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Abstract: In this work a large number of irreducible representations with finite dimensional

weight spaces are constructed for some toroidal Lie algebras. To accomplish this we develop

a general theory of Z
n
-graded Lie algebras with polynomial multiplication. We construct

modules by the standard inducing procedure and study their irreducible quotients using the

vertex operator technics.

0. Introduction.

The purpose of this work is to construct a large class of irreducible representations,

with finite dimensional weight spaces, for some toroidal Lie algebras. Let T be a toroidal

Lie algebra. The representations of this type which were investigated up till now appear in

the context of studying some particular representations by vertex operators for T. Indeed,

the works [F], [MRY], [EM] were the first to study vertex representations for toroidal

Lie algebras and these use the homogeneous Heisenberg subalgebra while in [B1], [B2],

and [T] a representation is studied using the principal Heisenberg subalgebra of T. This

principal representation leads to an irreducible module with finite dimensional weight

spaces. (Here, and throughout the paper, we use the term ”weight space” to refer to the

various homogeneous spaces in our algebras or modules. Most of the time this notation

* Both authors gratefully acknowledge supported from the Natural Sciences and Engi-

neering Research Council of Canada.
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is transparent but when necessary, we will specify the grading in question. Often these

spaces are, in fact, weight spaces relative to a Cartan subalgebra of the algebra in question,

but there is no need to stress this.) Moreover, this principal vertex operator representation

has the property that the image of the center of the core of T (the core of T is just the

subalgebra generated by the non-isotropic root spaces) under the representation is infinite

dimensional. We let K denote the center of the core of T. Besides these vertex operator

representations some work has been done from the more abstract, Verma module, point

of view. In [BC] (see also [CF]) Verma type modules, obtained as induced modules, were

investigated and conditions were given to determine when such modules are irreducible.

However, these Verma modules do not have finite dimensional weight spaces and their

irreducible quotients are not integrable and seem very hard to work with. Moreover, for

these modules, K is represented by a single scalar c (the central charge) so the image of

K under this representation is one dimensional if c 6= 0. In the present paper we combine

these two approaches using ideas from the known vertex operator representations as well

as the basic Verma module approach of obtaining modules by first inducing and then

factoring. In the end we obtain modules with finite dimensional weight spaces and where

most of K acts non-trivially.

Before we go on to describe this work in more detail we recall some of the relevant

results from the work [B1]. Thus we let

T = ġ ⊗ C[t±1
0 , . . . , t±1

n ] ⊕K⊕D∗

be a toroidal Lie algebra where ġ is any finite dimensional simple Lie algebra over the

complex field C and C[t±1
0 , . . . , t±1

n ] is the algebra of Laurent polynomials in n+1 variables.

Also assume n ≥ 1. Here K is the Kähler differentials of C[t±1
0 , . . . , t±1

n ] modulo the exact

forms and D∗ the Lie subalgebra of the full derivation algebra of C[t±1
0 , . . . , t±1

n ] given by

D∗ = D∗∗ ⊕ Cd0 where

D∗∗ =

{
n∑

p=1

fp(t0, . . . , tn)dp

∣∣f1, . . . , fn ∈ C[t±1
0 , . . . , t±1

n ]

}

and di is the degree derivation associated to the variable ti for 0 ≤ i ≤ n. The algebra D∗

is denoted by D+ in [B1] but here it is more convenient to use D∗. Also, in [B1] there is

a cocycle which comes into play and so the usual multiplication in D∗ is adjusted by the

cocycle

τ(tr0
0 trda, t

m0
0 tmdb) = −marb

{ n∑

p=0

rpt
r0+m0
0 tr+mkp

}
,
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which maps from D∗ ×D∗ to K. Here we are using the usual notation fki for the element

of K corresponding to the differential ft−1
i dti for f ∈ C[t±0 , t

±
1 , . . . , t

±
n ]. This is the very

same toroidal Lie algebra which arose in [MRY] and [EM].

Let v = K ⊕ D∗. The algebra v has a (degenerate) Heisenberg subalgebra s with

basis
{
ti0dp, t

i
0kp, k0

}
, i ∈ Z, p = 1, . . . , n Indeed, k0 is its central element and the

multiplication in s is given by

[ti0da, t
j
0kb] = iδabδi,−jk0,

[ti0da, t
j
0db] = 0, [ti0ka, t

j
0kb] = 0,

where i, j ∈ Z, a, b, p = 1, . . . , n. This subalgebra is degenerate as a Heisenberg algebra

since [dp, kp] = 0.

The Heisenberg algebra s can be represented on the space

F = C[q±1
p , upi, vpi]

p=1,...,n

i∈N

by differentiation and multiplication operators as follows.

ϕ(ti0dp) =
∂

∂upi

, ϕ(t−i
0 dp) = ivpi,

ϕ(ti0kp) =
∂

∂vpi

, ϕ(t−i
0 kp) = iupi,

ϕ(dp) = qp
∂

∂qp
, ϕ(kp) = 0,

ϕ(k0) = Id,

where i ≥ 1 and p = 1, . . . , n.

We give the module F a Z-grading by assigning degrees of the variables in the following

way,

degupi = degvpi = −i, degqp = 0.

One extends this representation from s to v using vertex operators. Indeed,using the

usual notation from [FLM] consider the following elements of Endgr(F )[[z, z−1]] :

kp(z) =
∑

i≥1

iupiz
i +
∑

i≥1

∂

∂vpi

z−i,

dp(z) =
∑

i≥1

ivpiz
i + qp

∂

∂qp
+
∑

i≥1

∂

∂upi

z−i,
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k(z, r) = qrexp




n∑

p=1

rp
∑

j≥1

zjupj



 exp



−
n∑

p=1

rp
∑

j≥1

z−j

j

∂

∂vpj



 .

Here qr = qr1
1 . . . qrn

n . Then from [B1] we have the following result.

Proposition. The mapping ϕ : v → End(F ) given by

∑

j∈Z

ϕ(tj0t
rk0)z

−j = k(z, r),

∑

j∈Z

ϕ(tj0t
rkp)z

−j = kp(z)k(z, r),

∑

j∈Z

ϕ(tj0t
rdp)z

−j = :dp(z)k(z, r):,

ϕ(d0) = −
n∑

p=1

∞∑

i=1

i

(
upi

∂

∂upi

+ vpi

∂

∂vpi

)
,

defines a representation of v.

This proposition is part of the statement of Theorem 5 from [B1]. The following

factorization property also holds and is very important for our purposes.

kp(z, r + m) = kp(z, r)k(z,m), p = 0, . . . , n. (0.1)

The module F served as a model for all of the modules which we construct. Moreover,

it is the factorization property which plays a crucial role in our construction. That this

representation is irreducible is easy to see. Indeed, from the action of d1, . . . , dn we see

that every submodule is homogeneous with respect to q1, . . . , qn. Then, the action of the

Heisenberg subalgebra on C[upi, vpi] is irreducible, thus every non-zero submodule contains

a vector qm for some m ∈ Z
n. The action of C[t±1 , . . . , t

±
n ]k0 on such a vector generates the

space C[q±1 , . . . , q
±
n ] and finally considering again the action of the Heisenberg subalgebra

we recover the whole module. Clearly this module has finite dimensional homogeneous

spaces in the obvious Z
n+1-grading. Thus, in the language introduced above, we simply

say it has finite dimensional weight spaces.

Note that in this construction the variable t0 plays a special role. However the ap-

pearance of a “distinguished direction” is inevitable. Indeed, in an irreducible module with

weight decomposition every central element of weight zero must act as a scalar operator.

Thus a subspace of codimension 1 in the span of k0, k1, . . . , kn must be represented by zero

operators. This makes one direction special. All of the modules we study in this paper
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also have this property. They are defined with a specified “distinguished direction” singled

out. Later, in the body of the paper, we will give a general argument showing that, in

fact, the intersection of the kernel of the above representation with K is just of dimension

n.

Our construction will work for algebras, T, slightly more general than the one de-

scribed above. We will work with more general cocycles, but still with values in K, and

we can use the algebra D∗, as above, or also (for most of the paper) the full derivation

algebra of C[t±1
0 , . . . , t±1

n ]. However, at one point, we do need to restrict ourselves to the

case of D∗.

Essentially our construction begins with a finite dimensional module, W , for the Lie

algebra gln(C). We then construct a module, T (W ), from this which is a module for the

Lie algebra Der
(
C[t±1

1 , . . . , t±1
n ]
)
. As a vector space T (W ) = C[q±1

1 , . . . , q±1
n ] ⊗W , where

C[q±1
1 , . . . , q±1

n ] is the algebra of Laurent polynomials in the variables q1, . . . , qn. We then

notice this is in fact a module for the zero component, v0, in the Z-grading, of the algebra

v. Here, the Z-grading corresponds to the grading in the variable t0 so by eigenspaces for

the degree derivation d0. Thus, in our work it is the ”zero direction” which is chosen as

special. We call T (W ) a tensor module and note here it has been investigated in [L1] and

[R] and is related to the modules studied in [Rud]. Noting that we have the decomposition

v = v+ ⊕ v0 ⊕ v− we then extend the above action to v+ ⊕ v0 by letting v+ act as zero

and form the induced module

M := Indv
v0⊕v+

(T ).

As usual, it turns out that among the submodules ofM , intersecting the top T (W ) trivially,

there exists a unique maximal one which we denote by M rad. Moreover, if W is irreducible

as a gln-module then the factor module L = M/M rad is an irreducible v-module. Also,

we are able to show that, in the obvious Z-grading of L, the homogeneous spaces are

finite dimensional. This fact is quite non-trivial and follows from a more general result (of

independent interest) that we establish in Section 1.

The next step in our construction is to take an irreducible highest weight module for

the affine Kac-Moody Lie algebra

ġ ⊗ C[t0, t
−1
0 ] ⊕ Ck0 ⊕ Cd0

and tensor this with the module L above and show the result can be made into a module

for our toroidal algebra T. Here, we need to assume that the central charge is the same

for both modules. It is in doing this that we need to assume we are working with D∗. The

factorization property, mentioned above, also comes into play here and we need to show

the module L has this property.
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The structure of this paper is as follows. In Section 1 we begin by presenting the

basic results on Z-graded Lie algebras which we will need later. In particular, we define

a certain completion for the universal enveloping algebra of a Z-graded Lie algebra and

show how it is possible to exponentiate certain elements when the Lie algebra is abelian

so the universal enveloping algebra is just the symmetric algebra. We then go on to define

the notions of a Lie algebra with polynomial multiplication and of a module, for such an

algebra, to have polynomial action. Working in great generality, we show, in this setting,

how certain quotients of induced modules will have finite dimensional homogeneous spaces.

This result is, no doubt, of independent interest and can be used for algebras other than

toroidal Lie algebras. It is for this reason that we have presented these results in the first

section.

In Section 2 we introduce the toroidal Lie algebras which will occupy us for the rest

of the paper. As mentioned above we work with a general 2-cocycle from a 2-dimensional

cohomology group and allow, until Section 4, either derivation algebra D∗ or D. We also

introduce the tensor modules for our algebra v and show how the results of Section 1

apply to these algebras and modules. In particular, we show that we have a large supply

of v-modules, L, with finite dimensional homogeneous spaces. At the end of this section

we make some comments on this construction when an algebra with a smaller K is used.

Finally, we close the section by showing that if the central charge is non-zero then the

kernel of the action of our K on the above module is spanned by the elements k1, . . . , kn.

Section 3 deals with the factorization property (0.1). The goal here is to show the

above modules have this property. This factorization property suggests that there is an

exponential at play in our construction and indeed, to prove what we need, we must

introduce a certain exponential of a generating series. Our motivation here came from

[B1]. To do this in a mathematically sound way we need to work in a completion of

a twisted version (twisted by automorphisms) of the universal enveloping algebra of v

tensored with Laurent polynomials in n variables. The factorization property follows by

showing that the moments of certain of our generating series, which now make sense thanks

to the above mentioned completion, when acting on the module L, act as zero. Here, since

L = M/M rad, it is enough to show the moments in question take M to M rad. It should

be noted here that the completed algebra which we have to introduce seems to be of

independent interest.

In the final section, Section 4, we just need to put our previous results together. To do

this we need to assume the derivation algebra is D∗. Using this, as well as the factorization

property, we show how to get a module for our toroidal Lie algebra T from a highest weight

irreducible affine Lie algebra module V , and one of the v-modules L above. Finally we see
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that this module is irreducible and has finite dimensional weight spaces.

After completing this work we learned of the preprints of Larsson, [L2], and Iohara et

al., [ISW] where related problems are addressed. Larsson considers an algebra w = D⊕M

where M is an abelian ideal of w (containing K), and w/M = D is the algebra of vector

fields on an n + 1-dimensional torus. He constructs explicit realizations for a class of

representations of w and has an analog of Theorem 4.2 for the algebra w. It is clear that

these modules can be also presented via an induction procedure similar to ours here. In

[ISW] an analog of Theorem 4.2 is presented for 2-toroidal Lie algebras. Besides this,

there is a lot of recent work dealing with different aspects of toroidal Lie algebras, see

[IKU],[L3],[STU],[VV], and the references therein.

We thank Prof. Shaobin Tan for some useful discussions and in particular, for calling

our attention to one of the cocycles from [L2]. Thanks also go to Prof. Jacek Szmigielski

for helpful discussions.

1. Lie Algebras with polynomial multiplication.

In this section we work in a fairly general setting and establish some basic results about

Z-graded Lie algebras which will be used later. We then go on to introduce Lie algebras

and modules which have multiplication (or action) tied to polynomials. The major result

of this section says that a certain irreducible quotient of an induced module has finite

dimensional homogeneous components. All of our vector spaces and algebras will be over

the complex field C.

We will use the notation in [FLM] throughout. In particular, if V is a vector space

we let V [[z, z−1]] denote the formal Laurent series with coefficients in V so that

V [[z, z−1]] =





∑

n∈Z

xnz
−n
∣∣xn ∈ V




 .

If x(z) =
∑

n∈Z

xnz
−n we say that x−n is the n-th moment of the series x(z).

If V = ⊕
n∈Z

Vn is a Z-graded vector space we let Vgr[[z, z
−1]] be defined by

Vgr[[z, z
−1]] =





∑

n∈Z

xnz
−n
∣∣xn ∈ Vn




 .

We will say a Laurent series
∑

n∈Z

xnz
−n is restricted if and only if there is some N such

that j ≥ N implies that xj = 0. Also, if G = ⊕
n∈Z

Gn is a Z-graded algebra (either Lie or
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associative) and if V is a G-module then for g(z) =
∑

n∈Z

gnz
−n ∈ G[[z, z−1]] and x ∈ V we

let g(z)x be defined by

g(z)x =
∑

n∈Z

(gnx)z
−n.

We say that the G-module V is restricted if

∀ v ∈ V ∃ p ∈ Z such that ∀ i > p, Giv = 0.

It is clear that a G-module is restricted if and only if for any g(z) ∈ Ggr[[z, z
−1]] and any

v ∈ V the series g(z)v ∈ V [[z, z−1]] is restricted. For later use we record the following

simple lemma.

Lemma 1.1. Let V (respectively W ) be a restricted module for the Z-graded algebra

G(respectively H). Then for all g(z) ∈ Ggr[[z, z
−1]] and h(z) ∈ Hgr[[z, z

−1]] there is a

well-defined mapping

g(z) ⊗ h(z) : V ⊗W → (V ⊗W )[[z, z−1]]

given by

g(z) ⊗ h(z)(v ⊗ w) =
∑

i∈Z

∑

j∈Z

(giv ⊗ hjw) z−i−j .

Proof. The Lemma follows from the fact that the product of two restricted Laurent

series is well-defined and restricted. Q.E.D.

A standard way of constructing restricted modules is via the inducing procedure. Let

G be a Z-graded Lie algebra and let T be a G0-module. Let G+ = ⊕
i>0

Gi and G− = ⊕
i<0

Gi

so that G+, G− and G0 are subalgebras of G. We extend the action of G0 on T to an

action of G0 ⊕G+ by letting G+ act trivially and then consider the induced module

M = IndG
G0⊕G+

(T ) = U(G) ⊗U(G0⊕G+) T ∼= U(G−) ⊗C T.

The module M is a restricted U(G)-module and is Z-graded with M0 = T and Ms = (0)

for s > 0. We often call T the top of M.

We define the radical of M , denoted M rad, to be the maximal Z-graded submodule

of M that intersects with T trivially. It is a standard result that M rad is unique and its

Z-graded components are given by the following condition.

M rad
−k =

{
v ∈M−k

∣∣∣∣uv = 0 for all u ∈ U(G+)k

}
. (1.2)
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Due to the Poincare-Birkhoff-Witt theorem, the components of the Z-grading of the

universal enveloping algebra U(G) can be written as

U(G)k = ⊕
j≥0,i≤0
i+j=k

U(G−)i ⊗ U(G0) ⊗ U(G+)j .

For later use we define a certain completion of U(G) which we denote by U(G). Thus let

U(G)k =
∏

j≥0,i≤0,
i+j=k

U(G−)i ⊗ U(G0) ⊗ U(G+)j, (1.3)

and then let U(G) = ⊕
k∈Z

U(G)k. It follows from the Poincare-Birkhoff-Witt theorem that

U(G) becomes an algebra in the natural way and moreover this algebra acts naturally on

any restricted U(G)-module. In particular it acts on M above.

We now assume that G is an abelian Lie algebra so that U(G) is just the sym-

metric algebra S(G). Note if we have elements g(z) =
∑
n≥0

gnz
−n, h(z) =

∑
n≥0

hnz
−n ∈

S(G+)gr[[z
−1]] then their product is a well-defined element in S(G+)gr[[z

−1]]. In fact, if

g0 = 0 even exp (g(z)) =
∑

m≥0

1
m!g(z)

m is a well-defined element in S(G+)gr[[z
−1]]. Similar

remarks hold for series in S(G−)gr[[z]].

For g(z) =
∑
n≥0

gnz
−n ∈ S(G+)gr[[z

−1]], h(z) =
∑

n≤0

hnz
−n ∈ S(G−)gr[[z]] the product

g(z)h(z) is defined to be the element
∑

m∈Z

amz
−m ∈ S(G)gr[[z, z

−1]] where for each m ∈ Z

am is the element of
∏

j≤0,m−j≥0

S(G−)jS(G+)m−j ⊂ S(G)m specified by saying am =

∑
j≤0,m−j≥0

hjgm−j. Thus g(z)h(z) ∈ S(G)gr[[z, z
−1]].

Now let d(z) =
∑

n∈Z

dnz
−n ∈ Ggr[[z, z

−1]] ⊂ S(G)gr[[z, z
−1]] and assume d0 = 0.

Let d+(z) =
∑
n>0

dnz
−n, d−(z) =

∑
n<0

dnz
−n. Then letting e+(z) = exp (d+(z)) , e−(z) =

exp (d−(z)), we find that the product e−(z)e+(z) is defined, from what we said above, and

is in S(G)gr[[z, z
−1]]. We then define exp (d(z)) by the formula

exp (d(z)) = e−(z)e+(z) = exp
(
d−(z)

)
exp

(
d+(z)

)
. (1.4)

Later we will need to multiply certain elements in S(G)gr[[z, z
−1]]. The following

result allows us to do this.

Proposition 1.5. Under the natural product S(G)gr[[z, z
−1]] is an associative algebra

with identity.In fact,we can multiply elements of the form zif(z), zjg(z), i, j ∈ Z where

both f(z), g(z) belong to S(G)gr[[z, z
−1]] .
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Proof. We represent an element in S(G)n =
∏

k≥0,k≥n

S(G−)n−kS(G0)S(G+)k as a

function

fn : Z →
⋃

k≥0,k≥n

S(G−)n−kS(G0)S(G+)k.

where fn(k) is in S(G−)n−kS(G0)S(G+)k for all k ∈ Z and where we use the convention

that fn(k) = 0 if either k < 0 or if k < n.

Let f(z) =
∑

n∈Z

fnz
−n, g(z) =

∑

n∈Z

gnz
−n be two elements in S(G)gr[[z, z

−1]] where

fn, gn ∈ S(G)n. We would like to define f(z)g(z) =
∑

n∈Z

hnz
−n where for each n ∈ Z the

element hn is defined by

hn =
∑

i∈Z

fn−igi.

To do this we must see that for fixed k, n ∈ Z the sum

∑

i∈Z

(fn−igi)(k) =
∑

i∈Z

∑

j∈Z

fn−i(k − j)gi(j)

has only a finite number of non-zero terms.

Clearly if k < 0 all terms are zero so suppose k ≥ 0. We have that fn−i(k−j)gi(j) = 0

unless both j ≥ 0 and j ≤ k. Thus, there are only a finite number of indices j where there

is some i for which fn−i(k − j)gi(j) is non-zero. For each such j we have fn−i(k− j)gi(j)

can be non-zero only when j ≥ i and k− j ≥ n− i. But these conditions imply that j ≥ i

and i ≥ n+j−k so there are only a finite number of indices i ∈ Z with fn−i(k−j)gi(j) 6= 0

for some j. All in all it follows the product on S(G)gr[[z, z
−1]] is well-defined and makes

S(G)gr[[z, z
−1]] into an associative algebra with identity. The statement about shifts in

powers of z is clear. Q.E.D.

We now begin to describe algebras with polynomial multiplication. For this purpose

we let G be a Z
n-graded Lie algebra.

G = ⊕
m∈Z

n
Gm.

Definition 1.6. The Z
n-graded Lie algebra G is said to be an algebra with polynomial

multiplication if G has a homogeneous spanning set {gi(m)}
i∈I,m∈Z

n such that gi(m) ∈

Gm, and there exists a family of polynomials in 2n variables {ps
ij} where i, j, s ∈ I and

where for each i, j ∈ I the set {s|ps
ij 6= 0} is finite, and satisfies

[gi(k), gj(m)] =
∑

s

ps
ij(k,m)gs(k + m) for all k,m ∈ Z

n. (1.7)
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If this is the case we say the spanning set {gi(m)}
i∈I,m∈Z

n is distinguished.

Notice that in the above definition we used a spanning set and not a basis and that

when n = 0 the above definition says nothing, as then the polynomials are just constants

and the definition expresses that we have a spanning set. Thus, we are usually interested

only in the case that n ≥ 1.

Definition 1.8. Let G be a Lie algebra with polynomial multiplication and with the

notation as above. We will say a Z
n-graded G-module V is a module with polynomial

action if V has a basis {vj(m)}j∈J such that vj(m) ∈ Vm for j ∈ J , and there exists a

family of polynomials in 2n variables {fs
ij} where i ∈ I, j, s ∈ J and for each i ∈ I, j ∈ J

the set {s|fs
ij 6= 0} is finite and satisfies

gi(k)vj(m) =
∑

s

fs
ij(k,m)vs(k + m) for k,m ∈ Z

n.

Notice that in this definition we used a basis instead of a spanning set. Again we say

the basis used is distinguished. Most of the modules we will consider will be induced, and

hence have a specified special variable (we will later denote this t0) and so in the next

definition we need to consider both a Z
n and a Z-grading of our Lie algebra G. We then

have

G = ⊕
m∈Z

n
Gm and G = ⊕

i∈Z

Gi.

We will say these gradings are compatible if each space Gm is homogeneous in the Z-grading

and each space Gi is homogeneous in the Z
n-grading. In this case we write Gi,m for the

intersection Gi ∩Gm. Thus G is Z
n+1-graded so G = ⊕

(i,m)∈Z
n+1

Gi,m.

Definition 1.9. An algebra G with polynomial multiplication is called extragraded if

it has an additional Z-grading compatible with the Z
n-grading such that the distinguished

spanning set is homogeneous in the Z
n+1-grading and for fixed i ∈ I, gi(m) has the same

degree in the Z-grading for any m ∈ Z
n. We write this degree as deg(gi) and call it the

degree of gi. Thus,

gi(m) ∈ Gdeggi,m for m ∈ Z
n.

For G to be extragraded we also require that the number of i ∈ I, with gi of a fixed degree,

is finite.

We now assume that G is a Lie algebra which is extragraded and use the notation

as above so that the decomposition G = G+ ⊕ G0 ⊕ G− refers to the Z-grading. It

is clear from the definition that the subalgebra G0 = ⊕
m∈Z

n
G0,m is a Lie algebra with

polynomial multiplication whose distinguished spanning set is {gi(m)|deggi = 0,m ∈ Z
n}.
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Let T be a G0-module with polynomial multiplication and let the distinguished basis be

{vj(m)|j ∈ J,m ∈ Z
n}. We can define an action of G+ on T by G+T = (0) and then

consider the induced module

M = IndG
G0⊕G+

T ∼= U(G−) ⊗ T.

Proposition 1.10. For a sequence γ = (i1, . . . , i`) of indicies from I such that
∑̀
b=1

deggib
= 0, there exists a family of polynomials ps

γj , with s, j ∈ J, such that

gi1(m1) . . . gi`
(m`)vj(m0) =

∑

s

ps
γj(m0,m1, . . . ,m`)vs(m0 + m1 + . . .+ m`), (1.11)

where the set {s|ps
γj 6= 0} is finite.

Proof. We prove this by induction on `. If ` = 1 then deggi1 = 0 and then

gi1(m1)vj(m0) =
∑

s

fs
i1j(m1,m0)vs(m0 + m1)

because T is a G0-module with polynomial action. Here we have used the notation from

Definition 1.6.

Next consider the case of ` ≥ 2. If deggi1 = . . . = deggi`
= 0 then, by iteration of the

previous case, we see that our hypothesis immediately implies the result. Otherwise, by

the usual type of Poincare-Birkhoff-Witt argument, any expression of the form

gi1(m1) . . . gi`
(m`)

can be rearranged so that the terms of positive degree appear to the right, and thus applied

to vj(m0) gives 0. However in doing this rearranging process, we must also add terms

involving commutators. Notice that the terms involving commutators can be replaced

using (1.7) by expressions of the form (1.11) of length shorter than ` with coefficients

given by polynomials. Thus, by induction, the result follows. Q.E.D.

The main result about extragraded Lie algebras is the following Theorem. Notice that

we need to use a basis for our module here, but that the distinguished spanning set for the

algebra need not be a basis. Also, towards the end of the proof of the theorem we use a

Vandermonde type argument. Here is what we mean by that. If a polynomial an(y)xn +

an−1(y)x
n−1 + . . . + a0(y) assumes zero values for all x then an(y) = an−1(y) = . . . =

a0(y) = 0. One way of proving this is to evaluate this polynomial at n+ 1 distinct values

of x, which gives a homogeneous system of linear equations on an(y), an−1(y), . . . , a0(y)

12



with a Vandermonde matrix. Then an(y) = an−1(y) = . . . = a0(y) = 0 follows from the

fact that the Vandermonde determinant is non-zero.

Theorem 1.12. Let G be an extragraded Lie algebra with polynomial multiplication.

Let T be an G0-module with polynomial action and with distinguished basis {vj(m)}j∈J

m∈Z
n

in which the set J is finite. Then the homogeneous components of L = M/M rad are

finite-dimensional. Furthermore if T is an irreducible G0-module then L is an irreducible

G-module.

Proof. Because M rad is the sum of all graded submodules intersecting trivially with

T then the statement about irreducibility is clear.

To prove that the homogeneous component Ls,m, s ≤ 0 is finite-dimensional, we will

show that M rad
s,m may be described inside of Ms,m by a system of finitely many linear

equations.

Define the following finite sets, for s ≤ 0 let

Ω+
s =

{
α = (i1, . . . , ilα)

∣∣ip ∈ I, deg
(
gip

)
> 0,

lα∑

p=1

deg
(
gip

)
= −s

}

and

Ω−
s =




β = (i1, . . . , ilβ )
∣∣ip ∈ I, deg

(
gip

)
< 0,

lβ∑

p=1

deg
(
gip

)
= s




 .

For γ ∈ Ω±
s and a sequence m = (m1, . . . ,mlγ ) ∈ Z

nlγ we define

uγ(m) = gi1(m1) . . . gilγ
(mlγ ) ∈ U(G±)∓s.

The set {uβ(m)vj(m0)} with β ∈ Ω−
s , j ∈ J,m ∈ Z

nlβ ,
lβ∑

p=0
mp = m, is a spanning set

for Ms,m. Thus a vector v ∈Ms,m can be written as

v =
∑

j∈J

∑

β∈Ω−
s

∑

(m,m0)∈Z
n(lβ+1)

m0+m1+...+mlβ
=m

c(j, β,m0,m)uβ(m)vj(m0).

A vector v ∈ Ms,m belongs to the radical M rad if and only if for every u ∈ U(G+)−s we

have uv = 0. The space U(G+)−s is spanned by the set {uα(r)} with α ∈ Ω+
s , r ∈ Z

nlα .

Thus v ∈M rad if and only if for all α ∈ Ω+
s and all r ∈ Z

nlα we have

∑

j∈J

∑

β∈Ω−
s

∑

(m,m0)∈Z
n(lβ+1)

m0+m1+...+mlβ
=m

c(j, β,m0,m)uα(r)uβ(m)vj(m0) = 0. (1.13)
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By Proposition 1.10 there exists a finite family of polynomials {pk
αβj} such that

uα(r)uβ(m)vj(m0) =
∑

k∈J

pk
αβj(m0,m, r)vk(m0 + m1 + . . .+ mlβ + r1 + . . .+ rlα).

Since the set {vk(m)} forms a basis of T then we can rewrite (1.13) as follows:

∑

j∈J

∑

β∈Ω−
s

∑

(m,m0)∈Z
n(lβ+1)

m0+m1+...+mlβ
=m

c(j, β,m0,m)pk
αβj(m0,m, r) = 0 (1.14)

for all α ∈ Ω+
s , r ∈ Z

nlα and k ∈ J .

For a fixed s, the above expression involves a finite number of polynomials

pk
αβj(m0,m, r) =

∑

a∈Z
nlα
+

pk
αβja(m0,m)ra,

where the summation on the right hand side has finite range.

Since (1.14) holds for an arbitrary r, we can apply a Vandermonde type argument to

see that it is equivalent to the system of linear equations:

∑

j∈J

∑

β∈Ω−
s

∑

(m,m0)∈Z
n(lβ+1)

m0+m1+...+mlβ
=m

c(j, β,m0,m)pk
αβja(m0,m) = 0.

The number of these linear equations in {c(j, β,m0,m)} is determined by the ranges of

k, α and a and is finite.

Hence, M rad
s,m is determined inside Ms,m by a system of finitely many linear equations,

thus the dimension of Ls,m = Ms,m/M
rad
s,m is finite. Q.E.D.

2. Toroidal Lie Algebras.

In this section we introduce the toroidal Lie algebras which will concern us for the

rest of the paper. We also introduce their associated v algebras as well as some modules

for these algebras. The results from [B1], recalled in the Introduction, serve as a model

for our further constructions. The reader will find here numerous examples of algebras to

which the results of Section 1 apply.

Let ġ be a simple finite-dimensional Lie algebra over C. The algebra of Fourier poly-

nomials on a torus of rank n + 1 is isomorphic to the algebra of Laurent polynomials

C[t±0 , t
±
1 , . . . , t

±
n ]. Thus the tensor product g̃ = ġ ⊗ C[t±0 , t

±
1 , . . . , t

±
n ] can be interpreted as

the algebra of ġ-valued polynomial functions on a torus. Since the algebras g̃ are involved
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in all the algebras we construct the name toroidal Lie Algebras is used. The algebra g̃

itself may be called the loop toroidal algebra associated to ġ since if n = 0 then g̃ is just

the untwisted loop affine Kac-Moody Lie algebra associated to ġ. The algebra g̃ is perfect

so has a universal central extension. When n = 0 the universal central extension is well-

known to have the loop algebra of co-dimension 1 but in the general case the co-dimension

is infinite. We give its description following [Kas] and [MRY].

Let K̃ be the free C[t±0 , t
±
1 , . . . , t

±
n ] module of rank n+1 with basis {k0, k1, . . . , kn} and

let dK̃ be the subspace (not submodule) spanned by all elements of the form

r0t
r0
0 trk0 + r1t

r0
0 trk1 + . . .+ rnt

r0
0 trkn for (r0, r) ∈ Z

n+1. We let

K = K̃/dK̃,

and we again denote the image of of fki in K by this same symbol. Thus K is spanned

by the elements tr0
0 trkp, where r0 ∈ Z, r = (r1, . . . rn) ∈ Z

n, and tr = tr1
1 . . . trn

n , 1 ≤ p ≤ n

subject to the the defining relations

r0t
r0
0 trk0 + r1t

r0
0 trk1 + . . .+ rnt

r0
0 trkn = 0. (2.1)

We let

ĝ = ġ ⊗ C[t±0 , t
±
1 , . . . , t

±
n ] ⊕K (2.2)

with the bracket

[g1 ⊗ f1(t0 . . . tn), g2 ⊗ f2(t0 . . . tn)] = [g1, g2] ⊗ (f1f2) + (g1|g2)

n∑

p=0

(dp(f1)f2) kp (2.3)

and

[ĝ,K] = 0. (2.4)

where ( | ) is a symmetric invariant bilinear form on ġ and dp is the degree derivation

of C[t±0 , t
±
1 , . . . , t

±
n ] corresponding to the index p so that

dp = tp
d

dtp
, p = 0, . . . , n. (2.5)

Now we turn to the description of the v algebras of rank n+1 which should be thought

of as generalizations of the Virasoro algebra. One of these, using the algebra D∗ below,

arose naturally in the study of vertex operator representations in [EM]. Let D be the Lie

algebra of derivations of C[t±0 , t
±
1 , . . . , t

±
n ], so that

D =

{
n∑

p=0

fp(t0, . . . , tn)dp

∣∣f0, . . . , fn ∈ C[t±0 , t
±
1 , . . . , t

±
n ]

}
.
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It is a general fact that a derivation acting on a perfect Lie algebra can be lifted, in

a unique way, to a derivation of the universal central extension of this Lie algebra [BM] .

Here, the natural action of D on g̃ is

f1dp (g ⊗ f2) = g ⊗ f1dp(f2) (2.6).

This has a unique extension to ĝ. Its action on the subspace g̃ is unchanged, while the

action on K is given by the formula (see [EM] ),

f1da(f2kb) = f1da(f2)kb + δab

n∑

p=0

f2dp(f1)kp. (2.7)

The space D⊕K can be made into a Lie algebra in several ways which we now describe.

These will use (2.7) above to obtain the product of an element from D with an element

from K so that,

[f1da, f2kb] = f1da(f2kb). (2.8)

K is to be an abelian ideal in D ⊕ K while the product of two elements from D can be

either the usual product of two derivations

[tr0
0 trda, t

m0
0 tmdb] = mat

r0+m0
0 tr+mdb − rbt

r0+m0
0 tr+mda, (2.9)

or can be the usual product adjusted by a 2-cocycle τ : D ×D → K:

[tr0
0 trda, t

m0
0 tmdb] = mat

r0+m0
0 tr+mdb − rbt

r0+m0
0 tr+mda + τ (tr0

0 trda, t
m0
0 tmdb) . (2.10)

The algebra D admits two non-trivial 2-cocycles with values in K:

τ1(t
r0
0 trda, t

m0
0 tmdb) = −marb

{ n∑

p=0

rpt
r0+m0
0 tr+mkp

}
, (2.11)

and

τ2(t
r0
0 trda, t

m0
0 tmdb) = ramb

{ n∑

p=0

rpt
r0+m0
0 tr+mkp

}
, (2.12)

for all r0, m0 ∈ Z, r,m ∈ Z
n, 0 ≤ a, b ≤ n.

The reader should see [BGK],[Dz],[EM],or [L2] for more on these cocycles. In fact,

A. Dzhumadil’daev has informed us, in a private communication, that any cocycle with

values in K is a linear combination of τ1 and τ2. This can be derived from the results in

[Dz]. It is straightforward to see that in each case we obtain a Lie algebra structure on

D ⊕ K. To give some notation for this we fix τ : D × D → K to be an arbitrary linear
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combination of τ1 and τ2. We then let v(D, τ) denote the resulting Lie algebra so that

v(D, τ) = D ⊕K with multiplication given as above using the cocycle τ .

Next we note that D has an interesting subalgebra which will be denoted by D∗. This

is defined as follows.

D∗∗ =

{
n∑

p=1

fp(t0, . . . , tn)dp

∣∣f1, . . . , fn ∈ C[t±0 , t
±
1 , . . . , t

±
n ]

}

(2.13)

D∗ = D∗∗ ⊕ Cd0. (2.14)

We note that this subalgebra arose naturally in the study of toroidal Lie algebras.

Indeed D∗ appeared in [EM] in connection with an untwisted vertex representation of ĝ

and in [B1] in connection with the principal vertex representation. In both of these works

the authors denoted this algebra by D+ but since we need to make use of various positive

(and negative) subalgebras we have chosen the notation D∗. Any linear combinations of

cocycles (2.11) and (2.12) can be used with this algebra of derivations so this now gives

us two families of algebras v(D, τ) where D can be either D or D∗ and τ is a linear

combination (perhaps trivial) of τ1 and τ2. We call all of these v-algebras and will work

with all of them simultaneously when possible. We usually just denote any of these algebras

by v. Notice that for each of these algebras v we get an associated toroidal Lie algebra

ġ ⊗C[t±0 , t
±
1 , . . . , t

±
n ] ⊕ v with multiplication given as in (2.3),(2.4),(2.6),(2.8),(2.10),(2.11)

and (2.12). For notation we let T(v) denote this toroidal Lie algebra so that

T(v) = ġ ⊗ C[t±0 , t
±
1 , . . . , t

±
n ] ⊕ v. (2.16)

Again we just use T to refer to any of the algebras in this family. Note that the algebra

ĝ of (2.2) is a subalgebra of T and that all of the degree derivations d0, d1, . . . , dn are also

in T. With the obvious abuse of notation we will write T(D, τ) for the algebra T(v(D, τ))

where D ∈ {D,D∗}. We will be most concerned with the algebra T(D∗, τ) where τ is one

of the cocycles. It seems that these algebras are the most natural ones for a satisfying

representation theory. Besides [EM] one should see [B1] and [B2] for more on this algebra

when (2.11) is used. This particular algebra was discussed in the Introduction. We note

the following result.

Proposition 2.17. Assume n ≥ 1. All the algebras T(D, τ) as well as the algebras

v(D, τ), where D ∈ {D,D∗} and τ is a linear combination of 2-cocycles (2.11) and (2.12),

are algebras with polynomial multiplication which are extragraded.

Proof. This is easy to see by looking at (2.3),(2.4),(2.6),(2.8),(2.9),(2.10),(2.11) and

(2.12). Indeed the t0-direction gives the Z-grading while the Z
n-grading comes from the
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variables t1, . . . , tn. For example, for the algebra v = D ⊕K with any of our cocycles one

may use the elements

dai(m) = ti0t
mda, a = 0, . . . , n,

kpi(m) = ti0t
mkp, p = 0, . . . , n,

where deg dai = deg kpi = i as our distinguished spanning set. The rest is straightforward.

Q.E.D.

Remark. It is because of the central relations (2.1) that we have chosen to use a

spanning set, rather than a basis, in Definition 1.9. This helps to make the previous result

quite transparent.

Our next goal is to construct irreducible restricted v-modules with finite-dimensional

weight spaces (recall from the Introduction that by weight spaces we just mean the homo-

geneous spaces relative to the specified grading) and non-trivial action of K. As a starting

point for our construction we take the tensor modules [L1] which are realized as the ten-

sor product of a module for the Lie algebra gln(C) with the Laurent polynomial algebra

C[q±1
1 , . . . , q±1

n ]. We will eventually see that these modules have a factorization property

similar to that discussed in the Introduction. We begin by recalling some results from [L1].

The reader should also see [R] for this.

Let Dn be the Lie algebra of derivations of the Laurent polynomial ring C[t±1
1 , . . . , t±1

n ]

so

Dn =
n
⊕

p=1
C[t±1 , . . . , t

±
n ]dp.

An obvious family of modules for Dn consists of the the loop modules

C[q±1
1 , . . . , q±1

n ] ⊗W,

where W is an arbitrary vector space and Dn acts only by derivations on the first factor,

the Laurent polynomials in q1, . . . , qn.

This family admits an interesting non-trivial generalization (see [L1], [R], [Rud]). Let

(W,ψ) be a finite dimensional gln(C)-module. We define an action of the algebra Dn on

the space C[q±1 , . . . , q
±
n ] ⊗W by

ϕ(trdp)q
mw = mpq

r+mw +
n∑

i=1

riq
r+mψ(Eip)w. (2.18)

Here, as usual, Eij is the matrix with (i, j) entry 1 and zeroes everywhere else. Notice

that the loop modules correspond to the trivial gln-action on W . The following result is

known.
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Lemma 2.19. ([L1]) The action (2.18) defines a representation of the algebra Dn

on the space C[q±1 , . . . , q
±
n ] ⊗W .

For notation we let T (W ) = C[q±1 , . . . , q
±
n ]⊗W denote the above module with action

given by (2.18) associated to the module W and call this the tensor module associated to

W . When no mention of W is necessary we will just let T denote a tensor module.

Remark. One can give a further generalization by considering shifts of these modules:

C[q±1 , . . . , q
±
n ]qα ⊗W

where α = (α1, . . . , αn) ∈ C
n, and where (2.18) is replaced with

ϕ(trdp)q
m+αw = (mp + αp)q

r+m+αw +

n∑

i=1

riq
r+m+αψ(Eip)w.

All further constructions in the present paper work for these modules, but for the sake of

simplicity we set α = 0.

Rao [R] classified the irreducible tensor modules (see also [Rud]). Obviously, a nec-

essary condition for the irreducibility of a tensor module, T (W ), is the irreducibility of

W . Recall that an irreducible gln(C)-module W is determined by a pair (λ, b), where λ is

the highest weight with respect to the sln(C)-action and where the identity matrix acts as

multiplication by b. Rao proved the following result.

Theorem 2.20.([R]) Let W be the finite dimensional irreducible gln(C)-module

associated to the pair (λ, b). The tensor module T (W ) is irreducible if and only if (λ, b) 6=

(0, 0), (0, n), (ωk, k), k = 1, . . . , n − 1, where ω1, . . . , ωn−1 are the fundamental weights of

sln(C).

Rao also describes the composition factors for the tensor modules in the above result

which are not irreducible. Note that none of the proper submodules of these exceptional

reducible Dn-modules is C[q±1 , . . . , q
±
n ]-invariant.

We now consider one of the algebras v = v(D, τ) where τ is any of our cocycles and

D ∈ {D,D∗}. Then v is extragraded so we have the decomposition

v = v− ⊕ v0 ⊕ v+.

This was done according to the degree in t0 so that

v+ = D+ ⊕

n∑

p=0

t0C[t0, t
±
1 , . . . , t

±
n ]kp,
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v− = D− ⊕

n∑

p=0

t−1
0 C[t−1

0 , t±1 , . . . , t
±
n ]kp,

v0 = D0 ⊕
n∑

p=0

C[t±1 , . . . , t
±
n ]kp.

Here if D = D∗ then we have

D+ =
n∑

a=1

t0C[t0, t
±1
1 , . . . , t±1

n ]da,

D− =
n∑

a=1

t−1
0 C[t−1

0 , t±1
1 , . . . , t±1

n ]da,

D0 =

n∑

a=1

C[t±1
1 , . . . , t±1

n ]da ⊕ Cd0,

while if D = D then we have

D+ =

n∑

a=0

t0C[t0, t
±1
1 , . . . , t±1

n ]da,

D− =
n∑

a=0

t−1
0 C[t−1

0 , t±1
1 , . . . , t±1

n ]da,

D0 =

n∑

a=0

C[t±1
1 , . . . , t±1

n ]da.

In all cases, v0 contains the algebra Dn. Let W be a finite-dimensional irreducible

gln-module and let T = C[q±1 , . . . q
±
n ]⊗W be the corresponding tensor module for Dn. We

write aw for the element a⊗ w of T . For arbitrary constants c, d ∈ C, we can extend this

action to all of v0 as follows:

ϕ(trk0)q
mw = cqr+mw, (2.21)

ϕ(trkp)q
mw = 0, (2.22)

ϕ(d0) = d Id, and (2.23)

tmd0(q
rw) = dqr+mw for r,m ∈ Z

n, 1 ≤ p ≤ n. (2.24)

We call the scalar c the central charge of T.

It is straight-forward to see that this produces a well-defined v0-module structure on

T . Indeed, from (2.22) we see that the particular cocycle which we use makes no difference
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here. Also, v0 has polynomial multiplication since the algebra v is extragraded and this

v0-module has polynomial multiplication as the formulas (2.18),(2.21),(2.22),(2.23) and

(2.24) show. As the dimension of W is finite we see all of the hypothesis of Theorem 1.12

hold. We state this as follows.

Proposition 2.25. Let v be any of the Lie algebras v(D, τ) considered above and

let W be any finite dimensional irreducible gln-module. Let T (W ) be the tensor module

for Dn constructed using (2.18). Then there is a unique v0-module structure on T (W )

satisfying (2.21), (2.22),(2.23) and (2.24). Moreover, the v0-module T (W ) has polynomial

multiplication. If the central charge c is non-zero this module is irreducible as a v0-module.

Proof. We only need to see the module T is irreducible as a v0-module when c 6= 0

(even though it may not be irreducible as a Dn-module (see Theorem 2.20)). Indeed (2.21)

shows that when c 6= 0 the algebra v0 will generate all operators of multiplication by

q±1
1 , . . . , q±1

n . Thus, as W is irreducible so is T. Q.E.D.

We let v+ act on T by 0 and so we have the induced module for v:

M := Indv
v0⊕v+

(T ).

It is easy to see that the module M has a Z
n+1-gradation. Note that most of its

homogeneous spaces are infinite-dimensional. The only non-trivial finite-dimensional ho-

mogeneous spaces correspond to the tensor module T = C[q±1
1 , . . . q±1

n ] ⊗ W , which is

the top of M . Since the Z-grading of M , by degrees in t0, contains only non-positive

components, the module M is restricted.

We now apply Theorem 1.12 to our situation. This gives us the following result.

Theorem 2.26. Let M be the above v-module. There is a vector space isomorphism

M ∼= U(v−) ⊗ C[q±1
1 , . . . q±1

n ] ⊗W .

(i) Among the submodules of M intersecting the top trivially there exists a unique

maximal one which we denote M rad.

(ii) If W is an irreducible as a gln-module then the factor-module L = M/M rad is an

irreducible v-module.

(iii) The v-module L = M/M rad has finite-dimensional weight spaces.

Remark 2.27. The basic v-module F described in the Introduction is obtained as

the irreducible factor of the module constructed above from the Dn-module C[q±1
1 , . . . q±1

n ]

with trivial gln-action and with choice of constants c = 1, d = 0.

The construction of Theorem 2.26 can also be done for the algebra g = ġ⊗C[t±0 , . . . , t
±
n ]

⊕v. Again for the Z-grading we use powers of t0. One can see that g0 = ġ⊗C[t±1 , . . . , t
±
n ]⊕
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v0. To construct a g0-module, we take a v0-module T as above and a finite-dimensional

ġ-module P . Then T⊗P admits the structure of a g0-module by using (2.18), (2.21)-(2.24)

together with

ϕ(trg)qmw ⊗ p = qr+mw ⊗ (gp). (2.28)

It is easy to check that this defines a g0-action. Since g is an extragraded algebra and

the action of g0 on T ⊗P is polynomial then by Theorem 1.12 the irreducible factor of the

g-module induced from T ⊗P has finite-dimensional homogeneous spaces. We will recover

this result later in Theorem 4.9 by constructing a realization for this irreducible g-module.

It is interesting to compare the above case with the case of a toroidal algebra with

a smaller center. As in [BC], one can also consider a finite-dimensional central extension

of g̃ = ġ ⊗ C[t±0 , . . . , t
±
n ] with center K̇ having basis {k0, . . . , kn} of degree zero and with

multiplication given by

[tr0
0 trg1, t

m0
0 tmg2] = tr0+m0

0 tr+m[g1, g2] + (g1|g2)δr0,−m0
δr,−m

n∑

p=0

rpkp.

We construct a module for g̃⊕ K̇ in the following way, using the induction procedure.

The space C[q±1 , . . . , q
±
n ] has a g̃0 ⊕ K̇-module structure defined by

ρ (trg)qm = 0,

ρ (kp)qm = δp,0q
m.

We let g̃+ act on C[q±1 , . . . , q
±
n ] trivially and consider the g̃ ⊕ K̇-module M induced from

C[q±1 , . . . , q
±
n ].

We are going to show now that in contrast to Theorem 1.12, some homogeneous spaces

of the irreducible factor of M are infinite-dimensional. Indeed, let h be a non-zero element

of a Cartan subalgebra ḣ of ġ. Then the vectors
{
ρ(t−1

0 t−rh)qr
}
r∈Z

n belong to the same

homogeneous space of M . We claim that the images of these vectors in the irreducible

factor are linearly independent. To prove this, we need to show that only the trivial

linear combination of these elements belongs to the radical of M . Consider such a linear

combination: ∑

r∈Z
n

arρ(t
−1
0 t−rh)qr ∈M rad.

Let h′ ∈ ḣ satisfy (h′|h) 6= 0. Then for an arbitrary m ∈ Z
n

ρ(t0t
mh′)

∑

r∈Z
n

arρ(t
−1
0 t−rh)qr ∈M rad.
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However

ρ(t0t
mh′)

∑

r∈Z
n

arρ(t
−1
0 t−rh)qr

=
∑

r∈Z
n

arρ
(
[t0t

mh′, t−1
0 t−rh]

)
qr

+
∑

r∈Z
n

arρ(t
−1
0 t−rh)ρ(t0t

mh′)qr.

The second term is zero since g̃+ acts trivially on C[q±1 , . . . , q
±
n ], while the first equals

∑

r∈Z
n

arδm,r(h
′|h)ρ(k0 +m1k1 + . . .+mnkn)qr

= amqm.

Since M rad intersects C[q±1 , . . . , q
±
n ] trivially, we conclude that am = 0 for all m ∈ Z

n.

Thus the irreducible module M/M rad does have infinite-dimensional homogeneous spaces.

However notice the following. Since g̃0 ⊕K̇ is the zero component of the extra-graded

Lie algebra ġ ⊕ K̇ then if we knew that the g̃0 ⊕ K̇-module C[q±1 , . . . , q
±
n ] were a module

with polynomial action then by Theorem 1.12 M/M rad would have finite-dimensional

homogeneous spaces. Thus, C[q±1 , . . . , q
±
n ] is not a g̃0 ⊕ K̇-module with polynomial action.

Intuitively, k0 should be part of a family k0(m) where k0(m) = 0 for m 6= 0. However,

then k0(m)qr = δm,0q
r and δm,0 is not polynomial in m.

We finish this section with a result which shows that in the modules we constructed

the space K acts “almost faithfully” when the central charge c is non-zero. (If c = 0 then

K does act trivially on L, see Remark 3.27.)

Proposition 2.29. If the central charge c is non-zero then the kernel N of the action

of K on L is spanned by k1, . . . , kn.

Proof. The idea of the proof is to show that if the kernel N of the action of K is

larger than the span of k1, . . . , kn then N should contain k0 which acts on L as cId. Since

the module L is Z
n+1-graded then so is the kernel N . Clearly, N(0,0) = Span(k1, . . . , kn)

when c 6= 0.

We are going to show that N(r0,r) = (0) for (r0, r) 6= (0, 0) using the fact that N is

D∗-invariant. Indeed, let
n∑

p=0
αpt

r0
0 trkp be a non-zero element of N(r0,r). Let us consider

first the case when r0 6= 0 or α0 6= 0. Then the matrix
(
r0 r1 . . . rn
α0 α1 . . . αn

)
(2.30)
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has rank 2 and its first column is non-zero.

Note that
[

ϕ
(
t−r0
0 t−rda

)
, ϕ

(
n∑

p=0

αpt
r0
0 trkp

)]

= ra

n∑

p=0

αpϕ(kp) − αa

n∑

p=0

rpϕ(kp)

= (raα0 − r0αa)ϕ(k0). (2.31)

Since not every column in matrix (2.30) is a multiple of the first column then there

exists 1 ≤ a ≤ n such that raα0 − r0αa 6= 0. Thus k0 ∈ N which is a contradiction.

We reduce the case r0 = α0 = 0 to the above case by a similar argument. Let
n∑

p=1
αpt

rkp be a non-zero element of N(0,r). Then the matrix

(
r1 . . . rn
α1 . . . αn

)
(2.32)

has rank 2. Choose 1 ≤ a ≤ n such that ra 6= 0. Then

[

ϕ (t0da) , ϕ

(
n∑

p=1

αpt
rkp

)]

= ra

n∑

p=1

αpϕ(t0t
rkp) + αaϕ(t0t

rk0). (2.33)

Deleting the first column of the matrix

(
1 r1 . . . rn
αa raα1 . . . raαn

)
(2.34)

and comparing with (2.32) we see that the rank of (2.34) is also 2. Thus αat0t
rk0 +

ra
n∑

p=1
αpt0t

rkp is a non-zero element of N(1,r) which is not possible from the first case.

Q.E.D.

Remark 2.35. In fact it is not hard to show, by an argument similar to the one

above, that the span of k1, . . . , kn is the kernel of the action of the entire algebra v on L.

3. Factorization property for the modules L(T ).

In this section we show that the factorization property (0.1) holds for the modules

L(T ) constructed from the tensor modules T . This is important for our purposes since in

the next section we use this property to show that the tensor product of the module L(T )

with a module for affine Lie algebra ġ⊗C[t0, t
−1
0 ]⊕Ck0 ⊕Cd0 is a module for the toroidal

algebra under consideration.
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In order to prove our factorization property we need to show certain formal fields

behave essentially as if they were exponentials. One problem here is to just write down

this exponential in a well-defined manner and it is for this reason that we use a certain

completion of a twisting, by Laurent polynomials, of the universal enveloping algebra U(v).

We call the twisted algebra we need Uq(v) and let Uq(v) denote the completion we work

with. We begin by defining these algebras.

As before we let v = v(D, τ) where D ∈ {D∗,D} and where τ is a linear combination

of the cocycles from (2.11) and (2.12). Then v = D⊕K where K is an abelian ideal of v so

that in the universal enveloping algebra of v we have that U(v) = U(D)U(K). Throughout

this section we fix a non-zero constant c ∈ C. We are going to make the vector space

U(v) ⊗ C[q±1 , . . . , q
±
n ] into an associative algebra via a twisting process similar to what is

found in [Lam]. For this we need a supply of automorphisms of U(v) which we get by

exponentiating some derivations. We do this on the level of v and then extend to all of

U(v).

Proposition 3.1. (a) For each a = 1, . . . , n, there is a derivation ∆a of v which

satisfies (for m0 ∈ Z,m ∈ Z
n )

∆a(tm0
0 tmdb) = −δabt

m0
0 tmk0, for 1 ≤ b ≤ n,

∆a(tm0
0 tmd0) = tm0

0 tmka,

∆a(K) = (0).

(b) For a, b = 1, . . . , n, we have ∆a(D) ⊂ K and ∆a∆b = 0.

(c) For each r ∈ Z
n there is an automorphism σr of v (and hence of U(v)) which

preserves the Z
n+1-grading and satisfies σr = 1 +

n∑
i=1

ri

c
∆i for r = (r1, . . . , rn) ∈ Z

n.

(d) We have σrσm = σr+m for r,m ∈ Z
n.

Proof. (a) To prove this one can directly verify that the given formulas lead to a

derivation of v. Another, somewhat enlightning argument goes as follows. We can enlarge

the algebra v by allowing arbitrary real powers of the variables t0, . . . , tn instead of just

integers. This corresponds to replacing the algebra of Laurent polynomials C[t±0 , . . . , t
±
n ]

with the group algebra C[Rn+1]. (This was actually necessary to do in [B2] to get con-

tinuous families of soliton solutions to partial differential equations). Thus, in such an

extension of v we can consider the inner derivation ∆ε
a = −ad(tε0ka), for ε ∈ R, 1 ≤ a ≤ n.

Then for 1 ≤ b ≤ n,m0 ∈ Z,m ∈ Z
n, we obtain that (using (2.1))

∆ε
a(tm0

0 tmdb) = δab

n∑

p=0

mpt
m0+ε
0 tmkp = −εδabt

m0+ε
0 tmk0,
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∆ε
a(tm0

0 tmd0) = εtm0+ε
0 tmka.

From these formulas we see that the derivations ∆a, determined by saying

∆a :=
d

dε
∆ε

a

∣∣∣∣
ε=0

are well-defined on v and satisfy the formulas in (a).

(b) This is clear from the formulas given in (a).

(c) For 1 ≤ a ≤ n we have ∆2
a = 0 so let σa = exp

(
1
c
∆a

)
= 1 + 1

c
∆a. Then

σra
a = 1 + ra

c
∆a and so we let, for r ∈ Z

n, σr be defined by σr = σr1
1 . . . σrn

n . Clearly

σr = 1 +
n∑

a=1

ra

c
∆a and σrσm = σr+m for r,m ∈ Z

n. Q.E.D.

We now let Uq(v) = U(v) ⊗ C[q±1 , . . . , q
±
n ] where C[q±1 , . . . , q

±
n ] is just our algebra of

Laurent polynomials. We write uqr for u ⊗ qr when u ∈ U(v),qr ∈ C[q±1 , . . . , q
±
n ] and

define a multiplication, extending the usual multiplications on both U(v) and C[q±1 , . . . , q
±
n ]

by defining

qru = σr(u)qr for any u ∈ U(v), r ∈ Z
n. (3.2)

Here qr represents qr1
1 . . . qrn

n and we extend this definition linearly to all of Uq(v). This

is similar to the twisting process found in [Lam] and it is easy to see that this process

makes Uq(v) into an associative algebra with identity. Clearly this algebra is Z-graded

with C[q±1 , . . . , q
±
n ] being of zero degree and where Uq(v)i is just U(v)i ⊗ C[q±1 , . . . , q

±
n ].

Moreover the following formulas, which are straightforward to verify, hold.

[ti0t
mda,q

r] =
ra
c

(ti0t
mk0)q

r, a = 1, . . . , n, (3.3)

[ti0t
md0,q

r] = −
1

c

n∑

b=1

rb(t
i
0t

mkb)q
r, (3.4)

[ti0t
mkp,q

r] = 0, p = 0, . . . , n. (3.5)

Here i ∈ Z, r,m ∈ Z
n. Notice that U(K) ⊗ C[q±1 , . . . , q

±
n ] is a commutative algebra.

Next we let T = T (W ) = C[q±1 , . . . , q
±
n ]⊗W be one of the tensor modules constructed

in the previous section from a finite-dimensional gln-module with central charge non-zero

and equal to the constant c we fixed at the beginning of this section. Clearly C[q±1 , . . . , q
±
n ]

acts on T by the natural action of multiplication on the left factor. We recall that M =

M(T (W )) = M(T ) = Indv
v0⊕v+

(T ) = U(v)⊗U(v0⊕v+)T and L = M/M rad. These modules

have Z and Z
n-gradings.
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Proposition 3.6. (a) The action of U(v) on M can be extended to an action of Uq(v)

on M which satisfies

(u1q
r)(u2 ⊗ qmw) = u1σ

r(u2) ⊗ qr+mw for u1, u2 ∈ U(v), r,m ∈ Z
n.

Thus, M is a Uq(v)-module.

(b) The U(v)-submodule M rad of M is a Uq(v)-submodule.

(c) L is a Uq(v)-module and dimL(s,r) = dimL(s,0) for all r ∈ Z
n, s ∈ Z.

Proof. (a) In order to show that the above action is well-defined it is enough to check

that

σr(x)qr+sw = qr(xqsw) for x ∈ v0 ⊕ v+, r, s ∈ Z
n.

If x ∈ v+ then both sides of the equality are zero since σr preserves the grading and v+

acts on T trivially.

Next we check the above equality for the basis elements tmdp, t
mkp of v0:

σr(tmda)qr+sw = (tmda −
ra
c

tmk0)q
r+sw =

= (ra + sa)qr+s+mw +
n∑

i=1

miq
r+s+mψ(Eia)w − raq

r+s+mw =

= saq
r+s+mw +

n∑

i=1

miq
r+s+mψ(Eia)w =

= qr(tmda(qsw)), a = 1, . . . , n,

σr(tmd0)q
r+sw = (tmd0 +

1

c

n∑

a=1

rat
mka)qr+sw =

= dqr+s+mw = qr(tmd0(q
sw)),

σr(tmkp)q
r+sw = tmkp(q

r+sw) = qr(tmkp(q
sw)), p = 0, . . . , n.

Finally, we verify that the action of Uq(v) on M agrees with the associative product

(3.2) in Uq(v):

µ(u1q
ru2q

m)(u3 ⊗ qsw) = µ(u1q
r)µ(u2q

m)(u3 ⊗ qsw).

However, both sides are equal to

u1σ
r(u2)σ

r+m(u3) ⊗ qr+m+sw.
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(b) A vector v ∈M−s, s ≥ 0 belongs to M rad if and only if U(v+)sv = 0. If v ∈M rad
−s

then for u ∈ U(v+)s we have

uqmv = qmσ−m(u)v = 0

since σ−m (U(v+)s) = U(v+)s. Thus qmv ∈ M rad
−s which shows that M rad is a Uq(v)-

submodule.

Finally notice that (c) is clear since qrL(s,0) ⊆ L(s,r) for all r ∈ Z
n and qr is invertible

in Uq(v). Q.E.D.

Next we recall that we have the completion U(K) = S(K) = ⊕
k∈Z

U(K)k of the abelian

Lie algebra K which was given by (see (1.3))

U(K)k =
∏

i≤0,j≥0
i+j=k

U(K−)iU(K0)U(K+)j .

We also have the completion, Uq(v), of our Z-graded algebra Uq(v) and clearly U(K) is a

subalgebra of Uq(v). This lets us define the subalgebra

Ûq(v) = U(D)U(K)C[q±1 , . . . , q
±
n ]. (3.7)

Recalling that K is an ideal in v and also taking into account (3.3)-(3.5), we conclude that

the subalgebra Uq(K) = U(K)C[q±1 , . . . , q
±
n ] in Ûq(v) is ad(v)-invariant.

We know Uq(v) acts on M and hence so does Ûq(v).

We now define some elements of Ûq(v)[[z, z−1]] we need to deal with. These are as

follows,

k0(z, r) =
∑

i∈Z

(ti0t
rk0)z

−i, r ∈ Z
n, (3.8)

k0(z) = k0(z, 0), (3.9)

kp(z, r) =
∑

i∈Z

(ti0t
rkp)z

−i, r ∈ Z
n, 1 ≤ p ≤ n, (3.10)

kp(z) =
∑

i∈Z
i 6=0

(ti0kp)z
−i, 1 ≤ p ≤ n, (3.11)

Thus kp(z, 0) = kp + kp(z) for 1 ≤ p ≤ n. Notice that we have

kp(z, r) ∈ Kgr[[z, z
−1]], 0 ≤ p ≤ n, r ∈ Z

n (3.12)
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and that since ti0k0 = 0 in K (by (2.1)) if i 6= 0 then

k0(z) = k0(z, 0) = k0. (3.13)

We will also use the element

−
∑

i∈Z
i 6=0

(
1

i
ti0kp)z

−i ∈ Kgr[[z, z
−1]], 1 ≤ p ≤ n,

and for notation we let (as usual) for 1 ≤ p ≤ n,

∫
kp(z)

z
dz denote −

∑

i∈Z
i 6=0

(
1

i
ti0kp)z

−i. (3.14)

Because
∫ kp(z)

z
dz is in Kgr[[z, z

−1]] and has its zero moment equal to zero then this is also

true for the series
1

c

n∑

p=1

rp

∫
kp(z)

z
dz.

It follows from (1.4) that then we may exponentiate this to get the element, for r ∈ Z
n,

exp

(
1

c

n∑

p=1

rp

∫
kp(z)

z
dz

)
∈ U(K)gr[[z, z

−1]] ⊂ Ûq(v)gr[[z, z
−1]].

Thus, we have the element k(z, r) ∈ Ûq(v)gr[[z, z
−1]] defined by

k(z, r) := qrexp

(
1

c

n∑

p=1

rp

∫
kp(z)

z
dz

)
. (3.15)

The reader should also note that by (1.5)

kp(z)k(z, r) ∈ Ûq(v)gr[[z, z
−1]], 0 ≤ p ≤ n. (3.16)

We know that the moments of these series act on the restricted modules M , M rad and L

and we let ϕ denote the representation of v on L. If g(z) ∈ Ûq(v)[[z, z−1]] is g(z) =
∑

i∈Z

giz
−i

we then let

g(z) =
∑

i∈Z

ϕ(gi)z
−i ∈ End(L)[[z, z−1]]. (3.17)

Our goal is to show that for 1 ≤ p ≤ n, r ∈ Z
n

k0(z, r) = ck(z, r), (3.18)
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kp(z, r) = kp(z)k(z, r). (3.19)

To do this we consider the differences k0(z, r) − ck(z, r) and kp(z, r) − kp(z)k(z, r)

in Ûq(v)[[z, z−1]]. Now let U(K)C[q±1 , . . . , q
±
n ] be denoted by Uq(K) ⊂ Ûq(v). Uq(K) is a

commutative subalgebra of Ûq(v). Recalling Proposition1.5 we see that Uq(K)gr[[z, z
−1]]

is an algebra since C[q±1
1 , . . . , q±1

n ] is in the degree zero space of Uq(K). Also, we will need

the derivation Dz which acts by Dz(
∑

i∈Z

fnz
−n) = −

∑

i∈Z

nfnz
−n.

Definition 3.20. For r ∈ Z
n let bp(z, r) = kp(z, r) − kp(z)k(z, r) for 1 ≤ p ≤ n and

let b0(z, r) = k0(z, r) − ck(z, r). Let I be the ideal of Uq(K)gr[[z, z
−1]] generated by all

the series Di
z(bp(z, r)) for i ∈ Z, i ≥ 0, 0 ≤ p ≤ n, r ∈ Z

n. Also, let R be the subspace of

Uq(K) spanned by all moments of the series in I.

Note that from the definition we have that R is a homogeneous ideal of Uq(K) in the

Z
n+1-grading. In particular, as R is homogeneous in the Z-grading we write R = ⊕

i∈Z

Ri.

Also note that we have, by (3.13), that b0(z, 0) = k0−c and that Di
z(b0(z, 0)) = 0 for i ≥ 1.

Thus, we have k0f(z) ≡ cf(z) mod I, for any f(z) ∈ Uq(K)gr[[z, z
−1]]. Moreover, the

moments of Di
z(bp(z, r)), for i ≥ 1, are just multiples of the corresponding ones of bp(z, r).

Notice that we have that I is invariant under Dz. We are going to show that RM ⊂M rad.

From this it will follow that (3.18) and (3.19) hold. The factorization property (0.1) will

then follow easily from properties of the exponential map. To accomplish this we need

several Lemmas.

Lemma 3.21. The zero component of R, R0, acts trivially on the tensor module T .

That is, R0T = (0).

Proof. Since Uq(K) is commutative and K+T = (0) then to show that R0 acts on

T trivially, it is sufficient to check that the 0-moments of k0(z, r)− ck(z, r) and kp(z, r)−

kp(z)k(z, r) annihilate T . Indeed, if we let b(z) =
∑

i∈Z

biz
−i be one of the series Di

z(bp(z, r))

from Definition 3.20 and let g(z) =
∑

i∈Z

giz
−i be an arbitrary series in Uq(K)gr[[z, z

−1]]

then the zero component in the product can be written as the function
∑

k∈Z

g−kbk in

∏
k≥0

Uq(K−)−kUq(K0)Uq(K+)k. If k > 0,then bk acts as zero while if k < 0, g−kbk = bkg−k

and g−k acts as zero.

The 0-moment of k0(z, r) is trk0, which acts on T as cqr. Since ts0kp act trivially

on T for s ≥ 0 then the 0-moment of k(z, r) acts on T as qr, hence the 0-moment of

k0(z, r) − ck(z, r) annihilates T . Since trkp, p = 1, . . . , n act on T trivially then the

0-moments of both kp(z, r) and kp(z)k(z, r) act trivially on T . Q.E.D.

30



Lemma 3.22. For any m0 ∈ Z, m ∈ Z
n and a, p = 0, 1, . . . , n we have

[tm0
0 tmdaz

−m0 , bp(z, r)] ∈ I.

Proof. In the following proof we work with shifts in z of series from Uq(K)gr[[z, z
−1]]

so will work with [tm0
0 tmda, bp(z, r)] rather than with [tm0

0 tmdaz
−m0 , bp(z, r)]. Also, we

will replace b0(z, r) by k0(z, r) − k0k(z, r) = k0(z, r) − k0(z)k(z, r) to achieve uniformity

of notation and not affect the conclusion. Indeed, if we know that [t0t
mdaz

−m0 , k0(z, r)−

k0k(z, r)] ∈ I then we get that [t0t
mdaz

−m0 , k0(z, r)− ck(z, r)] ∈ I because [t0t
mda, k0] =

[t0t
mda, c] = 0 and so k0[t0t

mda, k(z, r)] ≡ c[t0t
mda, k(z, r)] mod I. Furthermore, we note

that we will freely use the central relations (2.1). For a = 1, . . . , n we have

[tm0
0 tmda, kp(z, r)] =

∑

j

[
tm0
0 tmda, t

j
0t

rkp

]
z−j

= ra
∑

j

tj+m0

0 tr+mkpz
−j + δap

n∑

b=0

∑

j

mbt
j+m0

0 tr+mkbz
−j

= raz
m0kp(z, r + m) + δapz

m0

n∑

b=0

mbkb(z, r + m).

To compute the commutator with kp(z)k(z, r), we use the fact that [X, exp(Y )] =

[X, Y ] exp(Y ), provided that [[X, Y ] , Y ] = 0:

[tm0
0 tmda, kp(z)k(z, r)] =

= [tm0
0 tmda, kp(z)] k(z, r) + kp(z) [tm0

0 tmda, k(z, r)] =

= δapz
m0

n∑

b=0

mbkb(z,m)k(z, r) + kp(z) [tm0
0 tmda,q

r] exp

(
1

c

n∑

b=1

rb

∫
kb(z)

z
dz

)

+kp(z)q
r

[
tm0
0 tmda, exp

(
1

c

n∑

b=1

rb

∫
kb(z)

z
dz

)]
=

= δapz
m0

n∑

b=0

mbkb(z,m)k(z, r) + kp(z)
ra
c

(tm0
0 tmk0) k(z, r)

+kp(z)



tm0
0 tmda,

ra
c

∑

j 6=0

1

(−j)
tj0kaz

−j



 k(z, r) =

= δapz
m0

n∑

b=0

mbkb(z,m)k(z, r) + kp(z)
ra
c

(tm0
0 tmk0) k(z, r)
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+kp(z)
ra
c

∑

j 6=0

1

(−j)
(−j)tj+m0

0 tmk0z
−jk(z, r) =

= δapz
m0

n∑

b=0

mbkb(z,m)k(z, r) + raz
m0kp(z)

1

c
k0(z,m)k(z, r).

Thus

[tm0
0 tmda, kp(z, r) − kp(z)k(z, r)] =

raz
m0

(
kp(z, r + m) −

1

c
kp(z)k0(z,m)k(z, r)

)
+

δapz
m0

n∑

b=0

mb (kb(z, r + m) − kb(z,m)k(z, r)) .

But

kp(z, r + m) −
1

c
kp(z)k0(z,m)k(z, r) =

= kp(z, r + m) − kp(z)k(z, r + m) + kp(z)k(z, r)

(
k(z,m) −

1

c
k0(z,m)

)
,

and

kb(z, r + m) − kb(z,m)k(z, r) =

= kb(z, r + m) − kb(z)k(z, r + m) + k(z, r) (kb(z)k(z,m) − kb(z,m)) .

Hence the commutator [tm0
0 tmda, kp(z, r) − kp(z)k(z, r)] can be written in the required

form. That is, we have that [tm0
0 tmdaz

−m0 , kp(z, r) − kp(z)k(z, r)] ∈ I.

The computation for [tm0
0 tmd0, kp(z, r) − kp(z)k(z, r)] is analogous but we need to

make use of Dz.

[tm0
0 tmd0, kp(z, r)] =

∑

j

[
tm0
0 tmd0, t

j
0t

rkp

]
z−j =

=
∑

j

jtj+m0

0 tr+mkpz
−j + δp0

n∑

b=0

∑

j

mbt
j+m0

0 tr+mkbz
−j =

= −Dz (zm0kp(z, r + m)) + δp0z
m0

n∑

b=0

mbkb(z, r + m).

[tm0
0 tmd0, kp(z)k(z, r)] =

[tm0
0 tmd0, kp(z)] k(z, r) + kp(z) [tm0

0 tmd0,q
r] exp

(
1

c

n∑

b=1

rb

∫
kb(z)

z
dz

)
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+kp(z)q
r

[
tm0
0 tmd0, exp

(
1

c

n∑

b=1

rb

∫
kb(z)

z
dz

)]
=

= −Dz (zm0kp(z,m)) k(z, r) + δp0z
m0

n∑

b=0

mbkb(z,m)k(z, r)

−kp(z)
1

c

(
n∑

b=1

rbt
m0
0 tmkb

)

k(z, r) − kp(z)
1

c




n∑

b=1

∑

j 6=0

rbt
j+m0

0 tmkbz
−j



 k(z, r) =

= −Dz (zm0kp(z,m)) k(z, r)

+δp0z
m0

n∑

b=0

mbkb(z,m)k(z, r) − zm0kp(z)
1

c

n∑

b=1

rbkb(z,m)k(z, r).

Finally,

[tm0
0 tmd0, kp(z, r) − kp(z)k(z, r)] =

−Dz (zm0kp(z, r + m)) +Dz (zm0kp(z,m)) k(z, r) + zm0kp(z)
1

c

n∑

b=1

rbkb(z,m)k(z, r)+

+δp0z
m0

n∑

b=0

mb (kb(z, r + m) − kb(z,m)k(z, r)) =

−Dz (zm0(kp(z, r + m) − kp(z)k(z, r + m)) +Dz (zm0(kp(z,m) − kp(z)k(z,m)) k(z, r)

−zm0kp(z)k(z,m)Dzk(z, r) + zm0kp(z)
1

c

n∑

b=1

rbkb(z)k(z, r)k(z,m)

+zm0kp(z)
1

c

n∑

b=1

rb {kb(z,m) − kb(z)k(z,m)} k(z, r)

+δp0z
m0

n∑

b=0

mb (kb(z, r + m) − kb(z,m)k(z, r)) .

Adding and subtracting the same term and using that k(z, r+m) = k(z, r)k(z,m) we find

that the above becomes

−Dz (zm0(kp(z, r + m) − kp(z)k(z, r + m)) +Dz (zm0(kp(z,m) − kp(z)k(z,m)) k(z, r)

+zm0kp(z)
1

c

n∑

b=1

rb {kb(z,m) − kb(z)k(z,m)} k(z, r)

−zm0kp(z)k(z,m)Dzk(z, r) + zm0kp(z)
1

c

n∑

b=1

rbkb(z)k(z, r)k(z,m)
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+δp0z
m0

n∑

b=0

mb (kb(z, r + m) − kb(z)k(z, r + m))

−δp0z
m0k(z, r)

n∑

b=0

mb (kb(z,m) − kb(z)) k(z,m).

Here we note that since

k(z, r) = qrexp



1

c

n∑

b=1

∑

i6=0

rbt
i
0kb

(−i)
z−i





then we obtain

Dzk(z, r) = k(z, r)
1

c




n∑

b=1

∑

i6=0

rbt
i
0kbz

−i



 = k(z, r)
1

c

n∑

b=1

rbkb(z).

Canceling terms we get the above equals

= −Dz (zm0(kp(z, r + m) − kp(z)k(z, r + m)))+Dz (zm0(kp(z,m) − kp(z)k(z,m))) k(z, r)

+zm0kp(z)k(z, r)
1

c

n∑

b=1

rb {kb(z,m) − kb(z)k(z,m)}+

+δp0z
m0

n∑

b=0

mb (kb(z, r + m) − kb(z)k(z, r + m))

−δp0z
m0k(z, r)

n∑

b=0

mb (kb(z,m) − kb(z)k(z,m)) .

Clearly it follows from this that

[
tm0
0 tmd0z

−m0 , kp(z, r) − kp(z)k(z, r)
]
∈ I,

and this is what we want. Q.E.D.

Corollary 3.23 The space R, in Ûq(v), is ad(v)-invariant.

Proof. Since Uq(K) is ad(v)-invariant then

z−sad(vs)Uq(K)gr[[z, z
−1]] ⊂ Uq(K)gr[[z, z

−1]].

Also, the previous Lemma implies that for any s ∈ Z, 0 ≤ p, a ≤ n,m, r ∈ Z
n, we have

[ts0t
mdaz

−s, bp(z, r)] ∈ I.
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We show, by induction on i ∈ Z, i ≥ 0, that [ts0t
mdaz

−s, Di
zbp(z, r)] ∈ I. We have

[ts0t
mdaz

−s, Di+1
z bp(z, r)] =

(ts0t
mdaz

−s)Di+1
z bp(z, r) −Di+1

z bp(z, r)(t
s
0t

mdaz
−s) =

Dz((t
s
0t

mdaz
−s)Di

zbp(z, r)) − (Dz(t
s
0t

mdaz
−s))Di

zbp(z, r)

−Dz((D
i
zbp(z, r)(t

s
0t

mdaz
−s) + (Di

zbp(z, r)(Dz(t
s
0t

mdaz
−s) =

Dz([t
s
0t

mdaz
−s, Di

zbp(z, r)]) + s[ts0t
mdaz

−s, Di
zbp(z, r)].

This is in I, by induction, since clearly, by its very definition, I is invariant under Dz.

Thus, it follows from what we said above, and the fact that ad(v) acts as derivations,

that

z−sad(vs)I ⊂ I. (3.24)

We conclude from this that R is ad(v)-invariant. Q.E.D.

We can now prove our main result about R.

Lemma 3.25. RM ⊂M rad.

Proof. Recall from Theorem 2.26(c) that M = U(v−)T where T is our tensor module.

Thus, a general element of M is a sum of terms of the form x1 . . . xmw where w ∈ T,m ≥ 0

and xi ∈ v−, 1 ≤ i ≤ m.

Let f be a homogeneous element in R, say f ∈ Rs and let w ∈ T . If s > 0 then

clearly fw = 0 since M has trivial positive graded components. If s = 0 then Lemma 3.21

gives us that fw = 0. For s < 0 we need to show that ufw = 0 for all u ∈ U(v+)−s. It is

enough to take u of the form u = y1 . . . ym with yj ∈ vkj
, kj > 0,

m∑
j=1

kj = −s. We have

y1 . . . ymfw = y1 . . . ym−1[ym, f ]w = [y1, . . . [ym−1, [ymf ]] . . .]w.

Using Corollary 3.23 and Lemma 3.21 we see this expression is zero since

[y1, . . . [ym−1, [ymf ]] . . .]w ∈ R0T = (0). Thus, fw ∈M rad.

We now show if x1, . . . , xm ∈ v−, w ∈ T and f ∈ R then fx1 . . . xmw ∈ M rad. We

use induction on m where the case m = 0 has just been done. For m > 0 we have

fx1 . . . xmw = x1fx2 . . . xmw − [x1, f ]x2 . . . xmw.

By induction the term fx2 . . . xmw ∈ M rad as is the term [x1, f ]x2 . . . xmw because we

know that [x1, f ] ∈ R. Q.E.D.
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We now have the following result.

Theorem 3.26. Let v = v(D, τ) be as above and let T = T (W ) be a tensor module

for v0 with non-zero central charge c. Then on L we have

kp(z, r) = kp(z)k(z, r) for 0 ≤ p ≤ n, r ∈ Z
n.

Moreover, k(z, r)k(z,m) = k(z, r + m) for r,m ∈ Z
n and hence we have

kp(z, r + m) = kp(z, r)k(z,m).

Remark 3.27. If c = 0 then, by arguments similar to the above, one can see all of K

acts trivially on L.

4. Modules for Toroidal Algebras.

In this section we use our previous construction of modules L, for v = v(D, τ), to

obtain modules for toroidal algebras. Our method is to take a tensor product of a module

for the affine Lie algebra ġ⊗C[t0, t
−1
0 ]⊕Ck0⊕Cd0 with one of our v-modules L. In showing

that this is a module for the toroidal algebra we need to make use of the factorization

property in Theorem 3.26. Moreover, it is here that we need to assume the derivation

algebra D equals D∗.

We let V be a restricted module for the affine algebra ġ⊗ C[t0, t
−1
0 ]⊕ Ck0 ⊕ Cd0 and

let ρ denote the corresponding representation. Moreover we assume the central element

k0 acts as the scalar c so the central charge is c. For g ∈ ġ we let g(z) the formal series
∑

i∈Z

ρ(ti0g)z
−i. Note that g(z) ∈ End(V )[[z, z−1]].

For a restricted representation (F, ϕ) of the algebra v = D∗⊕K we define kp(z, r) and

da(z, r) by

kp(z, r) =
∑

j∈Z

ϕ(tj0t
rkp)z

−j , p = 0, . . . , n.

da(z, r) =
∑

j∈Z

ϕ(tj0t
rda)z−j , a = 1, . . . , n.

These series are in End(F )[[z, z−1]]. If the central charge c of F is non-zero then we set

k(z, r) =
1

c
k0(z, r).
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Note that (2.1) can be rewritten as

cDk(z, r) =
n∑

p=1

rpkp(z, r).

Also note that since F is restricted the seemingly infinite sum of endomorphisms

∑

j∈Z

ϕ(tj0t
rkp)ϕ(ti−j

0 tmk0)

is a well defined element in End(F ) for any i ∈ Z and hence the product kp(z, r)k(z,m)

makes sense in End(F )[[z, z−1]]. Also since both modules V and F are restricted we may

use Lemma 1.1 to get series of the form g(z) ⊗ h(z).

We need to make use of the formal analog of the delta-function so will use the series

δ(z) =
∑

j∈Z

zj .

For the differential operator D = z d
dz

consider also the series

Dδ(z) =
∑

j∈Z

jzj .

The following result is well-known.

Lemma 4.1. (cf. Proposition 2.2.2. in [FLM]) For a formal Laurent series X(z1, z2)

the following equalities hold provided the products on the left hand sides exist.

(i) X(z1, z2)δ

(
z2
z1

)
= X(z2, z2)δ

(
z2
z1

)
= X(z1, z1)δ

(
z2
z1

)
,

(ii) X(z1, z2)Dδ

(
z2
z1

)
= X(z2, z2)Dδ

(
z2
z1

)
+ (Dz1

X(z1, z2))

∣∣∣∣
z1=z2

δ

(
z2
z1

)
,

Note that our products, in the proof of the following result, will exist since we are working

with restricted modules.

Theorem 4.2. Let (V, ρ) be a restricted representation of the affine algebra

ġ ⊗ C[t0, t
−1
0 ] ⊕ Ck0 ⊕ Cd0

and let (F, ϕ) be a restricted representation of the algebra

v = D∗ ⊕K.
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Suppose that both modules V and F have the same central charge c 6= 0. Moreover we

require that the module F satisfies the factorization condition

kp(z, r + m) = kp(z, r)k(z,m) (4.3)

for all r,m ∈ Z
n, p = 0, . . . , n.

Then the following defines a representation, µ, of the toroidal algebra T = g̃⊕K⊕D∗

on the space V ⊗ F .

∑

j∈Z

µ(tj0t
rg)z−j = g(z) ⊗ k(z, r) for g ∈ ġ,

µ
∣∣
D∗⊕K

= Id ⊗ ϕ
∣∣
D∗⊕K

,

µ(d0) = ρ(d0) ⊗ Id + Id ⊗ ϕ(d0).

Proof. The relations that we must check can be written down as the following

equalities for our generating series:




∑

i∈Z

µ(ti0t
rg1)z

−i
1 ,
∑

j∈Z

µ(tj0t
mg2)z

−j
2



 =
∑

i∈Z

∑

j∈Z

µ(
[
ti0t

rg1, t
j
0t

mg2

]
)z−i

1 z−j
2 , (4.4)




∑

i∈Z

µ(ti0t
rg)z−i

1 ,
∑

j∈Z

µ(tj0t
mkp)z

−j
2



 = 0, (4.5)



µ(ti0t
rda),

∑

j∈Z

µ(tj0t
mg)z−j



 = ma

∑

j∈Z

µ(ti+j
0 tr+mg)z−j , (4.6)

[µ(d0), g(z, r)] = −Dg(z, r), (4.7)

[
µ(d0), da(z, r)

]
= −Dda(z, r),

[
µ(d0), kp(z, r)

]
= −Dkp(z, r), (4.8)

for all g, g1, g2 ∈ ġ , p = 0, . . . , n, a = 1, . . . , n.

To get this we have just used (2.3),(2.4), (2.6), and (2.8) from the definition of the

toroidal algebra T.

First we establish establish the relation (4.4). The right hand side of (4.4) can be

transformed as follows:

∑

i∈Z

∑

j∈Z

µ(
[
ti0t

rg1, t
j
0t

mg2

]
)z−i

1 z−j
2 =
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=
∑

i∈Z

∑

j∈Z

µ(ti+j
0 tr+m[g1, g2])z

−i
1 z−j

2

+(g1|g2)
∑

i∈Z

∑

j∈Z

iµ(ti+j
0 tr+mk0)z

−i
1 z−j

2 + (g1|g2)

n∑

p=1

rp
∑

i∈Z

∑

j∈Z

µ(ti+j
0 tr+mkp)z

−i
1 z−j

2

=
∑

i∈Z

∑

s=i+j∈Z

µ(ts0t
r+m[g1, g2])z

−i
1 z−s+i

2 + (g1|g2)
∑

i∈Z

∑

s=i+j∈Z

iµ(ts0t
r+mk0)z

−i
1 z−s+i

2

+(g1|g2)

n∑

p=1

rp
∑

i∈Z

∑

s=i+j∈Z

µ(ts0t
r+mkp)z

−i
1 z−s+i

2

=
∑

s∈Z

µ(ts0t
r+m[g1, g2])z

−s
2 δ

(
z2
z1

)

+(g1|g2)
∑

s∈Z

µ(ts0t
r+mk0)z

−s
2 Dδ

(
z2
z1

)
+ (g1|g2)

n∑

p=1

rp
∑

s∈Z

µ(ts0t
r+mkp)z

−s
2 δ

(
z2
z1

)

= [g1, g2](z2)k(z2, r + m)δ

(
z2
z1

)

+(g1|g2)ck(z2, r + m)Dδ

(
z2
z1

)
+ (g1|g2)

n∑

p=1

rpkp(z2, r + m)δ

(
z2
z1

)
.

Analogous calculation carried out for the representation (V, ρ) for the affine algebra

gives (see e.g. [Kac])

[g1(z1), g2(z2)] = [g1, g2](z2)δ

(
z2
z1

)
+ (g1|g2)cDδ

(
z2
z1

)
.

We use this together with Lemma 4.1 and assumption (4.3) as well as (2.1) to establish

(4.4). 


∑

i∈Z

µ(ti0t
rg1)z

−i
1 ,
∑

j∈Z

µ(tj0t
mg2)z

−j
2



 =

=
[
g1(z1)k(z1, r), g2(z2)k(z2,m)

]
= [g1(z1), g2(z2)] k(z1, r)k(z2,m) =

= [g1, g2](z2)δ

(
z2
z1

)
k(z1, r)k(z2,m) + (g1|g2)cDδ

(
z2
z1

)
k(z1, r)k(z2,m) =

= [g1, g2](z2)k(z2, r)k(z2,m)δ

(
z2
z1

)
+ (g1|g2)ck(z2, r)k(z2,m)Dδ

(
z2
z1

)

+(g1|g2)c
(
Dz1

k(z1, r)
) ∣∣∣∣

z1=z2

k(z2,m)δ

(
z2
z1

)
=
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= [g1, g2](z2, r+m)δ

(
z2
z1

)
+(g1|g2)ck(z2, r+m)Dδ

(
z2
z1

)
+(g1|g2)

n∑

p=1

rpkp(z2, r+m)δ

(
z2
z1

)
.

This establishes (4.4).

Relation (4.5) follows immediately from

[ka(z1, r), kb(z2,m)] = 0 and [g(z), ka(z1, r)] = 0 for all a, b = 0, . . . , n.

We now verify (4.6):



µ(ti0t
rda),

∑

j∈Z

µ(tj0t
mg)z−j



 = g(z)
[
ϕ(ti0t

rda), k(z,m)
]

=

= g(z)zimak(z, r + m) = maz
ig(z, r + m).

From (2.6) and (2.7) we have

[ρ(d0), g(z)] = −Dg(z),
[
ϕ(d0), k(z, r)

]
= −Dk(z, r).

Thus,

[µ(d0), g(z, r)] = − (Dg(z)) k(z, r) − g(z)
(
Dk(z, r)

)

= −Dg(z, r),

which establishes (4.7).

Finally, (4.8) follows immediately from (2.7) and the definition of our cocycle τ.

Q.E.D.

Notice that the cocycle τ does not enter into the above computations. However, we

are only working with D∗ here so have only needed to check (4.6). If we tried to use D in

place of D∗ we run into difficulties (as the reader can easily verify) in trying to see if

[µ(ti0t
rd0),

∑

j∈Z

µ(tj0t
mg)] = µ([ti0t

rd0,
∑

j∈Z

tj0t
mg]).

It seems that to solve this problem one may need to enlarge v by replacing K by a bigger

algebra. See [L2] for some particular incidences of this.

The following result summarizes the main results of our work.

Theorem 4.9. Let (V, ρ) be an irreducible highest weight module with non-zero

central charge c for the affine algebra ġ ⊗ C[t0, t
−1
0 ] ⊕ Ck0 ⊕ Cd0 and let (L, ϕ) be one

of the restricted irreducible representations with the same central charge of the algebra

v = D∗⊕K constructed in Theorem 2.26. Then the module V ⊗L, for the toroidal algebra
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T = g̃ ⊕ K ⊕ D∗, constructed in Theorem 4.2, is irreducible and has finite dimensional

homogeneous spaces in the Z
n+1-grading.

Proof. We need to show that the submodule generated by an arbitrary nonzero

vector is the whole space V ⊗ L. Indeed, acting on a nonzero vector by operators from

the positive part of affine algebra ġ ⊗ C[t0, t
−1
0 ]⊕ Ck0, we can obtain a vector of the form

v0⊗w, where v0 is the highest weight vector in V and w is some nonzero vector in L. Since

L is irreducible and the v-subalgebra D∗∗ ⊕K acts only on the second factor in the tensor

product, (recall that D∗ = D∗∗ ⊕Cd0 and d0 acts as a scalar on v0) then the v-submodule

generated by v0 ⊗w is v0 ⊗ L. Finally, applying the action of the affine subalgebra again,

we generate the space V ⊗ L.

Q.E.D.

References

[BC] S. Berman, B. Cox, Enveloping algebras and representations of toroidal Lie algebras,

Pacific J.Math., 165 (1994), 239-267.

[BGK] S. Berman, Y. Gao, Y. Krylyuk, Quantum Tori and the Structure of Elliptic Quasi-

simple Lie Algebras, J.Funct. Analysis, 135 (1996), 339-389.

[B1] Y. Billig, Principal vertex operator representations for toroidal Lie algebras, J. Math.

Phys., 39 (1998), 3844-3864.

[B2] Y. Billig, An extension of the KdV hierarchy arising from a representation of a toroidal

Lie algebra, to appear in J. Algebra.

[BM] G. Benkart, R. Moody, Derivations, central extensions and affine Lie Algebras, Alge-

bras, Groups and Geometries, 3 (1993), 456-492.

[CF] B. Cox, V. Futorny, Borel Subalgebras and Categories of highest weight modules for

Toroidal Lie Algebras, preprint.

[Dz] A. Dzhumadil’daev, Virasoro type Lie algebras and deformations, Z. Phys. C, 72

(1996), 509-517.

[EM] S. Eswara Rao, R.V. Moody, Vertex representations for n-toroidal Lie algebras and a

generalization of the Virasoro algebra, Comm. Math. Phys. 159 (1994), 239-264.

[F] I. Frenkel, Representations of Kac-Moody algebras and dual resonance modules, Lec-

tures in Applied Math. 21 (1985) 325-353.

[FLM] I. Frenkel, J. Lepowsky, A. Meurman, Vertex operator algebras and the Monster,

Academic Press, Boston, 1989.

[IKU] T. Inami, H. Kanno, T. Ueno, Higher-dimensional WZW model on Kähler manifold

and toroidal Lie algebra, Mod. Phys. Lett. A, 12 (1997), 2757-2764.

41



[ISW] K. Iohara, Y. Saito, M. Wakimoto, Hirota bilinear forms with 2-toroidal symmetry,

preprint.

[Kac] V. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, 3rd edition,

Cambridge, 1990.

[Kas] C. Kassel, Kähler differentials and coverings of complex simple Lie algebras extended

over a commutative ring, J.Pure Applied Algebra, 34(1984)265-275.

[Lam] T.Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Math.131,

Springer-Verlag, New York, 1991.

[L1] T. Larsson, Conformal Fields: A class of representations of Vect(N), Inter.J.Modern

Physics, 7 (1992), 6493-6508.

[L2] T. Larsson, Lowest-energy representations of non-centrally extended diffeomorphism

algebras, to appear in Comm. Math. Phys.

[L3] T. Larsson, Extended diffeomorphism algebras and trajectories in jet space, preprint

math-ph/9810003.

[MRY] R.V. Moody, S. Eswara Rao, T. Yokonuma, Toroidal Lie algebras and vertex repre-

sentations, Geom.Ded., 35 (1990), 283-307.

[R] S.E. Rao, Irreducible Representations of the Lie Algebra of the diffeomorphisms of a

d-dimensional torus, J.Algebra, 182(1996), 401-421.

[Rud] A.N. Rudakov, Irreducible representations of infinite-dimensional Lie algebras of Car-

tan type, Math. USSR Izv., 8 (1974), 836-866.

[STU] Y. Saito,K. Takemura,D. Uglov, Toroidal actions on level 1 Modules of Uq(ŝln), q-
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