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Abstract

Let R* denote the group of units of an associative algebra R
over an infinite field F. We prove that if R is unitarily generated
by its nilpotent elements, then R* satisfies a group identity precisely
when R satisfies a non-matrix polynomial identity. As an application,
we examine the group algebra F'G of a torsion group G and the re-
stricted enveloping algebra u(L) of a p-nil restricted Lie algebra L.
Giambruno, Sehgal and Valenti recently proved that if the group of
units (F'G)* satisfies a group identity then F'G satisfies a polynomial
identity, thus confirming a conjecture of Brian Hartley. We show that,
in fact, (FG)* satisfies a group identity if and only if F'G satisfies a
non-matrix polynomial identity. In the case of restricted enveloping
algebras, we prove that u(L)* satisfies a group identity if and only if
u(L) satisfies the Engel condition.

1 Introduction

Let R be an associative unitary algebra over a field F' of characteristic p > 0.
Recall that R is said to satisfy a polynomial identity whenever there ex-
ists a nontrivial element f(zi,...,z,,) of the free F-algebra generated by
{z1,x9,...} such that f(ry,...,r,) = 0 for all r; € R; whereas, the group
of units R* of R is said to satisty a group identity if there exists a nontriv-
ial word w(y1,...,ym) in the free group generated by {y1,¥s, ...} such that
w(Ui, - -, Uy) = 1 for all u; € R*. There is ample evidence in the literature
to suggest that there may be some general underlying relationship between
group identities and polynomial identities. For example, Gupta and Levin



proved that R* is nilpotent whenever R is Lie nilpotent; Smirnov and Za-
lesskii established the fact that R* is soluble whenever R is Lie soluble (if
p # 2); and Shalev proved that R* satisfies the Engel condition whenever R
does ([GL],[ZSm],[Sm],[Sh1]). In the other direction, it follows from a result
of Valitskas ([V]) that a radical algebra over an infinite field is a Pl-algebra
whenever its adjoint group satisfies a group identity. In radical algebras the
adjoint group R° of R with the group operation given by x oy =z +y + xy
plays the role of the unit group in a unitary algebra. Also along this vein,
Giambruno, Sehgal and Valenti ([GSV]) recently confirmed a conjecture of
Brian Hartley by proving that the group algebra F'G of a torsion group G
over an infinite field F satisfies a polynomial identity whenever (FG)* sat-
isfies a group identity. Subsequently, Passman ([Pa2]) gave necessary and
sufficient conditions for (F'G)* to satisfy an identity (c¢f. Theorem 4.1).
Two questions thus seem immediately relevant:

1. Does R* satisfy a group identity whenever R satisfies a PI?
2. Does R satisfy a PI whenever R* satisfies a group identity?

However, it quickly becomes clear that these questions are posed too gener-
ally. Indeed, free algebras have only the trivial units corresponding to F'*;
and M, (F'), the algebra of 2 x 2 matrices over F', satisfies the standard poly-
nomial identity of degree 4 even though GLy(F') contains a non-abelian free
group whenever F' contains a transcendental element. Thus it is natural to
concentrate on algebras containing many units, and on polynomial identities
not satisfied by matrices. A polynomial identity not satisfied by My(F) is
called a non-matrix identity. It follows from well-known results that when-
ever R satisfies a non-matrix identity, then R* satisfies a group identity.
Namely, we have the following (we use brackets to denote Lie commutators
and parentheses to denote group commutators):

Proposition 1.1 Let R be a unitary algebra over a field of characteristic
p > 0. Suppose that R satisfies a non-matriz identity. Then

1. R* is soluble if p = 0; and,
2. R* satisfies an identity of the form (yi,y2)? =1 if p > 0.

In any case, R* satisfies a group identity.



Proof. Suppose first that p = 0 and R satisfies a non-matrix identity. Then
by a theorem of Kemer, [Ke], the ideal in R generated by the Lie commutators
of the form [[a, b], [c, d], €] is nilpotent. So, in particular, R is Lie soluble, and
hence by Smirnov and Zalesskii’s theorem mentioned above we find that R*
is soluble.

Now suppose that p > 0 and R satisfies a non-matrix identity f, say. Let
A be the relatively-free algebra of rank 3 in the variety satisfying f. Then
A is a finitely generated Pl-algebra, so that by a theorem of Razmyslov and
Braun, [Br|, the Jacobson radical J(A) of A is nilpotent. Also, A/J(A)
is a semiprimitive Pl-algebra satisfying a polynomial identity not satisfied
by M,(F'); consequently, A/J(A) is commutative. Therefore, A satisfies a
polynomial identity of the form ([z1, x]z5)”" = 0 for a suitable ¢. It follows
that R also satisfies ([, zo]z3)? = 0, and so R* satisfies

t

t t _ _ t _ —
(yla yz)p -1= ((?Jl,yz) - 1)p = (yly2y1 1?/2 t— 1)p = ([yl,yz]?h 11/2 l)p =0.

|

The primary goal of this paper is to demonstrate that the converse to
Proposition 1.1 holds for the class of nil-generated algebras over an infinite
field. Let N(R) denote the set of nilpotent elements in R. We say that
a unitary algebra R is nil-generated if it is generated by {1} UN(R). For
example, M, (F) is nil-generated, as is the group algebra of a group generated
by p-elements.

Theorem 1.2 Let R be a nil-generated unitary algebra over an infinite field
of characteristic p > 0. If R* satisfies a group identity, then N'(R) forms a
locally nilpotent ideal and R satisfies a non-matriz identity.

As a consequence of Proposition 1.1 and Theorem 1.2, we obtain the following
characterisations:

Theorem 1.3 Let R be a nil-generated unitary algebra over a field of char-
acteristic 0. Then the following statements are equivalent:

1. R* satisfies a group identity;

2. R satisfies a non-matriz identity;



3. R s Lie soluble; and,

4. R* is a soluble group.

Theorem 1.4 Let R be a nil-generated unitary algebra over an infinite field
of characteristic p > 0. Then the following statements are equivalent:

1. R* satisfies a group identity;
2. R satisfies a non-matrix identity;
8. R satisfies the polynomial identity ([x1, z2)z3)?" = 0 for some t; and,

4. R* satisfies the group identity (yl,yg)pt =1 for some t.

The following corollary is an analogue of the classical theorem of Kaplansky
([Ka]), which states that every nil-algebra satisfying a PI is locally nilpotent.

Corollary 1.5 Let R be a nil-algebra over an infinite field. The adjoint
group R° of R satisfies a group identity if and only if R satisfies a non-
matriz identity. In this case R s locally nilpotent.

Proof. It is well-known that R can be embedded into a unitary F-algebra
Ry in such a way that {1} U R generates R; and R} = F* x R°. Theorems
1.2-1.4 now imply the result. O

As a further application of Theorem 1.4, we are able to study group
algebras F'G where G is any torsion group, and restricted enveloping algebras
u(L) where L is any p-nil restricted Lie algebra. In particular, we deduce
that (F'G)* satisfies a group identity if and only if F'G satisfies a non-matrix
identity; whereas u(L)* satisfies a group identity if and only if u(L) satisfies
the Engel condition. These results are detailed in Sections 4 and 5.

2 Existence of a polynomial identity

The following result, Corollary 2.2 of [GSV] (¢f. Proposition 1 of [GJV]),
plays a crucial role in the proof of our Theorem 1.2.



Lemma 2.1 Let R be a semiprime algebra over an infinite commutative do-
main, such that its group of units R* satisfies a group identity. Then for
every nilpotent element a € R, bc = 0 = bac = 0.

Let L(R) denote the Levitzki radical of the algebra R; that is, the unique
maximal locally nilpotent ideal in R. Then R/L(R) is semiprime (see Section
10 of [L], for example) and £L(R) is contained in N (R), the set of all nilpotent
elements in R.

Lemma 2.2 Let R be a nil-generated unitary algebra over an infinite field.
If R* satisfies a group identity, then L(R) = N(R). Consequently, R =
F -1+ N(R) and every finite subset of N'(R) generates nilpotent subalgebra
in R.

Proof. Let R = R/L(R). Because L(R) is contained in the Jacobson radical
J(R) of R, R* is a homomorphic image of R* and, hence, satisfies the same
group identity. We claim that A/(R) = 0.

Let b, ¢ € R be such that b¢ = 0. By induction, it follows that whenever
T1,...,7x € R then bry ...7¢ = 0. Indeed, we know that (bry...7x_1)¢ =0
and hence Lemma 2.1 yields the result. Since R is nil-generated, it follows
that bRRe = 0.

To show R has no nontrivial nilpotent elements, it suffices to show that
the only square-zero element in R is 0. Suppose then there exists Z € R with
z? = 0. The above argument yields ZRZ = 0, so that RZR is a nilpotent
ideal. Hence Z = 0 and it follows that A'(R) = 0, as claimed. This implies
L(R) = N(R). O

Proposition 2.3 Let R be a nil-generated algebra over an infinite field. If
R* satisfies a group identity, then R satisfies polynomial identity.

Proof. Let w(y1,...,y,) = 1 be a group identity for R*. Put k£ = F[t| and
let A denote the completion of the free associative algebra k{xz1,...,z,}.
The free group F,, = (y1,...,yn) embeds into A by the well-known Magnus
argument via the map ¢ induced by ¢(y;) = 1+tx; (¢f. [MKS], Section 5.5).
It follows easily that

1 7é <,0(w(y1, s ayn)) =1+ i tmpm(xl, . -:xn),

m=1



where each p,(x1,...,2,) is a homogeneous element of degree m in the

free algebra F'{x1,...,z,}. Not all these elements can be trivial, so assume
Do (T1y -y Tp) #0in F{xq,..., 2}
Now consider S = (rq,79,...,7,), the subalgebra in R generated by arbi-

trary elements rq, ..., 7, in N(R). Then S is nilpotent by Lemma 2.2, and so
for each A € F' the map t — A, ; — r; induces a well-defined epimorphism
1 from the augmentation ideal of A to S. Since w(yi, ..., y,) = 1 is a group
identity for R*, upon application of 1) we obtain

o
L=w(l+Ar, 14+ Arg, ..., 14+ Ary) =14 > N™"pp(r1, ..., 70)

m=1

for each A € F. (The sum is finite.) Now, using the fact that F' is infinite, a
routine Vandermonde matrix argument implies that each py,(rq,...,r,) = 0.
Thus pp,(z1,...,2,) = 0 is a polynomial identity for S, and hence for all
of N(R). But R = F -1+ N(R), so that py,([z1,22],-- -, [T2n—1, Z2,]) is a
nontrivial polynomial identity for R. O

3 Existence of a non-matrix identity
To complete the proof of Theorem 1.2, it remains to prove the following:

Proposition 3.1 Let R be a nil-generated algebra over an infinite field F'. If
R* satisfies a group identity w(yi,...,yn) = 1, then R satisfies a non-matriz
identity.

Proof. Recall that R is a Pl-algebra by Proposition 2.3. To establish the
statement about the existence of a non-matrix identity is more involved and
we shall require some reductions (cf. proof of Proposition 1 in [GJV]).

First let us point out that it is enough to show that N(R) satisfies a
non-matrix identity as R is a commutative extension of N (R) by Lemma
2.2.

Next, using that the fact that the derived subgroup of a free group of rank
2 is free of countably-infinite rank, we may also assume that w is a word in



two variables only. Furthermore, the substitution y; = y1y2 and y, = Y211
allows us to assume that R* satisfies a group identity of the form

w(y1,y2) = (192)* (y2y1)™ -+ (y12) " (y2u1)™ (y1y2) ¥+ =1,

where j > 1 and the integers «; and 3; are nonzero with the possible exception
of aj 1. The Magnus representation of w now becomes

o
wl+z,1+29) =1+ Z Pm(T1, T2).

m=1
As is in the proof of Proposition 2.5, it follows that AN'(R) satisfies each of
the polynomial identities p,,(z1,x2) = 0 (some of which may be trivial). In
order to prove the proposition, it suffices for us to show that at least one of
the p,, is not also satisfied by My(F). Let us suppose then to the contrary.
It follows from the Magnus representation of w that w(1 + a,1+b) = 1 for
each choice of nilpotent a,b in M, (F). Notice as well that a? = 0 implies
that (14 @)™ = 1 + na, for each integer n. It is easy to see that the reduced
form of w is of the type

)
w(y, y2) = y'ys' - - - ylPyoky Y,

where £ > 1 and the integers 7; and §; are one of 1,—1,2 or —2 with the
possible exception of 7.1, which is one of 1, —1 or 0. Now fix two square-zero
elements a,b € My(F). Then for every A € F' we have

w14+ Aa, 1+ Xb) = (1+711Aa) (14 51 Ab) - - - (1 +yeAa) (1 4+ 0xAb) (1 + Y1 Aa).

But we also have

I
w(l4+Aa,1+Ab) =14 > A"p(a,b),

m=1

where [ = 2k+1 unless 7,41 = 0, in which case [ = 2k. Comparing coefficients
of \! we find that

(7172 -+ - k) (8162 - - - 6) (ab)*+ = 0.

In the case of characteristic p # 2, this yields (ab)¥*! = 0, which leads to the
desired contradiction; for example, set a = e1o and b = eo.
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It remains to consider the case of characteristic p = 2. Making the
substitution y; = 1y and y» = y;ys into the reduced form of w above
allows us to assume that R* satisfies the following word:

wo (Y1, Y2, Y3) = (1y2) ™ (193)™ -+« (y1y2) ™ (y1y3) " (y1y2) T+

Let us represent wy by

oo

wo(l+ 21,1+ 29, 14+ 13) =1+ Z Gm (71, T2, 73).

m=1

As argued above, it suffices to show that M,(F) does not satisfy some gy,.
Therefore, let us suppose otherwise and fix two square-zero elements a,b €
M,(F). Using the fact that the characteristic is 2, it is easy to check that
a+ ba+ ab—+ bab also has square zero. Evaluating the Magnus representation
tells us

wa(l+ Aa, 1+ Ab, 1+ A(a + ba + ab + bab)) = 1.

Notice that in the reduced form of wo(y1,¥y2,ys) the variables appear with
exponents 1 or —1 only. Then because (1 +a)™' =1—a =1+ a, elc., it
follows that we(1+ Aa, 1+ Ab, 1+ A(a + ba + ab + bab)) is merely an ordered
product of the terms 1 + Aa, 1+ Ab, and 1+ A(a + ba + ab + bab) in which
no two consecutive terms are equal. The triviality of the coefficient of the
highest power of A appearing in the resulting expansion leads to the fact that
(ab)t = 0 for some suitable ¢ > 0. This in turn gives the desired contradiction.
O

4 Group algebras

Let us now consider group algebras F'G of a torsion group over an infinite
field F of prime characteristic. In [GSV] it was shown that whenever (FG)*
satisfies a group identity, then F'G satisfies a polynomial identity. Passman
([Pa2]) subsequently characterised all torsion groups G such that (FG)*
satisfies a group identity. We are able to extend these results as follows:

Theorem 4.1 Let F'G be a group algebra of a torsion group over an infinite
field ' of characteristic p > 0. Then the following are equivalent:

8



1. (FG)* satisfies a group identity;
2. FG satisfies a non-matrix identity;

3. G contains a normal subgroup A such that G/A and (A, A) are finite,
and (G, Q) is a p-group of finite exponent;

4. [FG,FG|FG is nil of bounded index; and,
5. (FGQ)*,(FG)*) is a p-group of finite exponent.

Proof. Assume that (1) holds; we shall deduce (2). Let X be the set of p-
elements in G and write P for the subgroup of G generated by X. Then the
group algebra F'P is nil-generated and (F'P)* satisfies a group identity. From
Lemma 2.2 it follows that N (FP) is a locally nilpotent maximal ideal in F'P.
Therefore N (FP) coincides with the augmentation ideal of FP and P is a
locally finite p-group. Using the normality of P in G, it follows that the ideal
N(FP)FG in FG is also locally nilpotent. Now, according to Corollary 1.5,
N (FP)FG satisfies a non-matrix identity as the adjoint group of N (FP)FG
satisfies the identities of (F'G)*. Also, because the kernel of the canonical
projection FG — F(G/P) is N(FP)FG, it follows that (F(G/P))* satisfies
a group identity. Since G/P is a p'-group, it follows that G/P is abelian as
is shown in the semiprime case of [GSV]. Now F'G satisfies some non-matrix
identity by the fact that it is a commutative extension of an algebra satisfying
a non-matrix identity.

The equivalence (1) < (2) now follows from Proposition 1.1. (1) = (3)
is the statement of Lemma 2.4 in [Pa2]. The implication (3) = (4) follows
as in the proof Lemma 3.3 in [Pa2]. The remaining implications, (4) = (5)
and (5) = (1), are clear. O

5 Restricted enveloping algebras

Let u(L) be the restricted enveloping algebra of a restricted Lie algebra L
over a field F' of characteristic p > 0. Restricted enveloping algebras sat-
isfying a polynomial identity were characterised independently by Passman
and Petrogradski in [Pal] and [Pe]: see Lemma 5.3 below. A restricted Lie



algebra L is said to be p-nil if for every x € L there exists a natural number
n such that 2P = 0. We are interested here in characterising p-nil restricted
Lie algebras L for which u(L)* satisfies a group identity. It follows from
Jacobson’s restricted analogue of the Poincaré-Birkhoff-Witt Theorem (see
[J]) that for such an L, u(L) is nil-generated. Therefore, according to The-
orem 1.4, u(L) satisfies a non-matrix identity precisely when u(L)* satisfies
a group identity. More specifically, we have:

Theorem 5.1 If L is a p-nil restricted Lie algebra over an infinite field of
characteristic p > 0, then the following statements are equivalent:

~

u(L)* satisfies a group identity;

o

u(L) satisfies a non-matriz identity;

o

. [L, L] is bounded p-nil and L contains a restricted ideal A of such that
L/A and [A, A] are finite-dimensional;

B

. u(L) satisfies the Engel condition; and,

u(L)* satisfies an identity of the form (y{’t,yQ) =1 for somet.

©

In fact, in Theorem 5.1 we need only assume that L can be generated by
p-nil elements.

Corollary 5.2 Let L be a virtually-(p-nil) restricted Lie algebra over an infi-
nite field. If u(L)* satisfies a group identity, then u(L) satisfies a polynomial
identity.

Observe that some precondition on L is required in Corollary 5.2; indeed,
the restricted enveloping algebra of a free restricted Lie algebra is a free
associative algebra, and so has only the trivial unit group F*.

To prove Theorem 5.1, we shall make use of the result of Passman and
Petrogradski mentioned above:

Lemma 5.3 Let L be a restricted Lie algebra. Then its restricted envelop-
ing algebra u(L) satisfies a polynomial identity if and only if L possesses a
restricted ideal (or subalgebra) A such that

1. A has finite codimension in L, and
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2. [A, A] is finite dimensional and p-nil.
We shall also require Theorem 1.2 of [RS].

Lemma 5.4 Let L be a restricted Lie algebra. Then its restricted enveloping
algebra u(L) satisfies the Engel condition if and only if

1. L is nilpotent,
2. [L, L] is bounded p-nil, and

3. L possesses a restricted ideal A such that L/A and [A, A] are finite
dimensional.

Only implications (2) = (3) and (3) = (4) in Theorem 5.1 do not follow
directly from Theorem 1.4. To prove (3) = (4), assume that (3) holds.
Observe that the centraliser C of [A, A] in A is of finite codimension in
A, and in hence of finite codimension in L. Thus we may replace A by
C, to assume that A is nilpotent of class 2. Now L is nilpotent-by-(finite-
dimensional and p-nil). It follows from a result of Shalev ([Sh2]|, Proposition
5.1) that L is nilpotent. Now Lemma 5.4 yields the fact that u(L) satisfies
the Engel condition. It remains then to prove the following lemma.

Lemma 5.5 If L is a p-nil restricted Lie algebra such that u(L) satisfies a
non-matriz identity, then [L, L] is bounded p-nil and L contains a restricted
ideal A such that L/A and [A, A] are finite dimensional.

Proof. The existence of A follows immediately from Lemma 5.3. From The-
orem 1.4, there exists some ¢ such that u(L) satisfies an identity of the form
([x1, z2]x3)?" = 0. As argued above, L must be nilpotent. It remains to prove
that any linear combination of commutators in L is p-nil of bounded index.

Claim 5.6 For a sufficiently large integer k, L satisfies the identity

(z+y) =" +y7.
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Proof. Let ¢ be the nilpotency class of L, and choose k large enough that
pF > p'c. Consider A € F and expand (z + /\y)pk to get:

(@ + My)?* — 2" = Wy =57 Nihy(a, ),

i>1

where each h;(x,y) in L is homogeneous in z,y of total degree p*. Each h;
is a sum of elements of the form

[

where p*(3°;p%) = p* and r; € {z,y}. If @ > t then this restricted Lie
monomial is zero. On the other hand, if a < ¢, then

Yopi=pFe>ph T >pe>c+ L
J

Therefore
p1 pXy p1
P i B [ S T YN S T 1
S———— S———
p0‘2 pal
= =79, Tl ey T1, T2 e ey T2y e ey Tly e oy T
NSARGEAE N AR AL N )
pl pe2—1 pel
= 0,
being a commutator of length greater than c. O

To finish the proof of Lemma 5.5, let r;,s; be arbitrary elements in L.
Taking p* > plc as in the claim we have

(S Bilri sl = 87 [riy s =0,
as required. _

Corollary 5.2 follows by combining Theorem 5.1 with Lemma 5.3. O
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6 Concluding remark

Let us close by observing that not every nil Pl-algebra satisfies a non-matrix
identity. In light of our results, this is equivalent to the fact that the adjoint
group of a nil PI-algebra need not satisfy a group identity.

Proposition 6.1 Let F' be an infinite field of characteristic p > 0. Then
there exists a locally nilpotent associative algebra R over F such that R sat-
1sfies a polynomial identity, and yet its adjoint group R° does not satisfy any
group identity.

Proof. For the case of p > 0, consider the restricted Lie algebra L gener-
ated by the set {z,y1,5s,...,21,22,.. .}, subject to the relations: [z, y;] = 2 is
central, [y;,y;] = 0, and 2P =y = 2 =0, for all i,j > 1. Then the ideal
of L generated by {y1,ys, ...} is abelian and of codimension 1 in L. Hence,
R = L(u(L)) satisfies a polynomial identity by Lemma 5.3. Furthermore,
L is locally-(finite-dimensional and p-nil), so that R is locally nilpotent (see
Lemma 2.4 of [RS], for example). However, R° does not satisfy any group
identity for otherwise, by Theorem 5.1, [L, L] would be bounded p-nil.

Now suppose that p = 0. Consider the exterior algebra E of an infinite
dimensional F-space. Then E satisfies a PI: it is Lie nilpotent of class 2.
Therefore, R = FEQr E®r E also satisfies a PI by a theorem of Regev,
[Re]. Moreover, R is locally nilpotent since E' is locally nilpotent. It was
shown in [R], however, that R satisfies no non-matrix identity and so, by
Theorem 1.3, R° cannot satisfy a group identity. O

Notice that by Kaplansky’s theorem any nil example to this effect cannot be
finitely generated.
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