") DO(220) = (o 25220, (3.36)
Fz1, 22)8(—2) = f(z1,4%20)0(—2), (3.37)
q- = q—- =
where
8(z) = > 2P, (Do)(z) = > paP, (3.38)
PGZ pGZ

it is standard to show that, if ¢* # 1, then

(g% 20), (a7 ) = S P (q® — D)e;(p+p)z P2 ? + (17f5)(qaz1
p,p’ez

Since {¢®|av € Z"} is infinite, we see that for any ¢ # 0, there exists o € Z" such that

¢ # 1. Thus

&(p) € Ru(U(C,"(

m)), ¥ pe Z\{0hj el
The irreducibility of the module S(Hj ) follows. The character formula (3.31) is clear. ]

13



Remark 3.7. R; in Theorem 3.4 is Ry in Theorem 2.2. If q’fo # 1 for all k € IN, then the

conditions in Theorem 3.6 are satisfied. If the conditions in Theorem 3.6 are not satisfied, we

do not know when the dZN'q(l)(m)-module S(H;) is reducible except for some special cases. For
example, if n =1, and ¢y o is a primitive root of unity of order m > 2, we know that S (f[f) is
a highest weight module of level m over the affine algebra gAlm with character formula (3.31)

which is the m-power of the character of level one highest weight module over gAlm. Clearly

S(H7) is a reducible module over gl, (also over @(1)(7”) =C,).
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84. Vertex operator representations of quantum tori at root of unity

The quantum tori €, studied in Theorems 2.2, 3.2, 3.4, 3.5 (also in [BGT, BS, G1, G2, GL])
have only ¢, which does not commute with the remaining commuting variables. Next we shall
present vertex operator representations for quantum tori which have more non-commuting

variables.

From now on in this section, we fix I = Z/mZ = {1,2,...,m} where m € IN, and ¢ in
(3.5) so that
-1, of j=1 or i—1,

el6 = €y €~ Gn) = { 1 otherwise, (4.1)
where 1 =1,2,...,m — 1. Let
_ [ -1af g<i,
niei =€) = { 1 otherwise, (4.2)
where 7,7 € {1,2,...,m}. It is easy to see that
kel N Sl
n(e —€) B m(e; — ej/)EM, =n(e — ej/)Em-,, (4.3)
n(e’i - Ej)eei_ejn(Ej - Ej/)eej—ej/ = /’7(67, - Ej’)eq—ej/-
Also from now on we fix ¢ = (¢; )} ;= satisfying n > 1,
Qi,j - Qj_,ilv Qi,i - 17 v 7’7.] € {07 17 ...,TL},
qi,j = 1, V 1, € {2, ...,n}, (44)

ql,i = 1, V Z € {3, ...,7’1,},
and ¢, 5 = (21 = Wy, is a primitive root of unity of order m.

For this ¢, generally, (1.6) and (1.6”) do not define Lie algebras. We have to modify them to

~ (1 -
give Lie algebras. For this ¢ and any nonnegative integer r we define Cg)(r) and Cgl) (r) by
modifying (1.6%) into

[t 9] = t21P — P>
+5a07_g05&17_515&27_525a+ﬂ7radf5_5l@la(oz,ﬁ)ozoc, V oa,BezZ", (4.5)
where 3, & € Z,, 1, a1, B2, 0y € Z .
Theorem 4.1 Suppose q = (gi ;)7 ;= satisfies (4.4). Set | = Z/mZ = {1,2,...,m}.
Then @ = @(1)(0) has a vertex operator representation R on the Fock space Vg, so that for

any a = (aq, ..., ) € Z", we have

m
R( Z tpta Zn €j—a; — w . [eeJ'—al—e]'ZEj_al_€j+1_6a1’0(qa>_6j(1 - qOZ)—(;&l,O.
peZ J=1
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- exp ( _ Z (Ej—ou (p) _pq_ Ej(p))z—p) exp ( — Z (Ej—oa (p) —pq_ Ej(p))z_p)}’
re-IN pelN
if ¢°#1 or a; #0, (4.6)
R(c)=m, R(tyt*) = Zw—mz Cif ¢® =1 and Gy =0,

where &y € Zr,. Via (3.19), Vo, is a weight module over Cy, and

chV, = (32 a2 g1, (4.7)

acQr

Proof. 1t is straightforward to verify that the following linear map is a Lie algebra homo-

morphism:
7:Cq — Arxao(e),
0;.00a7.00a5.0(1 — 0ga
= Yol — ) Y gk ¢ Sl e
j=1 keZ 4
c — mc.

If ¢* # 1, using Ry in Theorem 3.1 we deduce that

R( Z (t'gta)z_k) = Ry( Z T(tlgt’l)z_k)
ke ke

“ 0%.005.00a5.0MC
— —k ]Ol2 —pa Tp—k,p k,0Y%7,0%3,0
- Z Z RO Z E] a1 _ej) Z q E] 011]+ a

ke J=1 pe 1=q

(6%
ke J=1 pe q

- m i e ) , (50[—17 C
= > Y wn(ema — ) (RO( 2 () + ’“10_ : ))

(letting 2z = z,20 = ¢“z in (3.23) for Ry)

m

= DG = )y 2T (1 ) O

3 (€j-as (P) — 7™ (p))z_p) > (€j-a1(P) — 47"¢;(p)) -)].

pE—ﬂV p peﬂ\] p
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The other formulas of (4.6) are quite clear. To see that V), is a weight module over qu’ we

need to show that

z0

[R(do), R( D (851%)2"")] = R( Y (85t7)p="") = =5~ R( 3 (t6t")="7),
pe pe pe

similar to Theorem 3.4, which can be verified by using (3.17) and

zﬁzo‘ =a(0)2% V a€ Q.
0z

Other parts of the theorem follows easily. Thus we complete the proof of this theorem. 1

Remark 4.2. The embedding (4.8) without center is inspired by the following string
representation of Cy on €™ = ®,_ jezCvi; given by

(5" )iy = w207 Vi, jp- (4.9)

Remark 4.3. The Lie algebras considered in Theorems 3.2 and 4.1 are not isomorphic.

Indeed, it follows by examining the maximal abelian subalgebras M satisfying ¢ ¢ [C'q, M.

But some of them have isomorphic quotients.

Theorem 4.4 In addition to the assumptions in Theorem 4.1, if one of the following holds

then C,-module Vg, in Theorem 4.1 is irreducible:
(1) {q* = qi'b---anbla = (a1, aa, ..., an) € ZZ"} is infinite;
(2) there exists a = (..., ) € ZZ" such that m|aq, (aa,m) =1 and ¢* = 1.

Proof. Claim 1. ¢;(1) € U(R,,(C,)), the universal enveloping algebra of R,,(Cy), V j €
Il e Zz\ {0}.

If Condition (2) holds, Claim 1 follows from the third equation of (4.6), furthermore,
€;(0) € U(Rm(C,)), ¥ j € 1. Next we suppose Condition (1) holds. Fix [ € Z. Then the set

{¢° =@t anb|a = (a1, ...,an) € Z" with mla; — [} is infinite. For each a = (a1, ...a,) €

Z" with mlay — 1, let

fj(qa7 l, Z) _ U(Ej—al . Ej)eej_al_Ejzej-_al—e]-—i-l—&al,o (qa)—ej-(l . qa)—&;l,o,

z
pE—W p pEW p

exp(— 3 (€j-ai (P) — 47"€;(p)) Pexp(— Y (65-ar (P) — ¢ 7€;(p)) ),
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where ¢% = q1')...q,% and we require ¢* # 1 if a; = 0. For any v € Vp,, from (4.6) we know
that
> w72 fi(q%, 1, 2)v € (R (C)V)[2,27Y, Y l € Z,a € Z".

J=1

Note that f;(¢%[,z)v € Vg,[z,27"] is indeed a vector valued function of ¢*. Thus using

Lemma 3.5, we see that, for any j,

fi(@™, 1, 2)v € (Rn(Cv)[2, 271, Y I € Z,a € Z" v €V, (4.10)

It is clear that, for any j,

[f1(a%,0,21), fi(47*, 0, 22)]v € (Ru(U(Co))v) |21, 257,
VaeZ" with mlag,qth...qp0 #1, ¥V ve Vg, (4.11)

As in the proof of Theorem 3.6, we have

’ N —p —p zZ
[£i(a%,0,20), £i(a7%,0,20) = > ¢ ("™ — D)e;(p + )z P25 " + (DO)( (fz ).
p,p’GZ q =
Since Condition (1) holds, then
Ej(p) S Rm(U(L))7 VpeZ \ {0}7J SR (412)

Claim 1 follows as well.
Claim 2. eﬁi_ﬁjzﬁi_eﬂ'qﬁaj)q € URn(C))[z,27"], Vi,jel.

Equation (4.10) with a; # 0 holds even when Condition (2) is true. Indeed, it follows from
the fact

ad(€;(0))*R( D" (tht*)2 ") € (U(Rm(Cy))v)[z, 27 "], V k€ IN,a € Z™ with & # 0.
pe

From (4.10) with &; # 0 and Claim 1, we know that, if a; # 0, for any v € Vj,,

€5 —€; —OIE; _ €i—a1\D) — q—p(al,O...O)E, P B
eej*ln_ﬁjz e Jql,Ol v = n(fj—al - Ej)z ! €Xp ( Z ( J ( ) ]( ))Z p)_
pe—IN p
. _ . —p(a1,0...0) . .
.fj(q(al,o...o),ah Z) exp ( Z (Ej—oa(p) qP Ej(p))z—p)v e (U(Rm(Cq))U)[Z,Z_l].
peIN

18



Thus

Cesay—e,27 910" € (U(Rm(Cy))[z, 27

Claim 2 follows.

Now we are ready to show the irreducibility of @vq—module Vo,. Suppose W is a nonzero

div'q-submodule of V,. Then d acts diagonally on W. From Claim 1 we can choose a nonzero

weight element in W of the form
w=> ue €W, (4.13)

where u; € S(ﬁf), vi € Qp, such that r is minimal.

Suppose r > 2. We see that any two of ~;’s are distinct and

(vilvi)
2

(71lm)
2

deg(uy) — = deg(u;) — , Vi=1,..,r

Since y; # s, there exist k,l € I such that

(ex — almn) # (ex — alr2).

From Claim 2, we deduce that

eﬁk_qzﬁ’f_qqgak)ﬁjw = eler — e, %-)z(ﬁ’ﬂ_e”““)qgak)(ﬁjW)ui @ e Ut e Wiz, 271, (4.14)
i=1

Since the powers of z in the right hand side of (4.13) are not the same, we get a nonzero element

in W which has expression like in (4.13) with smaller 7. This contradicts the minimality of

r. Consequently » = 1. From Claims 1 and 2, we know that any nonzero element u ® e” can

generate the whole @vq—module Vo, where u € S(HI_), v € Q, thus W = Vg,. This completes
the proof of this theorem. I

Next we shall construct level mr vertex operator representations for the algebra d/j’\q(l) (r)
for any positive integer r defined in (4.5). For any k € {1,2,...,r}, let [ = I, ={1,2,...,m}.
For each I, along from (3.3) through (3.21), similarly we define P;, = @jeIZegk) with the
standard bilinear form, Q;x = @i,jeliZ(egk) — e§-k)), Hx and ]:[I(k> (with the same ¢, dp),
the operators eg € EndC|[Q;w] for any f € Qw, the operators (0) € EndC[Q;w)] for any
B € H,w, the operators z° € EndC[Q;w][[2]] for any 8 € Q) (operators for different k are

commutative), and the vector space

VQ = C[QI(k)] ®S(HI_(k)).

1(k)
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Then we have the tensor product
(VQI)T = ®§:IVQI(;C)‘ (415)

(1
Thus we have the representation R*) of Cq( )(0) on each Vg . in the sense of Theorem 4.1.
Theorem 4.12 Suppose wy,, ¢ = (¢ ;)= are given as in Theorem 5.8, 1 € {1,2,...,n}.
For any positive integer r, let I; = ZZ /mZ = {1,2,...,m} fori € {1,2,...,r}, let w, be the

(1
primitive root of unity of order r. Then Cq( )(7’) has a vertex operator representation R on
the Fock space (4.15) so that for any o = (o, ..., ) € ZZ", we have

ROUS (1177 = St S, )t
pe

RO ONErS *)
Jean, g (240 (1 gyt

((B) —parc(h O R—)
ep(- % (60, () pq (p))z_p)exp(_ 3 (6,20, (P) pq i () )],
pE—]]V peﬂ\]

if ¢*#1 or ag #0, (4.16)

Rff)(c) = mr, R,El)(téta = Z ko‘lZw_“Q k ), if ¢* =1 and a3 =0,
k=1

where &y € Z,. Via (3.19), (Vg,)" is a weight module over @v'q(l) (r) and

ch(Vo,)" = (X a2y ga=ty. (4.17)

acQr

—~ —(
Proof. We denote by R*) the vertex operator representation of C, = Cq( )(O) on Vg ) in

the sense of Theorem 4.1. We still use R*) to denote the extended representation of G/Z\'q on

®i1VQ, > for example,
RVt =RVt ®1®..1,
ROt =12 RYt®1®..®1.

Thus we have

[R®) (%), R (t*)] = 64 ;[(0 (v, @') — o (o, a)) RF) (12+)

20



0 radffsao —af0a1,~a, O, —a, 0 (@, oYmag], ¥V a,a € Z".
From (4.6) we know that

T

R(t%) =Y w M RW (%) ¥ o € Zm.

k=1

Then for any o, ' € Z"™ we deduce that
T T

[Ro(1), By(t)] =[S0 wr ™ RO (1), 3" wr RO (1)

k=1 k=1
Z HereD (R (1), R® (1)

—k(aj+a))

wr No(a,a') — oo, ))RP (12+9) 4 0oy o rad f9a0,—ay 0a1,—a} Oaz,—ay 0 (€, & )mav]

= (o(a, o) — o(a/, a)) RO (t2+) 4 0oy o rad £ 91— 00, 0a1,—a) Oan,—ay 0 (0, & )mray
= RS]) ((U(a, O{/) — U(a/, a))ta+a, + §Oc+oc’,radf6dl7_5‘250407_0‘{)50—‘17_0_/1 (5@2’_5[’20—(05, O/)OKOC)
= RO ([t 1),

—(
where &y, —&; € Z, ay,d), qe, —a4 € Z,, and the last bracket is in Cq()(r). So RV is a

representation of @vq(l) (r). The character formula (4.17) is clear. Thus we proved the theorem.
|

Like in Remark 3.7 for R,, in Theorem 3.4, some representations R{) of @V’q(l)(r) are irre-

ducible. Now we give some sufficient conditions for R to be irreducible.

Theorem 4.13 The vertex operator representation RV of CN'q(l)(r) in Theorem 4.12 is
wrreducible if one of the following holds:

(1) (m,r) =1 and there exists & = (aq, ..., ) € ZZ" such that m|ay, (ay, 1) = (ag,m) =1,
and q¢“ = 1;

(2) 1 > 2 and the set {q¢* = q7p...qnbla = (o, ..., o) € Z"} is infinite;
(3) 1€ {1,2}, (m,r) =1 and the set {¢* = ¢7'h...qy |l = (o, ..., an) € Z"} is infinite.

Proof. The proof of this theorem is very similar to that of Theorem 3.6. So here we only
outline the proof for Cases (1) and (2).
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(1) From the hypothesis and the third equation of (4.16), we deduce that e§-k)(i) €

U(R(l)(a](l)(r))), the universal enveloping algebra of Rﬁl)(@(l)(r)), Vijelie Zke

T

{1,2,...,r}. From

ad(eM(0) RO(S (t51)277) € URD(C," M)z, 7Y, ¥ i € IN,a € Z" with ay £ 0,
pe

we deduce that, if a; # 0, then

® B —aqe® k) ey IO
€€(k) _6(_k)Z€j7a1_€j qLOl i Z—l eXp( Z ( j—on (p) 1o € (p))Z_p)'
R pe—IN p
k —pay (k
P p) — g™ ) .

peIN p
Thus

(B B (i—j)elt —~ (1)

em_wzt T qg € URDC, (N))z 27", Vit ] € Zn.

Suppose W is a nonzero @vq(l) (r)-submodule of (Vg,)". Then dy acts diagonally on W. We

can choose a nonzero weight element in W of the form

w=>Y ue eW, (4.18)
i=1

where u; € S(®§:1]:Ifj),% € ®_,Qw), such that r is minimal.
Repeat the last paragraph of the proof of Theorem 4.12 we see that W = (Vg,)".

(2) From the hypothesis we know that for any fixed sy, 52, 5;, the set {¢® = ¢7'p...qnb|la =
(v, .y an) € Z" with a; = s;(mod m), ag = sy(mod m), oy = s;(mod r)} is infinite. Using

Lemma 3.5 we deduce that

k) _ () 5. (k) _
7@, 2) = e O TN (g) TG (1 — gt) e
&
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(k)

E(k) _ —POIE(.k) € _ —paE(k)
ep(— X (€= (P) pq j (p))z_p) exp (= 3 (€0, (P) pq i () )
pE—]]V pE]]V

e URV(C))[z,27Y, ¥V ae Z" with ¢ #1 or a #0.
For any o € Z" with oy = 0(mod m) and ¢* # 1, similar to (4.12) by computing
17 (@ 20), £ (e 22)] € UBRY(C))[z. =,

we deduce that
€ (p) € Ru(U(L)), ¥ p € Z\{0},j k. (4.19)
Similar to Claim 2 in the proof of Theorem 4.11, we can also show that
&) _ (k) (i—5)e

eeqk)_e(_k)zei G 10 NS U(RTZ)(@))[Z, Z_l], Vijel, VEk.

Then we repeat the remaining discussion for Condition (1) to see the irreducibility of the
representation. ]

Remark 4.14 If we assume that ¢'...q,%5 = 1 implies o = (a1, a2,...,a,) = 0, then

div'q(l)(r) ~ C;l)(r) ~ ¢, and d/j’\q(l) (r) ~ C’g) (r) ~ C, for all the algebras discussed in this

section, and all the modules constructed in this paper for these algebras are irreducible.

85. Highest weight modules

For brevity, we denote L = C, , C,, C’g) (r), C’g) (r), defined by (1.6) and (1.6’) under the
condition (1.5), or defined by (4.5) under the condition (4.4). With respect to dy, L has the
Z-gradation (1.7). Let L, = @z’eZ+Li7 L_ = ®;-0L;.

Now we define highest weight modules over L. Suppose ¢,d € C, A = (M) where A\, € C,

a= (o, ..,a,) € Z" (A € C can be arbitrary if ¢* = 1). We can define the 1-dimensional
L. -module Cv via

Livg=0, if i > 0; cvg = cvg, dv = duvg, t®vg = a0, ¥V o € Z". (5.1)
This implies that [Lg, Lo|vg = 0. Then we have the induced L-module
V(A ¢ d) =Ind;*Cuy = U(L) @u(L, +1o) Co,

where U(L) is the universal enveloping algebra of the Lie algebra L. It is clear that, as vector

spaces, V(\, ¢,d) ~ U (L_). The module V ()¢, d) has a unique maximal proper submodule
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J. Then we obtain the irreducible module

V(A é d)

V(A éd) = 5

(5.2)
It is clear that V(A, ¢, d) is uniquely determined by the parameters \, ¢, d. Since the structure
of V() ¢, d) is independent of d, so we shall always assume that d = 0, and simply denote
V(A ¢, d) by V(A ¢). Generally, not all weight spaces of V(A ¢, d) are finite-dimensional.
Recently, the necessary and sufficient conditions for V'(, ¢) to have finite-dimensional weight

spaces were determined for n = 1 in [RZ]. All the modules constructed in Sections 2 and 3

have finite-dimensional weight spaces. The following result is quite clear.

Theorem 5.1 (a) In Theorem 2.2, B ~ V (X, 1,0), where A\, = q{_t;: foralla = (aq, ..., ap)
e Z" with ¢* # 1, and A, = m otherwise. The highest weight vector in B s 1.

(b) In Theorem 3.6 (or 3.4), S(H; ) ~ V(X\, m,0), where

m —joa
Z i = 501170(# Vo= (ag,.an) € Z" with ¢* # 1,

and Ao = 0 otherwise. The highest weight vector in S(Hy ) is 1.

(¢) In Theorem 4.4 (or 4.1), Vo, =~V (X, m,0), where

w ]012 m )
a = 04102 = Oél 0(55[270@, V o = (Oél,...,Oén> - Zn wzth qa 7é 1,

and Ao = 0 otherwise. The highest weight vector in Vg, is 1 ® 1.
(d) In Theorem 4.6 (or 4.5), (Vg,)" =~ V (X, mr,0), where

ISP DD pre.
o =050 wT—zal m .
T4 j=1 (1—¢q%)
mr
= 56{1’05&2’06@’0@7 Y a= (O{l, ...,Oén) S 7" with qa 7A 1,

and A\, = 0 otherwise. The highest weight vector in (Vg,)" is 1 = (1®1)".

We cannot ignore the fact that the character formulas in Theorems 3.2 and 4.1 are the
same. This coincidence suggests that some isomorphism may exist. This is indeed the case.
In Theorem 3.2 we know that Vg, is an irreducible highest weight module with highest weight
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vector 1 ® 1 by the following sense

(E;j(tht")(1®1) =0, if ke N,

(Eij(tot*)(1®1) =0, if i#}j,

c(l®l)=1, (5.3)
1®1 . e

(Eoalt) 1 @1 = {&—qg}’ EE

for all & = (a1, a9, ..., ) € ZZ. Now we construct a new quantum torus Cy, from C, in Theo-
rem 3.2 as follows: C,, is generated by generators t3', B+ F*! 37! +%1 where tg, 1, ..., has
the same relations as in €, ' and F' commute with ¢y, ¢, ...t,, but EF = w, 'E. Homogeneous
elements in Cy, are written as t5° E“ F*2t%. t0+2 for a = (o, a1, Ao, 3, ...Qpp0) € 73,
Then we have the irreducible highest weight a;,—module with highest weight vector 1 ® 1 in
Theorem 4.1 such that

Yu®nzm(wEMMﬁxﬁmm®U:mif%eW;

L ST A (5.4)
0 oy o 403 Qn42 — a1,0 ag,O(l_qa)> )
(Lo B et o)1l ® 1 0 if =1

where ¢* = ¢1'%...q, 5. Via the Lie homomorphism

g~lm(Cq> - /;7
C — ﬁ, do — do, (55)
Ei,j(tlgt“) — %t'gEj_i(w,;jF + (W IF)2 4+ .+ (W I )™t tom,

one can verify that the modules defined in (5.3) and (5.4) are the same. Thus the module in
Theorem 3.2 is a module in Theorem 4.1 with ¢, 9 = ¢20 = 1. Thus we have proved

Theorem 5.2 The module in Theorem 3.2 is a module in Theorem 4.1 with q1o = q20 = 1.
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