
Chapter 1

Fourier Series

1.1 Motivation

The motivation behind this topic is as follows, Joseph-Louis Fourier, (1768-
1830), a French engineer (and mathematician) discussed heat flow through a
bar which gives rise to the so-called Heat Diffusion Problem,

∂2u

∂x2
=

1
K

∂u

∂t
(1.1)

where u = u(x, t), K > 0 is a constant depending on the thermal properties of
the bar, u(0, t) = 0 = u(L, t), and u(x, 0) = f(x), where f is given at the outset.
Think of f as being the initial state of the bar at time t = 0, and u(x, t) as
being the temperature distribution along the bar at the point x in time t. The
boundary conditions or conditions at the end-points are given in such a way
that the bar’s “ends” are kept at a fixed temperature, say 0 degrees (whatever)
and we can assume that most of the bar is at a temperature close to room
temperature, for simplicity.

We apply the method of Separation of Variables first. Like Daniel Bernoulli
before him, Fourier assumed that the solution he was looking for had the form,

u(x, t) = f(x)g(t), (1.2)

where we need to find these two functions f, g of one variable. Substituting this
expression into the diffusion equation (1.1) we find,

0 =
∂2u

∂x2
− 1

K

∂u

∂t

= f ′′(x)g(t) − 1
K

f(x)g′(t).

Now, it must be the case that f(x) �= 0 and g(t) �= 0, otherwise u(x, t) = 0 for
such x and t. This, however is not a sustainable conclusion on physical grounds
(since the rod can’t have its temperature equal to 0 except at the end-points).
So, dividing both sides by the product f(x)g(t) and separating out terms in x
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from terms in t we get

f ′′(x)
f(x)

=
1
K

g′(t)
g(t)

. (1.3)

Now this equality, (1.3), is valid for any value of x where 0 < x < L and any
value of t where t > 0. So we can let x = x0 where this number x0 is any fixed
number in the interval [0, L]. The left side of (1.3) is a constant while the right
hand side is a function of t. On the other hand, we can do the same thing with
t, that is, we can set t = t0 in the right of (1.3) and leave the x alone. Then
the right side becomes a constant and the left side is a function of x. The point
is that these two constants must be equal because of the equality (1.3). We’ll
denote the common value of these constants by the symbol −λ so that (1.3) can
be rewritten as

f ′′(x)
f(x)

=
1
K

g′(t)
g(t)

= −λ.

These equalities can be recast as two equations, namely,

f ′′(x)
f(x)

= −λ ⇒ f ′′(x) + λ f(x) = 0, (1.4)

and

1
K

g′(t)
g(t)

= −λ ⇒ g′(t) + λK g(t) = 0. (1.5)

At this point we still don’t know the value of this mysterious number λ but this
will become clearer later. Now (1.5) is a constant coefficient first order linear
differential equation. We also know that its general solution is given by

g(t) = c1 e−K λ t.

Arguing on physical grounds, the bar should reach a steady state as t → ∞
(i.e., the whole bar should ultimately be at a temperature of 0 as t → ∞.) This
means that λ > 0, or else g(t) is exponentially large (since K > 0 too). Okay,
now that we know that λ > 0 we can write down the general solution of the
constant coefficient second order linear differential equation, (1.4), as

f(x) = c2 sin(
√

λx) + c3 cos(
√

λx). (1.6)

where c2, c3 are constants. Combining these expressions for f and g we get,

u(x, t) = (c2 sin
√

λx + c3 cos
√

λx) c1 e−K λ t. (1.7)

At this point in the analysis all we know is that if u(x, t) looks like (1.2) then it
must be expressible as (1.7). But we still don’t know λ or the c′s! So, Fourier
figures the solution looks like (1.7) and in order to get some values for the
constants therein he must use the boundary conditions given at the ends of
the rod, u(0, t) = 0 = u(L, t), “b.c.”, for short. We note that these b.c. are
really saying that

f(0)g(t) = 0 = f(L)g(t)

for all t > 0. Since g(t) �= 0 we must have,

f(0) = 0 and f(L) = 0,
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But these two conditions on f now determine λ, but the λ is not unique. Why?
The only solutions of (1.4) that satisfy f(0) = f(L) = 0, are those for which the
constants c2, c3 satisfy (see (1.6))

0 = f(0) = c2 sin(
√

λ · 0) + c3 cos(
√

λ · 0)
= 0 + c3

= c3

i.e, c3 = 0 must occur. But if c3 = 0 then c2 �= 0 (otherwise, c2 = 0 would
imply that u(x, t) = 0 for all x and t, (see (1.7)), an impossible conclusion!
Since c3 = 0 it follows from (1.6) that f(x) must now look like

f(x) = c2 sin
√

λx

with c2 �= 0. On the other hand, c2 �= 0 along with the b.c. f(L) = 0 gives

0 = f(L) = c2 sin(
√

λL)

and this can happen only if
√

λL is a zero of the sine function. Since the zeros
of the sine function occur at numbers of the form nπ where n is an integer, we
see that

√
λL = nπ is necessary, that is,

λ =
n2π2

L2
= λn,

where n is an integer and we show the dependence of λ upon n by the symbol
on the right, λn. So there are infinitely many possibilities for λ, as each one of
these λ = λn (called eigenvalues) generates a solution

fn(x) = c2 sin
√

λnx

of the Sturm-Liouville equation

f ′′(x) + λn f(x) = 0, f(0) = 0 = f(L).

These special solutions fn(x) that satisfy both the equation and the boundary
conditions are called eigenfunctions of the boundary value problem.

Using these fn(x) we can construct u = un(x, t), where (by (1.7) and since
c3 = 0 and λ = λn)

un(x, t) = c2 sin
(nπx

L

)
e−

Kn2π2t

L2 .

We emphasize that, for each integer n, these functions un(x, t) all satisfy (1.1)
along with the b.c. u(0, t) = u(L, t) = 0.

But do they also satisfy u(x, 0) = f(x)? Not necessarily, that is, not unless
the initial configuration of the rod at time t = 0 resembles that of a sine function
and there is no reason why this should be so!

So Fourier probably thought ... “ What if one writes . . .

u(x, t) =
N∑

n=1

bnun(x, t)

=
N∑

n=1

bn sin
nπx

L
e−

n2π2

L2 Kt,
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then this new function u(x, t) also satisfies (1.1) along with the b.c. u(0, t) =
u(L, t) = 0 (the numbers bn also have to be determined somehow and we will
see how this is done below).

But, once again, if f(x) is basically arbitrary it is not necessarily true that

f(x) = u(x, 0) =
N∑

n=1

bn sin
(nπx

L

)
.

So, the great insight was the query, “What if f(x) can be represented as an
infinite series of such sine functions?”, that is, what if

f(x) =
∞∑

n=1

bn sin
(nπx

L

)
, (1.8)

in the sense of convergence of the series on the right to f(x) for most x in [0, L]?
It turned out that this could be done and the representation of f given by (1.8)
(where the constants bn depend on f) would eventually be an example of a
Fourier Series! The solution of the original problem of heat conduction in a
bar would then be solved analytically by the infinite series

u(x, t) =
∞∑

n=1

bn sin
(nπx

L

)
e−

n2π2

L2 Kt,

where the bn are called the Fourier coefficients of f on the interval [0, L].

Fourier actually gave a proof of the convergence of the series he developed (in his
book on the theory of heat) yet it must be emphasized that D. Bernoulli before
him solved the problem of the vibrating string by wrting down the solution in
terms of a “Fourier series” too!

1.2 The General Fourier Series Representation

If we proceed with the idea of Section 1.1 and instead use a bar of length 2L
stretching from −L to L and we assume that the temperature at its ends satisfy
the boundary conditions

u(−L, t) = u(L, t), and
∂u

∂x
(−L, t) =

∂u

∂x
(L, t),

then one can show that the assumption of separation of variables, (1.2), will
lead to the trial form

un(x, t) =
(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
e−

n2π2

L2 Kt

from which we obtain the general representation of u as

u(x, t) =
a0

2
+

∞∑
n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
e−

n2π2

L2 Kt,

valid for all x, t under consideration. In this case, the initial configuration of
the rod given by u(x, 0) = f(x) will force the representation of f in the more
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general form

f(x) =
a0

2
+

∞∑
n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
. (1.9)

The series given in (1.9) will be called the general Fourier series represen-
tation of the function f on the interval [−L, L] having the Fourier coefficients
given by an and bn. The an will be called the Fourier cosine coefficients
while the bn will be called the Fourier sine coefficients. We’ll give the main
idea on how to find the value of these Fourier coefficients . . . .

Assume that the sum appearing in (1.9) is actually finite and proceeds from 1
to N and let 0 ≤ m ≤ N be a fixed integer. Multiplying both sides of (1.9)
by the quantity cos

(
mπx

L

)
and integrating the resulting sum over the interval

[−L, L] we get∫ L

−L

f(x) cos
(mπx

L

)
dx =

∫ L

−L

{
a0

2
+

N∑
n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))}
· cos

(mπx

L

)
dx =

a0

2

∫ L

−L

cos
(mπx

L

)
dx +

N∑
n=1

an

∫ L

−L

cos
(nπx

L

)
· cos

(mπx

L

)
dx +

N∑
n=1

bn

∫ L

−L

sin
(nπx

L

)
· cos

(mπx

L

)
dx.

If m = 0, the last two integrals are zero (why?) while the first integral is simply
equal to La0. The last line then gives

a0 =
1
L

∫ L

−L

f(x) dx. (1.10)

a quantity equal to twice the mean-value of the function f over the interval
[−L, L]. On the other hand, if 0 < m ≤ N then (by integrating by parts, or
using the identities in the margin) The following identities,

valid for any angles A, B,
including functions, are very
useful:

cos(A) cos(B) =

cos(A + B) − cos(A − B)
2

sin(A) cos(B) =

sin(A + B) + sin(A − B)
2

∫ L

−L

cos
(nπx

L

)
cos

(mπx

L

)
dx =

{
0 m �= n ,
L m = n ,

and ∫ L

−L

sin
(nπx

L

)
cos

(mπx

L

)
dx =

{
0 m �= n ,
0 m = n ,

From these relations we find that am is given by

am =
1
L

∫ L

−L

f(x) cos
(mπx

L

)
dx (1.11)

Since m is an arbitrary number, (1.11) must be true for any subscript, m ≥ 0.
A similar calculation shows that for any subscript m ≥ 0 we also have

bm =
1
L

∫ L

−L

f(x) sin
(mπx

L

)
dx. (1.12)
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The road to (1.12) is found by multiplying both sides of (1.9) by the quantity
sin

(
mπx

L

)
, integrating the resulting sum over the interval [−L, L] and using the

integral evaluation∫ L

−L

sin
(nπx

L

)
sin

(mπx

L

)
dx =

{
0 m �= n ,
L m = n ,

The following identity is also
valid for any angles A, B,
including functions:

sin(A) sin(B) =

cos(A − B) − cos(A + B)
2

as before. Since the discussion is similar to the one just presented we leave out
the details.

A function f is said to be periodic of period P if:

f(x + P ) = f(x) for all x in domain of f

The period of f is the smallest P such that f(x + P ) = f(x) holds, for all
x. Note that in order for (1.9) to hold on any interval outside [−L, L] the
function f must be periodic of period P = 2L. This is because the functions
g(x) = cos

(
nπx
L

)
and sin

(
nπx
L

)
are each periodic of period 2L. For example,

g(x + 2L) = cos
(

nπ(x + 2L)
L

)
= cos

(nπx

L
+ 2nπ

)
= cos

(nπx

L

)
= g(x).

In the case of Fourier series, we always choose P = 2L.

If f is periodic with period P then, for any real number x,

f(x + nP ) = f(x)

for any integer n, positive or negative. This means that the graph of f repeats
itself on any interval of length P (see Figure 1).

A periodic function’s graph repeats

itself over any interval of length

equal to its period, P . The display

above is the graph of the periodic

function f(x) = sin x + cos 2x hav-

ing period P = 2π.

Figure 1

Example 1 a) f(x) = sin x is periodic with period 2π.

b) f(x) = tanx is periodic with period π.

c) f(x) = sin 4x is periodic with period
π

2
.

d) f(x) = sin x + cos 2x is periodic with period 2π (Fig. 1)

Solution: a) This follows from trigonometry; b) Note that

tan(x + π) =
sin(x + π)
cos(x + π)

=
− sinx

− cosx
= tanx.

Of course, it is true that tan(x + 2π) = tanx but P = π is really the period. c)
The smallest multiple of π that gives sin 4(x + P ) = sin 4x is P = π

2 . d) The
reasoning for this one is the same as c).

The Dirichlet Test: A Theorem on the Convergence of a Fourier Series:

1. Let f be a function that is defined and finite on (−L, L), except possibly
at a finite number of points inside this interval.
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2. Let f be periodic of period 2L outside (−L, L).

3. Assume that f, f ′ are piecewise continuous in (−L, L) (this means that
f and its derivative are each continuous except possibly at a finite number
of points).

Then the Fourier series of f converges to:

(a) f(x), if f is continuous at x.

(b)
f(x + 0) + f(x − 0)

2
if f is not continuous at x (i.e., It converges to the

average value of f at x).

We omit the proof as it requires ideas that are beyond the scope of this text.
Anyhow, we’ll give a few examples a little later on on how to apply this theorem.
Until then we will the symbol “∼” to denote the Fourier series representation
of a function f .

SUMMARY

If f(x) is defined on [−L, L] and f has the Fourier series representation given
by

f(x) ∼ a0

2
+

∞∑
n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
(1.13)

then the Fourier coefficients are all given by

a0 =
1
L

∫ L

−L

f(x)dx (double the ”mean value” of f over [−L, L])

am =
1
L

∫ L

−L

f(x) cos
(mπx

L

)
dx, m = 1, 2, ...

bm =
1
L

∫ L

−L

f(x) sin
(mπx

L

)
dx, m = 1, 2, ...

Whether the Fourier series given above actually converges to f(x) is another
question, and one that we will answer below.

1.3 Some Remarks on Fourier Coefficients

Let f be a piecewise continuous periodic function of period 2L, so that

f(x + 2L) = f(x)

for every value of x. Then f is Riemann integrable over any finite interval and
if we let F denote an antiderivative of f then, the F defined by

F (x) =
∫ x+2L

x

f(t) dt

= F(x + 2L) −F(x).
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From Leibniz’s Rule (see Chapter 7.4), we have that F is differentiable and
F ′(x) is given by

F ′(x) =
d

dx

∫ x+2L

x

f(t) dt

=
d

dx
(F(x + 2L) −F(x))

= F ′(x + 2L) · (1) −F ′(x) · (1),
= f(x + 2L) − f(x)
= 0,

by the assumption on f . So, F (x) is a constant function and we can deduce
that

F (x) = F (0)
= F (−L),

or ∫ x+2L

x

f(t) dt =
∫ 2L

0

f(t) dt

=
∫ L

−L

f(t) dt,

is valid for any value of x.

It follows, that, for example, if f is periodic of period 2L, then its Fourier
cosine coefficients can be written as

an =
1
L

∫ L

−L

f(t) cos
(

nπt

L

)
dt (1.14)

=
1
L

∫ 2L

0

f(t) cos
(

nπt

L

)
dt (1.15)

=
1
L

∫ x+2L

x

f(t) cos
(

nπt

L

)
dt, (1.16)

where x can be ANY fixed point (you choose it) on the real line. A similar
formula is valid for the Fourier sine coefficients of f which are given by

bn =
1
L

∫ L

−L

f(t) sin
(

nπt

L

)
dt (1.17)

=
1
L

∫ 2L

0

f(t) sin
(

nπt

L

)
dt (1.18)

=
1
L

∫ x+2L

x

f(t) sin
(

nπt

L

)
dt, (1.19)

Example The function f defined by f(x) = x − 1, for 0 < x < 2 and having
period 2 has an odd periodic extension on (−L, L) = (−1, 1) so that its Fourier
series is a pure sine series. It follows that its an = 0 for all n, including n = 0
(do this one separately) and that bn are given by

bn =
∫ 1

−1

f(t) sin
(

nπt

L

)
dt

=
∫ 2

0

(t − 1) sin
(

nπt

L

)
dt,
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and so you don’t have to break up the original integral into 2 parts,
one on the interval (−1, 0) and one on the interval (0, 1). Just calculate the
Fourier coefficient as if the interval were the interval (0, 2)! In other words, the
three integrals,

bn =
∫ 1

−1

f(t) sin
(

nπt

L

)
dt

=
∫ 0

−1

(t + 1) sin
(

nπt

L

)
dt +

∫ 1

0

(t − 1) sin
(

nπt

L

)
dt

=
∫ 2

0

(t − 1) sin
(

nπt

L

)
dt,

are all equal! The last integral can be integrated ‘by parts’ using Table integra-
tion as in Chapter 8.

1.4 Even and Odd Functions

But how do we find these Fourier coefficients? Before we proceed to an actual
calculation of these quantities let’s look at some special classes of functions
defined on a symmetric interval [−L, L]. We say that a function f is an even
function on [−L, L] if for any symbols ±x in the domain of f we have

f(−x) = f(x). (1.20)

Similarly, we say that a function f is an odd function on [−L, L] if for any
symbols ±x in the domain of f we have

f(−x) = −f(x). (1.21)

Geometrically these notions of even and odd functions can be interpreted as
follows: An even function is a function f whose graph is symmetric with respect
to the y-axis, while an odd function is a function f whose graph is symmetric
with respect to the origin, O, (we call this a central reflection). See the margin
for some examples.

Example 2 Determine whether the given functions are even, odd or neither:

a) f(x) = sin
(nπx

L

)
on −L ≤ x ≤ L,

b) f(x) = cos
(nπx

L

)
on −L ≤ x ≤ L,

c) f(x) = tanx on −π

2
< x <

π

2
,

d) f(x) = x2 on −1.4 ≤ x ≤ 1.4,

e) f(x) = x3 on −3 ≤ x ≤ 3,

f) f(x) = 1 + x on −10 ≤ x ≤ 10.
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Solution

a) Since sin(−x) = − sinx from trigonometry, the same must be true for
any symbol �, i.e., sin(−�) = − sin �. Since we can put any quantity

inside the box, we can use
nπx

L
. This will show that sin

(
− nπx

L

)
=

− sin
(

nπx

L

)
. But this last equality means that f(−x) = −f(x) (by

definition of f). So, f is odd by definition.

b) f(x) = cos
(nπx

L

)
is even because cos(−x) = cosx by trigonometry. The

rest of the argument is similar to part (a), above, and so is omitted.

c) f(x) = tan x is odd because tan(−x) = − tan(x) from trigonometry. You
can also see this by realizing that this is a consequence of the fact that
sinx is odd and cosx is even. In other words,

tan(−x) =
sin(−x)
cos(−x)

=
− sin x

cosx
= − sin x

cosx
= − tanx.

d) f(x) = x2 is even. This is easy since f(−x) = (−x)2 = x2 = f(x).

e) f(x) = x3 is odd. This is true too since f(−x) = (−x)3 = −x3 = −f(x).

f) f(x) = 1 + x is neither odd nor even!!. This is because f(−x) = 1 − x,
f(x) = 1 + x and so f(−x) �= ±f(x) for all x. So this function is neither
even nor odd.

NOTE: Functions can be even, odd or NEITHER even nor odd as
the preceding example shows.

Example 3 Show that if f is an even function then∫ L

−L

f(x) dx = 2
∫ L

0

f(x) dx. (1.22)

On the other hand, if f is an odd function then∫ L

−L

f(x) dx = 0. (1.23)

Solution Why? Well this is just a simple substitution in a definite integral. Let’s
prove the result for the odd case, the case given by (1.23), the other case being
similar. Using the substitution x = −t, dx = −dt, in the integral in (1.23) we
get ∫ L

−L

f(x) dx =
∫ −L

L

f(−t) (−dt).

Note that we have to change the limits of integration in the integral on the right
to reflect the change of variable: When x = −t and x = −L then t = −x = L.
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On the other hand, when x = L then t = −L and so the order of the limits is
merely interchanged. Next,∫ L

−L

f(x) dx =
∫ −L

L

f(−t) (−dt)

= −
∫ −L

L

f(−t) dt

= (−1)2
∫ −L

L

f(t) dt, (since f(−t) = −f(t))

= (−1)3
∫ L

−L

f(t) dt, (interchanging the limits reverses the sign)

= −
∫ L

−L

f(t) dt.

Since t is a free variable in the last display, it follows that

I =
∫ L

−L

f(x) dx = −
∫ L

−L

f(t) dt = −I,

and so I = 0. The other result about even functions is similar.

Example 4 Show that

• a) The product (or quotient) of any two even functions is even,

• b) The product (or quotient) of any even and any odd function is odd,

• c) The product (or quotient) of any two odd functions is even.
Operations between even
and odd functions behave
much like operations be-
tween plus and minus signs!
For example,

even︸︷︷︸
+

· odd︸︷︷︸
−

= odd︸︷︷︸
−

,

even︸︷︷︸
+

· odd︸︷︷︸
−

· even︸︷︷︸
+

= odd︸︷︷︸
−

,

odd︸︷︷︸
−

· odd︸︷︷︸
−

= even︸︷︷︸
+

Solution a) Let f , g be two even functions and denote their product by h. Then
h(−x) = (fg)(−x) = f(−x)g(−x) by definition of their product. Since f is even
we have that f(−x) = f(x). Similarly, since g is even we have g(−x) = g(x).
Thus, h(−x) = f(−x)g(−x) = f(x)g(x) = (fg)(x) = h(x). Hence h is even.

b) Let f be an even function, g be an odd function and denote their product
by h. Then f(−x) = f(x). Similarly, since g is odd we have g(−x) = −g(x).
Thus, h(−x) = f(−x)g(−x) = f(x)(−g(x)) = −(fg)(x) = −h(x). Hence h is
odd.

c) Let f be an odd function, g be an odd function and denote their product
by h. Then f(−x) = −f(x). Similarly, since g is odd we have g(−x) = −g(x).
Thus, h(−x) = f(−x)g(−x) = (−f(x)) (−g(x)) = (−)(−)(fg)(x) = +h(x).
Hence h is even.

The main results in this section deal with the Fourier series of even and odd
functions. We will see that it is a simple matter to show that if f is an even
function on the interval [−L, L] then its Fourier series must be a pure
cosine series in the sense that

f is even ⇐⇒ f(x) ∼ a0

2
+

∞∑
n=1

an cos
(nπx

L

)
(1.24)
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The reason for this is that since f is even and sin
(

nπx
L

)
is odd (see Example 2

(a)) then their product must be odd and so (by Example 1.22) we see that

f is even ⇐⇒
∫ L

−L

f(x) sin
(nπx

L

)
dx = 0,

for n = 1, 2, . . . or equivalently, bn = 0 for each n = 1, 2, . . . in (1.13). From
this we get (1.24). The formulae for the a0 and an are still given by (1.10) and
(1.11) but they take the simpler form

a0 =
1
L

∫ L

−L

f(x) dx =
2
L

∫ L

0

f(x) dx, (1.25)

since f is even (see 1.22), and

an =
1
L

∫ L

−L

f(x) cos
(nπx

L

)
dx =

2
L

∫ L

0

f(x) cos
(nπx

L

)
dx (1.26)

since f(x) cos(nπx
L ) is itself even (as each one is even, and (1.22)). Conversely,

it is also true that if f(x) has a representation as a pure cosine series on [−L, L]
then f must be an even function on that interval.

We also show that if f is an odd function on the interval [−L, L] then its
Fourier series must be a pure sine series in the sense that

f is odd ⇐⇒ f(x) ∼
∞∑

n=1

bn sin
(nπx

L

)
(1.27)

The reason for this is that since f is odd and cos
(

nπx
L

)
is even (see Example 2

(b)) then their product must be odd and so (by Example 1.22) we see that

f is odd ⇐⇒
∫ L

−L

f(x) cos
(nπx

L

)
dx = 0,

for n = 1, 2, . . . or equivalently, an = 0 for each n = 1, 2, . . . in (1.13). This
gives (1.27). The formulae for the bn are still given by (1.12) but they take the
simpler form

bn =
1
L

∫ L

−L

f(x) sin
(nπx

L

)
dx =

2
L

∫ L

0

f(x) sin
(nπx

L

)
dx (1.28)

since f(x) sin(nπx
L ) is itself even (as each one is odd, and (1.22)).

Conversely, it is also true that if f(x) has a representation as a pure sine series
on [−L, L] then f must be an odd function on that interval.

Example 5 Find the Fourier series of the function f defined by f(x) = x2 on
the interval [−2, 2]. What does the series converge to when x = 0?

Solution: Since this function is an even function (why?) on the given interval
(where L = 2) it follows that its Fourier series is a pure cosine series (see (1.24)).
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Thus, its Fourier coefficients a0 and an are given by (1.25) and (1.26). In this
case these integrals become

a0 =
2
L

∫ L

0

f(x) dx =
∫ 2

0

x2 dx =
8
3
,

and (recall that L = 2),

an =
2
L

∫ L

0

f(x) cos
(nπx

L

)
dx =

∫ 2

0

x2 cos
(nπx

2

)
dx = 16

(−1)n

n2π2

for any n ≥ 1, where we use the Table Method (Integration by Parts) of Chapter
8 to get a value for the integral that gives the an and we also use the fact
that sin nπ = 0 and cosnπ = (−1)n whenever n is an integer. From these
observations we get that the form of the Fourier series of x2 is given by (see
(1.24))

x2 ∼ 4
3

+
∞∑

n=1

16
(−1)n

n2π2
cos

(nπx

2

)
for −2 ≤ x ≤ 2. The symbol ∼ means that the quantity on the right is the
representation of the function on the left. Now let’s use the Dirichlet Test to
see what f converges to . . . .

Note that f(x) = x2 is continuous and has a continuous derivative on the interval
[−2, 2]. We can define f outside this interval by setting f(x + 4) = f(x). Why
4? Because P = 2L and since L = 2 we must have the period of f equal to 4.
Now this function f is continuous at x = 0. Thus, by the Dirichlet Test we get
the equality

x2 =
4
3

+
∞∑

n=1

16
(−1)n

n2π2
cos

(nπx

2

)
and at x = 0 the series gives the equality

0 =
4
3

+
∞∑

n=1

16
(−1)n

n2π2
,

or (multiplying both sides by (−1)),

∞∑
n=1

16
(−1)n−1

n2π2
=

4
3
,

i.e.,
∞∑

n=1

(−1)n−1

n2
=

π2

12
.

Exercise Convince yourself that the Fourier series of the preceding example
converges to 4 when x = 2 and that this gives the following result about series:

∞∑
n=1

1
n2

=
π2

6
.

Figure 2
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Example 6 Find the Fourier series of the function defined in pieces (sometimes
called a piecewise constant function) by

f(x) =
{

8, 0 < x < 2,
−8, 2 < x < 4,

where f is periodic with period 4. What does the series converge to at x = 2?
x = 3?

Solution Since the function has period 4, the graph of f on the interval [−4, 0]
must be the same as (or a translate of) the one on [0, 4]. In other words, we
must have,

f(x) =
{

8, −4 < x < −2,
−8, −2 < x < 0,

Therefore f(x) is an odd function (why?) on [−4, 4] and so its Fourier series is
a pure sine series. Since the period is P = 4 here, we get that P = 2L implies
that L = 2. The Fourier series looks like,

f(x) ∼︸︷︷︸
not necessarily equal

∞∑
n=1

bn sin
(nπx

2

)

where

bn =
1
2

∫ 2

−2

f(x) sin
(nπx

2

)
dx

=
1
2

∫ 0

−2

(−8) sin
(nπx

2

)
dx︸ ︷︷ ︸

8
nπ (1−cos nπ)

+
1
2

∫ 2

0

(+8) sin
(nπx

2

)
dx︸ ︷︷ ︸

8
nπ (1−cos nπ)

=
16
nπ

(1 − cosnπ).

Therefore,

f(x) ∼
∞∑

n=1

16
nπ

(1 − cosnπ) sin
(nπx

2

)
.

Next, we need to use the Dirichlet Test: Now, this function f is NOT continuous
at x = 2 (since its left limit is 8 while its right limit is −8). It follows that when
x = 2 the Fourier series converges to

f(x + 0) + f(x − 0)
2

=
(−8 + (8))

2
= 0.

This result is easy to verify directly since at x = 2 the sine term in the Fourier
series is sin nπ = 0 since n is always an integer!

However, at x = 3 the function IS continuous and its value there is f(3) = −8.
Thus, we find

∞∑
n=1

16
nπ

(1 − cosnπ) sin
(

3nπ

2

)
= −8.
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Example 7 Calculate the Fourier series of the function defined by

f(x) =
{

cosx, 0 < x < π,
0, π < x < 2π,

where f is periodic with period 2π.

Solution: Since P = 2L = 2π it follows that L = π. So the Fourier cosine terms
of this function are given by (1.16) with x = 0 and L = π. Thus,

an =
1
L

∫ x+2L

x

f(t) cos
(

nπt

L

)
dt

=
1
π

∫ 2π

0

f(t) cos (nt) dt

=
1
π

∫ π

0

cos t cos (nt) dt, (since f(t) = 0 on (π, 2π)),

=
1
2π

∫ π

0

(cos(n + 1)t + cos(1 − n)t) dt,

=
1
2π

{
sin(n + 1)t

n + 1
+

sin(1 − n)t
1 − n

} ∣∣∣∣π
0

= 0 if n �= 1.

So an = 0 whenever n �= 1. If n = 1, then

a1 =
1
π

∫ π

0

cos2 t dt =
1
2
.

The bn are obtained similarly. Thus,

bn =
1
L

∫ x+2L

x

f(t) sin
(

nπt

L

)
dt

=
1
π

∫ 2π

0

f(t) sin (nt) dt

=
1
π

∫ π

0

cos t sin (nt) dt, (since f(t) = 0 on (π, 2π)),

=
1
2π

∫ π

0

(sin(n + 1)t + sin(n − 1)t) dt,

=
1
2π

{
−cos(n + 1)t

n + 1
− cos(n − 1)t

n − 1

} ∣∣∣∣π
0

= n
(1 + cosnπ)
π (n2 − 1)

if n �= 1.

Note that cosnπ = 0 whenever n is odd. On the other hand, if n = 1 then

b1 =
1
π

∫ π

0

cos t sin t dt = 0.

It follows that the Fourier series of f is given by

f(x) =
1
2

cosx+
∞∑

n=2

n
(1 + cosnπ)
π (n2 − 1)

sin nx =
1
2

cosx+
4
3π

sin 2x+
8

15π
sin 4x+ . . .

Using Dirichlet’s Test we see that this series converges to f(x) except at the
points of discontinuity (namely, x = 0,±π,±2π, . . .). For instance, when x = 0
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the series converges to 1/2 and this is half the average value of the right and
left limits of f at x = 0 (as required by the Test).

NOTE: The preceding is an example of a Fourier series containing both sine
and cosine terms.

1.5 Even and Odd Extensions of Functions

If f(x) is any function defined on an interval of the form [0, L] we define its even
extension to [−L, L] by setting f(x) = f(−x) for x in [−L, 0] (or by reflecting
its graph about the y-axis). Similarly, we define its odd extension to [−L, L]
by setting f(x) = −f(−x) for x in [−L, 0], or by reflecting its graph about the
origin.

The reason for these definitions is that is that we can create an even function
(over (−L, L)) out of a function that is given only on half-the-range, i.e., (0, L).
Similarly, we can create an odd function (over (−L, L)) out of a function that
is given only on half-the-range, i.e., (0, L).

We do this because we may want to expand a function in terms of a pure
cosine series only (in which case we use the even extension since we don’t
want any sine terms) or in terms a pure sine series (in which case we use the
odd extension since we don’t want any cosine terms).

Example 8 • a) Find the even extension of the function f defined by f(x) =
x(π − x) for 0 ≤ x ≤ π.

• b) Find the odd extension of the function f defined by f(x) = x(π−x) for
0 ≤ x ≤ π.

• c) Find the odd extension of the function f defined by f(x) = cosx for
0 ≤ x ≤ π.

• d) Find the even extension of the function f defined by

f(x) = sin
(

2πx

L

)
+ 3 cos

(
2πx

L

)
for 0 ≤ x ≤ L.

Solution: a) We recall the definition of an even function: For f to be even on
[−π, π] we must have f(x) = f(−x). To get the form of f on the part [−π, 0]
we replace x by “−x” in the definition of f(x): This gives f(−x) = −x(π + x)
for x in [−π, 0]. The even extension of f is then given by

f(x) =
{

x(π − x), 0 < x < π,
−x(π + x), −π < x < 0,

b) This case is similar to part a). We know that f is odd only when f(x) =
−f(−x). So to get the form of f on the left interval [−π, 0], we calculate the
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value of −f(−x) using the given expression on [0, π]. Just as before we replace
x by “−x” in the definition of f(x): This gives −f(−x) = x(π + x) for x in
[−π, 0] (note the removal of the minus sign). The odd extension of f is then
given by

f(x) =
{

x(π − x), 0 < x < π,
x(π + x), −π < x < 0,

c) Write f(x) = cosx for x in [0, π]. Then −f(−x) = − cos(−x) = − cosx since
cos(−x) = cosx by trigonometry. It follows that the odd extension of cosx is
given by the modified function

f(x) =
{

cosx, 0 < x < π,
− cosx, −π < x < 0,

Note that this odd extension is not continuous at x = 0.

d) In this case

f(−x) = − sin
(

2πx

L

)
+ 3 cos

(
2πx

L

)
for −L ≤ x ≤ 0 (on account of Example 2a), b)). So, the even extension of this
function f looks like,

f(x) =




sin
(

2πx

L

)
+ 3 cos

(
2πx

L

)
, 0 < x < L,

− sin
(

2πx

L

)
+ 3 cos

(
2πx

L

)
, −L < x < 0,

Example 9 Expand f(x) = cosx, 0 < x < π, in a pure Fourier “sine” series
on (0, π).

Solution: IDEA:

1) Note that “cosx” is an even function while only odd functions can have
pure sine series expansions.

2) So we must extend cosx to be an odd function on (−π, π) by taking its
odd extension to (−π, 0) (see Example 8c)).

3) The resulting extended f(x) is now an odd periodic function of period
π, (not 2π as one may think!) i.e., f(x + π) = f(x). Since P = 2L it
follows that L = π

2 .

Figure 3
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Our extended function is given by

f(x) =
{

cosx, 0 < x < π,
− cosx, −π < x < 0,

Furthermore, f(x) is defined on (−L, L) = (−π

2
,
π

2
) and formally, its Fourier

series representation looks like

f(x) ∼
∞∑

n=1

bn sin
(nπx

L

)
=

∞∑
n=1

bn sin(2nx),

(there can be no an’s since f(x) is odd on (−π
2 , π

2 )). The Fourier sine coefficients
are given by

bn =
2
π

∫ π
2

−π
2

f(x) sin
(

nπx

π/2

)
dx

=
2
π

∫ π
2

−π
2

f(x) sin(2nx) dx

=
2
π

∫ 0

−π
2

−(cosx) sin(2nx)dx +
2
π

∫ π
2

0

(cosx) sin(2nx) dx

=
4n

π(4n2 − 1)
+

4n

π(4n2 − 1)

=
8n

π(4n2 − 1)
.

The Fourier series of this extended cosine function is therefore of the form

cosx =
8
π

∞∑
n=1

n

(4n2 − 1)
sin(2nx)

for any x in (−π
2 , π

2 ) and outside this interval by periodicity (or periodically
repeating the graph). In particular we see that at x = π

4 we get the result

π
√

2
16

=
∞∑

n=1

n

(4n2 − 1)
sin

(nπ

2

)
.

Note: At x = π the Fourier series converges to f(π+0)+f(π−0)
2 = 1+(−1)

2 = 0
2 = 0

(O.K. by the Dirichlet Test) so, in order to get convergence at this point, we
need to define f(π) = 0.

Example 10 Find the Fourier “cosine” series of the function defined by f(x) =
x(π − x), for x in (0, π).

Solution: Since we want a cosine series for f(x) the extension of f to (−π, 0)
must be even (no sine terms allowed in the Fourier series expansion). Now refer
to Example 8a). We know that the even extension of f(x) looks like

f(x) =
{

x(π − x), 0 < x < π,
−x(π + x), −π < x < 0,
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This extended function is even and periodic with period π (look at its graph, the
bumps are the same right?), so L = π

2 . The Fourier cosine coefficients are now
given by (see (1.25), (1.26), and use the Table Method of Chapter 8))

a0 =
2
L

∫ L

0

f(x) dx

=
4
π

∫ π
2

0

x(π − x) dx

=
π2

3
,

and

an =
2
L

∫ L

0

f(x) cos
(nπx

L

)
dx

=
4
π

∫ π
2

0

x(π − x) cos 2nx dx

= − 1
n2

.

So, the Fourier cosine series of this function f(x) is given by

f(x) =
π2

6
−

∞∑
n=1

1
n2

cos 2nx,

with convergence properties according to the Dirichlet Test. In particular, since
f is continuous at x = 0 and f(0) = 0, it follows that

∞∑
n=1

1
n2

=
π2

6
.

1.6 Parseval’s Equality

If the function f satisfies the three conditions of the Dirichlet Test for conver-
gence, then its Fourier coefficients have the property that

a2
0

2
+

∑
(a2

n + b2
n) =

1
L

∫ L

−L

f(x)2dx

In general there always holds Bessel’s Inequality, that is,

a2
0

2
+

∑
(a2

n + b2
n) ≤ 1

L

∫ L

−L

f(x)2 dx.

This result is valid for any function that is piecewise continuous on (−L, L)
(whether or not its Fourier series actually equals f(x)!)

Example 11 Using Example 6 and Parseval’s Equality, show that

∞∑
n odd

1
n2

=
π2

8
.
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Solution: We know the bn’s and f(x). So we can conclude that:

∞∑
n=1

162

n2π2
(1− cosnπ)2 =

∞∑
n=1

b2
n =

1
L

∫ L

−L

f(x)2dx =
1
2

∫ 2

−2

64 · dx = 64 · 2 = 128

i.e.,
∞∑

n=1

(1 − cosnπ)2

n2π2
=

128
256

=
1
2
.

Since 1 − cosnπ = 0 whenever n is even and 1 − cosnπ = 2 whenever n is odd,
the last display becomes

∞∑
n odd

1
n2

=
π2

8
.

Example 12 Use Example 10 and Parseval’s Equality to show that

∞∑
n=1

1
n4

=
π4

90
.

Solution: We know a0, an = −1/n2, bn = 0. Note that a0
2 =

π4

18
. So, by

Parseval’s Equality we get

π4

18
+

∞∑
n=1

1
n4

=
1
L

∫ L

−L

f(x)2dx =
2
π

∫ π
2

−π
2

f(x)2 dx.

However,

2
π

∫ π
2

−π
2

f(x)2 dx =
2
π

∫ 0

−π
2

(−x(π + x))2 dx +
2
π

∫ π
2

0

(x(π − x))2 dx =
π4

15
.

Combining these results we obtain

∞∑
n=1

1
n4

=
π4

15
− π4

18
=

π4

90
.

1.7 Integrating and Differentiating Fourier Se-
ries

We can integrate a Fourier series term by term provided the conditions of the
Dirichlet Test hold. Indeed, if the function f is piecewise continuous on [−L, L]
and the points a, x are in [−L, L] and f(x) has the expansion given by (1.13),
then∫ x

a

f(t) dt =
a0

2

∫ t

a

dt +
∞∑

n=1

(
an

∫ t

a

cos
(

nπt

L

)
dt + bn

∫ t

a

sin
(

nπt

L

)
dt

)
,

or we can integrate the series term by term after which the new series will
converge to the integral of the original series given on the left.
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Example 13 Use Example 9 to show that the Fourier cosine series of the sine
function on (0, π) is given by

sin x =
4
π

∞∑
n=1

1
(4n2 − 1)

−
∞∑

n=1

cos 2nx

(4n2 − 1)
.

Solution: We know that

cos t =
8
π

∞∑
n=1

n

(4n2 − 1)
sin(2nt)

is valid for t in (−π, π). Since this function satisfies all the conditions of Dirich-
let’s Test we can choose a = 0 and fix a value of x in (−π, π). We now integrate
both sides of this last display over [0, x] and find

sin x =
8
π

∞∑
n=1

n

(4n2 − 1)

∫ t

0

sin(2nt) dt =
4
π

∞∑
n=1

1 − cos 2nx

(4n2 − 1)
.

Since we can split the sum into two convergent parts the result follows.

Example 14 Use Example 5 to calculate the Fourier series of the function
f(x) = x3 defined on [−2, 2].

Solution: First, we extend f to the whole line by periodicity (with period 4).
We know from Example 5 that

t2 =
4
3

+
∞∑

n=1

16
(−1)n

n2π2
cos

(
nπt

2

)

for t in [−2, 2] with the convergence properties specified by the Dirichlet Test.
Integrating both sides over the interval [0, x] we find

x3

3
= 16

∞∑
n=1

(−1)n

n2π2
· 2
nπ

· sin
(nπx

2

)
or

x3 =
96
π3

∞∑
n=1

(−1)n

n3
sin

(nπx

2

)
.

This Fourier series also converges according to the conclusion of the Dirichlet
Test. For example, at x = 0 the series converges to f(0) = 0 since the function
x3 is continuous at x = 0 and its value is 0 there.

Since the function x3 is periodic with period 4 (because the original one is)
we see that limx→2+ f(x) = (−2)3 = −8 while limx→2− f(x) = 23 = 8. Thus,
according to the Dirichlet Test, the series must converge to the average of these
two values, namely (−8+8)/2 = 0, when x = 2. That this is correct can be seen
by inserting the value x = 2 into the series for x3 and noting that sinnπ = 0
for any integer n by trigonometry.

Differentiating a Fourier series can be a risky business! This is because the
differentiated series may not converge at all (let alone to the function it is
supposed to represent) as we will see in the next example.
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Example 15 Calculate the Fourier sine series of the function f(x) = x for x
in (0, 2) and show that its differentiated series does not converge at all except
for x = 0.

Solution: Since we want a Fourier sine series we must extend this f to the interval
(−2, 0) using its odd extension. This means that f(x) = −f(−x) = −(−x) = x
for x in (−2, 0). But this means that f(x) = x for all x in (−2, 2). Of course,
this means that f(x) = x is already an odd function at the outset (but we may
not have noticed this). A simple calculation (we omit the details) shows that,
since L = 2,

bn =
∫ 2

0

x sin
(nπx

2

)
dx =

−4 cosnπ

nπ
=

−4 (−1)n

nπ
.

Since (−1) · (−1)n = (−1)n+1, it follows that

x =
4
π

∞∑
n=1

(−1)n+1

n
sin

(nπx

2

)
.

Differentiating this series formally (this means “without paying any attention
to the details”) we find the “equality”

1 = 2
∞∑

n=1

(−1)n+1 sin
(nπx

2

)
.

Unfortunately, the series on the right CANNOT converge since

lim
n→∞

∣∣∣(−1)n+1 sin
(nπx

2

)∣∣∣ does not exist!

So, how does one handle the differentiation of Fourier series? There is a test we
can cite that can be used without too much effort.

Test for Differentiating a Fourier Series Let f be a continuous function
for all x, −L ≤ x ≤ L and assume that f(−L) = f(L). Extend f to a periodic
function of period 2L outside [−L, L] by periodicity. Assume that f is piecewise
differentiable in (−L, L) having finite left- and right-derivatives at ±L. Then
the differentiated Fourier series converges to f ′(x) on [−L, L].

Example 16 Find the Fourier sine series of the function π x(π−x)/8 valid on
(0, π) and find the value of its differentiated series.

Solution: Note that here, L = π. The odd extension of this function is given by
Example 8b), that is,

f(x) =




1
8πx(π − x), 0 < x < π,

1
8πx(π + x), −π < x < 0,

The Fourier coefficients are given by

bn =
2
π

∫ π

0

f(x) sinnxdx =
(1 + (−1)n+1)

2n3
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and so the Fourier series is

sin x +
sin 3x

33
+

sin 5x

53
+ . . . =

∞∑
n=1

(1 + (−1)n+1)
2n3

sin nx.

Note that f satisfies the conditions of the Test, above. It is continuous every-
where and it fails to have a derivative at points of the form ±nπ, where n is an
integer. The differentiated series looks like

cosx +
cos 3x

32
+

cos 5x

52
+ . . . =

∞∑
n=1

(1 + (−1)n+1)
2n2

cosnx

and so we can conclude that

π2

8
− πx

4
=

∞∑
n=1

(1 + (−1)n+1)
2n2

cosnx,

holds for x in the range [−π, π]. When x = 0 we recover the result of Example 11
using a different method.

Remark: Basically, the expansion of a function into a Fourier series is essentially
an example of an eigenfunction expansion. This means that we can
expand very large classes of functions into the eigenfunctions of boundary
value problems associated with Sturm-Liouville equations. It just happens
that the eigenfunctions that we use are the simplest ones and they are of
historical and practical value.


