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Let ¢ denote a complex variable with |g| < 1. For a positive integer k let
Ey, = Ey(q) : H(l—q

If f(q) = >nio fng™ we define [f(q)]n := fn for each nonnegative integer n. In this
paper, we determine results of the type

[Er8E ) 4ki3=0, k=0,1,2,3,....
Keywords: Infinite products; g-series; theta functions.

Mathematics Subject Classification 2010: 11F20, 11F27

1. Introduction

Let Z denote the set of all integers, N the set of positive integers and Ny the set
of nonnegative integers. Throughout this paper ¢ denotes a complex variable with
lg| < 1. For k € N we define

B = Ex() == [[ (- ™) (L1)

neN
We note that E1(q*) = Ei(q). Using MAPLE we find that

E8E2Y =14 8¢+ 20¢% — 78¢* — 128¢° — 1044¢° + 455¢% + 832¢° + 260¢'°
—290¢'% — 256043 — 18644¢'* — 3393¢* + 208047 + O(¢'®).
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This expansion suggests that the coefficients of ¢***3 (k € Np) in the power series
expansion in powers of ¢ of the infinite product E; ®E3* are all zero, that is

E;8E2% 4,43 =0 for all k € Ny, 1.2
1 2

where [f(g)],, denotes the coefficient f,, in f(q) = >," fng™
In this paper, we consider the problem of determining for each t € {1,2,3,4} all
the integers a and b such that

[E¢ESakie =0 for all k € Ny,
and for each ¢t € {1,2,3,4,5,6,7,8} all the integers a, b and ¢ such that
[E¢ESES)srys =0 for all k € N.
In Sec. 3 and 4, we prove the following two theorems.
Theorem 1.1. Let a,b € Z. Then
(i) [EfESars1 =0 for all k € Ny if and only if
(a,b) = (0,b);
(ii) [EfES)akre =0 for all k € Ny if and only if
(a,b) = (—4,14), (=2,5), (0,0), (2,-1), (4,2);
(iii) [E¢ES)akss = 0 for all k € Ny if and only if
(a,b) = (—8,24), (—4,10), (-2,5), (0,b), (2,-1), (4,-2), (8,0);
(iv) [E{ES)akya = 0 for all k € Ny if and only if
(a,b) = (0,0).
Theorem 1.2. Let a,b,c € Z. Then
(i) [E$ESES|sk+1 =0 for all k € Ng if and only if
(a,b,c) = (0,b,c);
(ii) [BYESES)sk42 =0 for all k € No if and only if
(a,b,¢) = (—6,27,—6), (—4,14,¢), (—2,5,¢), (0,0,¢),
(2,—-1,¢), (4,2,¢), (6,9,0);
(iii) [E¢ESES)skys =0 for all k € Ng if and only if
(a,b,c) = (—10,33,—-10), (—8,24,¢), (—4,10,¢), (=2,5,¢),
(0,b,¢), (2,—1,¢), (4,-2,¢), (8,0,¢), (10,3,0);
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(iv) [E¢ESES]sk+a = 0 for all k € Ny if and only if
(a,b,¢) = (—6,15,0), (—4,10,0), (—4,12,-9), (—4,14,—14),
(—4,16,—15), (—4,18,—-12), (-2,1,14), (-2,3,5),
(-2,5,0), (-2,7,-1), (-2,9,2), (0,—4,14), (0,—2,5),
(0,0,0), (0,2,—1), (0,4,2), (2,—5,16), (2,-3,7),
(2,—-1,2), (2,1,1), (2,3,4), (4,—2,4), (4,0,-5),
(4,2,-10), (4,4,—11), (4,6,—8), (6,—3,6);
(v) [EYESES)sk4s =0 for all k € Ny if and only if
(a,b,¢) = (-8,20,-2), (—8,22,—11), (—8,24,—-16), (—8,26,—17),
(—8,28,—-14), (—6,15,-2), (—4,6,12), (—4,8,3), (—4,10,—2),
(—4,12,-3), (—4,14,0), (-2,1,12), (-2,3,3), (—2,5,—2),
(-2,7,-3), (—2,9,0), (0,b,¢), (2,-5,14), (2,-3,5),
(2,-1,0), (2,1,-1), (2,3,2), (4,—6,16), (4,—4,7),
(4,-2,2), (4,0,1), (4,2,4), (6,—3,4), (8,—4,6),
(8,—2,-3), (8,0,—8), (8,—2,-9), (8,4,—6);
(vi) [EfESEZ]8k+6 =0 for all k € Ny for the following values of (a,b, c)
(a,b,¢) = (—12,34,—-18), (—10,25,—4), (—10,33,0), (-—8,20,—4),
6,11,10), (—6,15,—4), (—6,19,-2), (—4,6, 10),
4,10, —4), (—4,12,-9), (—4,14,¢), (—4,16,—15),
4,18, -16), (—4,22,—14), (-2,-3,24), (—2,1,10),
2,3,5), (=2,5,¢), (—-2,7,-1), (-2,9,-2), (-2,13,0),
0,-8,24), (0,—4,10), (0,-2,5), (0,0,¢), (0,2,—1),
,4,-2), (0,8,0), (2,-9,26), (2,—5,12), (2,-3,7),
,—1,¢), (2,1,1), (2,3,0), (2,7,2), (4,—6,14),
4,-2,0), (4,0,-5), (4,2,¢), (4,4,—11), (4,6,—12),
4,10, -10), (6,—7,16), (6,-3,2), (6,1,4), (8,—4,4),
10,-5,6), (10,3,10), (12,—2,—6);
(vii) [E¢ESES)skr7 =0 for all k € Ny for the following values of (a,b,c)
(a,b,c) = (—16,44,—20), (—12,30,—6), (—10,25,—6), (—8,16,8),

(=
(=
(=
(=
(
(0
(2
(
(4,
(
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8,20, —6), (—8,22,—11), (—8,24,¢), (—8,26,—17),
8,28,—18), (—8,32,—16), (—6,11,8), (—6,15,—6),
6,19, —4), (—6,27,0), (—4,2,22), (—4,6,8), (—4,8,3),
4,10,¢), (—4,12,-3), (—4,14, —4), (—4,18,-2),
2,-3,22), (=2,1,8), (=2,3,3), (=2,5,¢), (—2,7,-3),

(=
(=
(-
(=
(=
(2,9, —4), (=2,13,-2), (0,b,c), (2,-9,24), (2,-5,10),
(2,-3,5), (2,—1,0), (2,1,-1), (2,3,-2), (2,7,0), (4,-10,26),
(4,-6,12), (4,—4,7), (4,—2,¢), (4,0,1), (4,2,0), (4,6,2),
(6,—7,14), (6,—3,0), (6,1,2), (6,9,6), (8,—8,16), (8, —4,2),
(8,-2,-3), (8,0,¢), (8,2,—9), (8,4,—10), (8,8, —8), (10,—5,4),
(12, -6,6), (16, —4, —4);
(viii) [ESELES)skis =0 for all k € Ny if

(a,b,¢) = (0,0,0).

We remark that (1.2) is the case (a,b) = (—8,24) of Theorem 1.1(iii).

We note that all parts of Theorems 1.1 and 1.2 are “if and only if” statements
except parts (vi), (vil) and (viii) of Theorem 1.2. This is because for these three
parts we cannot be sure that MAPLE finds all the solutions in integers of certain
sets of equations.

Preliminary results are proved in Sec. 2. Theorem 1.1 is proved in Sec. 3 and
Theorem 1.2 in Sec. 4. The proofs of Theorems 1.1 and 1.2 are carried out in the
same uniform manner and make use of basic identities satisfied by Ramanujan’s
theta function ¢(q), which is defined in Sec. 2.

2. Preliminary Results

Let
o0
= Z fnqna
n=0
and
o0
Q)= gnd"
n=0

Let s € N satisfy s > 2. Let ¢t € {1,2,...,s—1}. Our first result (Lemma 2.1) shows
that if

[f(Q)]skst =0 for all k € Ny
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then
[F(@)9(¢°)]sk+: =0 for all k € Ny.

This simple result proves to be useful in the following way. For example we show in
Sec. 4 that

[E; By E, °EsE llski2 =0 for all k € Ny,

so that taking s = 8, t = 2, f(q) = E;°EZ"E;°EsE} and g(q) = E;'EZ, in
Lemma 2.1, we obtain for all &k € Ny

(B ES By lsira = (B CEY By CEs Erg’ x Eg ' Efglsk+2 = [f(0)9(®)]swr2 = 0,

as [f(q)]sk+2 = 0. In other words Lemma 2.1 enables us to remove FgE;s> from
the identity [Ey *E3"E; S EgE¢]sk+2 = 0, which is valid for all k& € Ny, to obtain
[E;SE2"E; %grae = 0 for all k € N.

Lemma 2.1. Let s € N satisfy s > 2. Let t € {1,2,...,s — 1}. Suppose that
fl@)=>_ fid
1=0

18 such that

[f(Q)]sket =0 for all k € No.
Let

9(@) = gma™
m=0
Then
[F(@)9(¢®)]sk+t =0  for all k € Ny.

Proof. For ¢ € C with |¢| < 1 we have

9(a°) =Y gma™
m=0
Hence
f@)g(a®) = > figm | ¢"
n=0 | (I,m) € N
l+sm=n

Thus for all £ € Ny we have
F(@9@ ke = D> figm.

(1,m) € N2
l+sm=sk+t

Asl>0and t < s—1 we have

sm<l+sm=sk+t<sk+s—1<sk+s
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so that
m<k+1
and thus
0<m<Ek.
Define a new integral variable h by h = k — m so that
l=sh+t, m=k—h,
with
0<h<k.

Hence

f(@)9(a®)]skte = Zfsthtgk h-

But fsp4¢ = 0 for all h € Ny, so
[£(2)9(¢*)) skt =0 for all k € Ny,

as asserted. O

Our next result gives the well-known criterion on f(¢) which ensures that
[£(@))sktt = 0 for all k € Ny.

Lemma 2.2. Let s € N satisfy s > 2. Let t € {1,2,...,5 — 1}. Let w = e>7/5,
Suppose that

Q)= fad"
n=0

satisfies

s—1
> w T (whg) = 0.
r=0

Then

[f(@)]sk+t =0  for all k € Ny.

Proof. For r € {0,1,2,...,s — 1} we have

o0
W)=Y faw""q".
n=0

Thus

o0

Zw‘”qu Z ‘"anw q —qu Zw(" Dr=s > fad™

n=0
n =t (mod s)
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Change the summation variable from n € Ny satisfying n = ¢ (mod s) to k =
(n—t)/s €Z.Asn>0and t <s—1wehave k > =t > # > —1 so that
k € Ny. Hence

s—1 00
S w W) =5 farig™
r=0 k=0
Thus
s—1
watrf(qu) =0 forallgeC, |q <1,
r=0
implies
[f(@)]sk+t =0 for all k € No. o

We use Lemma 2.2 with s =4 and s = 8. For ¢ € {1,2,3} we have

zg:igtrf(irq) =0=[f(¢)]ak+t =0 for all k € Ny, (2.1)
r=0

and for t € {1,2,3,4,5,6,7} we have
i:wnrf(qu) =0=[f(Q)]sk+t =0 for all k € Ny, (2.2)
r=0

where w = e271/8 = 142,

N

2
We make use of Ramanujan’s theta functions

olg) = > "

and
d(g) =Y q "I,
which are defined for ¢ € C with |¢| < 1. The infinite product representations of
»(q) and 9(q) are due to Jacobi, namely,
B3 L L3
=2 —q) ==L =2 2.
e(q) 2 E v =75 v =75 (2.3)

We use the following four properties of ¢(q) and ¥(q), all of which can be found in
Berndt’s book [1], namely

0(q) + v(—q) = 2¢(q"), (2.4)
o(q) — p(—q) = 4q1(¢%), (2.5)
0(9)p(—9) = ©*(=¢°), (2.6)
©*(q) + ©*(—q) = 20%(¢). (2.7)
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We use the relationships (2.4)—(2.7) to parametrize p(q?), p(—q?), p(¢?),... i

terms of A := p(q) and B := ¢(—q).

Lemma 2.3.

e(q) = 4,
¢(—q) = B,
ola :<A2+BQ>1/2,

o(—¢*) = (AB)'/?,

A+B
e(qh) = 5

(g = (AB (A% + B?) )1/4
pliq) = (AJFTB> (A B) i,
p(—ig) = (AJFTB> - (A;B> i,

2 2\ /2
<ﬂ) + (AB)1/2

2

.oy
p(ig”) = 5 + 5
A2 + B2 1/2 A2 + B2 1/2
, <T) + (AB)Y/2 <T) — (AB)'/?
p(—ig”) = 5 - 5
Let w := €2™/8 5o that w? =i, W* = iw, w? = -1, W5 = —w, W® = —4, W7
w8 =1. Then
AB(A2 + B2\* [A-B
p(wg) = — | w,
2 2
. (ABA2+ B2\ rA-BY |
p(iwg) = + | —— ) wi,
2 2
L (ABA B\ rA-B
p(—wq) = — | w,
2 2
o (AB@A 4+ BPN\Y' (A-B\
o(—iwq) = 5 — | Wi
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Proof. The formulas for ¢(¢?), ¢(—¢*) and p(g*) follow from (2.7), (2.6) and (2.4),
respectively. The formula for ¢(—g¢*) follows from (2.6) with ¢ replaced by ¢*> and
the formulas for ¢(g?) and p(—¢?). The formulas for p(ig) and ¢(—iq) follow from
(2.4) and (2.5) with ¢ replaced by ig. The formulas for ¢(ig?) and p(—ig?) follow
from those for ((iq) and ¢(—iq) on replacing q by ¢ and using

2 2\ 1/2
A = ol = (F5) B = ple) = (4B

The final four formulas follow from (2.4) and (2.5) with ¢ replaced by wq and iwgq.
O

Our next result uses Lemmas 2.1-2.3 to show that the verification of a certain
identity in two complex variables z and w for r, s € Ny and ¢t € {1,2, 3,4} establishes
that [Ef2T+25E25T’S]4k+t =0 for all £ € Ny.

Lemma 2.4. Letr,s € Ny and t € {1,2,3}. Suppose that
r, .S t.t 1 1 . " 1 1 . °
2w + (—1)% §(z+w)+§(z—w)2 §(z+w)—§(z—w)z

(1)t 4 it (%(z +w) - %(z - w)i)r (%(z +w) + %(z - w)i)s —0
(2.8)
holds for all complex numbers z and w. Then we have
[E7 225 ES % |yat =0 for all k € Ny.
Proof. Suppose that r,s € Ny and ¢ € {1,2,3} are such that (2.8) holds for all
complex numbers z and w. We choose
z=A=0(q), w=B=¢(=q), qeC [q <1,

in (2.8). By Lemma 2.3 we have

(2 + w)+ 5(z — w)i

2
Gru) - 56-wi= (232) - (252 ) i=wl-in)

2
so that (2.8) gives

N =
Il
S
b
+
oy}
N———
+
TN
b
o |
oy
SN—
Il
pS
S

1
2
1

3

> it (i) (—i"q) = 0.
h=0

Then, by Lemma 2.2 with modulus 4, that is by (2.1), we obtain

(0" (9)¢* (—@)|ax+e =0 for all k € Np.
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Appealing to (2.3), we deduce
[Ey T2 By By e = 0 for all k € N,

Finally, taking f(¢) = E;? ™ Ey" " *E;?" and g(¢) = FE?" in Lemma 2.1, as
[f(@)]ar+e = 0 and f(g)g(q*) = E; > T2 E3" ™%, we obtain

(B2 2B %, =0 for all k € No. |

Our final lemma in this section gives the analogous result to Lemma 2.4 for
modulus 8.

Lemma 2.5. Let w = ¢>™/8 = 1—*; Let r,s,t,u € Ng and | € {1,2,3,4,5,6,7}.
For z,w € C define
i

L
+ (Z_Qw)
K(+£) = (<22;wz)1/2+(zw)1/2 4 <22;w2>1/2_(zw)1/2
(
(

~
Uy
Il
A~
w
o |+
g
~

i,

2 2

=
uy
i

Next define

.o (22 w? 42 z+w\"
Ty :=2z"w 5 5 ,

Ti = L LR

Ty = J(+)" (=) (zw)"? (H—w>u

o s (22 w? 42 z4+w\"
Ty :=w"z 5 5 ,

Ty = LY L(+) K (+)" (
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o= I I G (552

Suppose that

7
> W™, =0 (2.9)
h=0

holds for all complex numbers z and w. Then we have

[E;2r+2sE§r7372tE472r+5tf2u]8k+l _ O fO’f‘ a” k’ c NO-

Proof. Suppose that r,s,t,u € Ny and | € {1,2,3,4,5,6,7} are such that (2.9)
holds for all z,w € C. We choose
z=A=¢(q), w=B=9p(-q), qcC, ¢ <1

By Lemma 2.3 we have

5 = p(q"),
22 & a2 1/2
( J; ) = o(q*),
(zw)/? = o(—¢%),
ZW 212 w2 1/4
< ( 2+ )> = p(—q*),
J(£) = p(£ig),
K (%) = ¢(+ig®),
L(£) = p(Fwq),
M(+£) = p(Fiwg),

and for h=0,1,2,...,7
Ty = ¢"(W"9)¢* (0" 9)¢" (" ¢*) " ((-1)"q").
Hence (2.9) asserts that
7
> WM (W)t (—wh ) (i"q*) " ((—1)"¢*) = 0
h=0
for all ¢ € C, |¢q| < 1. Thus by (2.2) we have

" (@)¢* (—a)" ()" (q")]sk1 = 0 for all k € Ny.
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Appealing to (2.3) we deduce
[Ey2rt2s pir—s—2tpoorist-2upattbup2u)l 0 for all k € No.
Finally, taking
F(q) = Ep2r+2s ir—s =2 gror+5t—2u p2t+5u gru
and
g(q) = By~ B

in Lemma 2.1, as [f(q)]skr = 0 and f(q)g(¢®) = By 2 2By s 72 p 25720 e
obtain

[E;2r+2sE§r7sf2tE472r+5tf2u]8k+l —0 forallk e NO~ 0O

3. Proof of Theorem 1.1

In this section, we determine for each [ € {1,2,3,4} all the pairs (a,b) € Z? such
that

[EfE§]4k+l =0 forall k€ Ng.

This is accomplished in two steps. First we determine the candidate pairs (a,b)
from the requirement that [E¢FE5]sx1; = 0 for small values of k. Second we show
that these candidate pairs (a,b) actually satisfy [E¢ES]4,+; = 0 for all k € Ny. If
a = 0 this is deduced from the obvious identity [E§]2k+1 =0forall k e Ng. Ifa #£0
then all candidate pairs turn out to satisfy a + 2b = 0 (mod 8) and we check that
the identity (2.8) of Lemma 2.4 holds with » = (a4 2b)/8 and s = (5a+ 2b) /8. This
completes the proof of Theorem 1.1.

Lemma 3.1. Let a,b e Z. If

[E¢ESaki1 =0 for all k € Ny
then

(a,b) = (0,b).

Proof. Suppose [E{ES)4x+1 = 0 for all k € No. Then [E{ES]; = 0. But [E¢EY]; =
—a, so a=0. O
Lemma 3.2. Let a,be Z. If

[E¢ESakia =0 for all k € Ny
then

(a,b) = (—4,14), (-=2,5), (0,0), (2,-1), (4,2).
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Proof. Suppose [E{ES]4x12 = 0 for all k € Ng. Then using MAPLE we obtain
3 1

0= [E¢ES, = —5e—b+ §a2 (3.1)
and
1697 55 77 1
0=[E{E} 2——b a® + 4ab b2 a® — 2b——b——b3
B E3lo = —20 = gb+ g+ dabF 6" 6
13 , 3 4 Ls Loy, 1
— b 202 — —a® — —a'h + —=a°. 2
Tt Tt +4a 6 " 21" " (3:2)
From (3.1) we have
3001,
b= —§a—|—§a . (3.3)
Using (3.3) in (3.2), we deduce
64 4 1
0=—a*— —a*+ —ad°. 3.4
BT 79 Tt (34
Solving the sextic equation (3.4) for a, we obtain
a=—4,-2,0,2,4.
The corresponding values of b are (from (3.3))
b=14,5,0,—1,2
This completes the proof of Lemma 3.2. |

Lemma 3.3. Let a,be Z. If
[EfE3]4k+3 =0 forall ke Ny
then
(a,b) = (—8,24), (—4,10), (—2,5), (0,b), (2,—1), (4,-2), (8,0).

Proof. Suppose [E{E8)4x13 = 0 for all k € Ny. Then using MAPLE we obtain

. 4 3 1
0=[E{EY3 = —3¢ + §a2 +ab— ga?’ (3.5)
and
8 92 68 2021 13
_ EaEb e 2 Zab— 3 2b 2 b2
0=[BiBalr = —gat fo” + 5ab— g0 — e ¢
89 o 49 a3 272 3 35 5 14
—|—48 —|—24 b+ ab 6b 114" 4ab
14 2 1 1 & 1 o
— —a% — B — —— .
3 T 5% 120" soa” (3.6)
Clearly a = 0 satisfies both of these equations. If a # 0, (3.5) gives
4 3 1
b=-——a+ -d (3.7)

3 2 6



1108 A. Alaca et al.

Using (3.7) in (3.6), we obtain the sextic equation
1006 64 , 4 , 1

2835 135" 135" 2835
Solving (3.8), we find

6 =0. (3.8)

a=—8,-4,-2,24,8.
The corresponding values of b are (from (3.7))
b=24,10,5,—-1,-2,0.

This completes the proof of Lemma 3.3. O

Lemma 3.4. Let a,be Z. If
[E¢ESaksia =0 for all k € Ny
then
(a,b) = (0,0).
Proof. Suppose [E{ESar+a = 0 for all k € Np. Using MAPLE to solve the seven
equations in a and b resulting from
0= [E{ESJaka, k=0,1,2,3,4,5,6,
we obtain (a,b) = (0,0). O
Proof of Theorem 1.1. (i) Let b € Z. In the power series expansion of ES only

even powers of ¢ occur. Thus [E8]ax.1 = 0 for all k € Ng. Hence, for (a,b) = (0,b),
we have

[E¢ES g1 = [ES)apsr =0 for all k € Ny.
Part (i) of Theorem 1.1 now follows by Lemma 3.1.

(ii) Using MAPLE we find that the identity (2.8) of Lemma 2.4 with ¢ = 2 holds
for

(r,s) =(3,1), (1,0), (0,0), (0,1), (1,3)
so that by Lemma 2.4 we have [E{ES]s42 = 0 for
(a,b) = (—4,14), (-2,5), (0,0), (2,-1), (4,2),
respectively. Part (ii) of Theorem 1.1 now follows by Lemma 3.2.

(iii) Let b € Z. First we consider a = 0. From the proof of (i) we have [FE]ax11 =0
for all k € Ny so that for (a,b) = (0,b), we have

[EilES]Alk—O—S = [E3]4k+3 =0 for all k € Ny.
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Next we consider a # 0. Using MAPLE we find that the identity (2.8) of Lemma 2.4
with ¢ = 3 holds for

(rs) = (5,1), (2,0), (1,0), (0,1), (0,2), (1,5)
so that by Lemma 2.4 we have [E§ES]4+3 = 0 for
(a,b) = (—8,24), (—4,10), (-2,5), (2,-1), (4,-2), (8,0),
respectively. Part (iii) of Theorem 1.1 now follows by Lemma 3.3.
(iv) Clearly for (a,b) = (0,0) we have
[ESESapya = [1arsa =0 for all k € Ny

and part (iv) of Theorem 1.1 now follows by Lemma 3.4.
This completes the proof of Theorem 1.1. |

4. Proof of Theorem 1.2
For I € {1,2,3,4,5} we determine all (a,b,c) € Z3 such that
[E¢ESES]gksr =0 for all k € N,

For | € {6,7,8} we give some triples (a,b,c) € Z* such that [E{ESES]sk4 = 0 for
all k € Ny but we cannot be sure that we have all of them as MAPLE was unable
to solve the equations in a, b, ¢ giving the candidate triples (a,b,c). We proceed as
in the proof of Theorem 1.1 except that Lemma 2.5 is used instead of Lemma 2.4.

Lemma 4.1. Let a,b,c € Z. If

[E¢ESES]gke1 =0 for all k € Ny
then

(a,b,¢) = (0,b,¢).

Proof. Suppose [E¢ESES]sii1 = 0 for all k € Ng. Then [E¢ESES]; = 0. But
[E¢ESES): = —a, s0 a = 0. O
Lemma 4.2. Let a,b,c € Z. If

[E¢ESES ke =0 for all k € Ny
then
(a,b,¢) = (—6,27,—6), (—4,14,¢), (=2,5,¢), (0,0,¢), (2,—1,¢), (4,2,¢), (6,9,0).

Proof. Using MAPLE to solve the four equations
[E¢ESES],, =0, m=2,10,18,26,

in the three unknowns a, b, ¢, we obtain the seven solutions stated in the lemma.
O
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Lemma 4.3. Let a,b,c € Z. If
[E¢ESE)siys =0 for all k € Ny
then
(a,b,c) = (—10,33,-10), (—8,24,¢), (—4,10,¢), (-2,5,¢),
(0,b,¢), (2,—1,¢), (4,-2,¢), (8,0,¢), (10,3,0).
Proof. Using MAPLE to solve the five equations
[E¢ESES),, =0, m=3,11,19,27,35,

in the three unknowns a, b, ¢, we obtain the nine solutions stated in the lemma.

Lemma 4.4. Let a,b,c € Z. If

[E{ESES)skea =0 for all k € N,
then
(a,b,c) = (—6,15,0), (—4,10,0), (—4,12,-9), (4,14, —-14),

(—4,16,—15), (—4,18,—-12), (-2,1,14), (-2,3,5),
(=2,5,0), (—-2,7,-1), (—2,9,2), (0,—4,14), (0,-2,5), (0,0,0),
(0,2,-1), (0,4,2), (2,-5,16), (2,-3,7), (2,—1,2),
(2,1,1), (2,3,4), (4,-2,4), (4,0,-5), (4,2,—10),
(4,4,-11), (4,6,-8), (6,—3,6).

Proof. Using MAPLE to solve the four equations

[E¢ESES),, =0, m =4,12,20,28,

in the three unknowns a, b, ¢, we obtain the 27 solutions stated in the lemma.

Lemma 4.5. Let a,b,c € Z. If

[E¢ESE)siyes =0  for all k € Ny
then
(a,b,¢) = (-8,20,-2), (—8,22,—11), (—8,24,—-16), (—8,26,—17),
(—8,28,—14), (—6,15,-2), (—4,6,12), (—4,8,3),
(—4,10,-2), (—4,12,-3), (—4,14,0), (—2,1,12),
(=

2 373)7 (_2757_2)7 (_2777_3)7 (_27970)7 (O,b,C),
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(2,-5,14), (2,-3,5), (2,—-1,0), (2,1,-1),
(2,3,2), (4,-6,16), (4,—4,7), (4,-2,2),
(4,0,1), (4,2,4), (6,—3,4), (8,—4,6),
(8,—2,-3), (8,0,-8), (8,2,-9), (8,4,—6).

Proof. Using MAPLE to solve the three equations
[E¢ESES],, =0, m=5,13,21,
in the three unknowns a, b, ¢, we obtain the 33 solutions stated in the lemma. O
In searching for the solutions (a,b,c) € Z* of [EfESE§|site = O,

[E¢ESES)skrr = 0 and [E¢ESES|skts = 0 for small values of k, MAPLE was
unable to find all the solutions.

Proof of Theorem 1.2. (i) Let b,c € Z. In the power series expansion of E3E§
only even powers of ¢ occur. Thus [ESES|ars1 = 0 for all k € Ny. Hence, for
(a,b,¢) = (0,b,¢), we have

[E¢ESES)skr1 = [ESES)sks1 =0 for all k € N.
Part (i) of Theorem 1.2 now follows by Lemma 4.1.
(ii) Let

(a,b) = (—4,14), (-2,5), (0,0), (2,-1), (4,2)
and ¢ € Z. Then, by Theorem 1.1(ii), we have

[E{ES)aks2 =0 for all k € No.
Hence, by Lemma 2.1, we have
[E¢ESES]gpre =0 for all k € Ny.

Using MAPLE we find that the identity (2.9) of Lemma 2.5 with [ = 2 is satisfied
for (r,s,t,u) = (7,4,2,1) and (4,7,2,1) so that by Lemma 2.5, we have

[E;SE2"E; %grae =0, [ESEIEYspi2 =0 forall k € No.
Part (ii) of Theorem 1.2 now follows by Lemma 4.2.
(iil) Let
(a,b) = (—8,24), (—4,10), (—2,5), (0,b), (2,—1), (4,-2), (8,0),
where b € Z. By Theorem 1.1(iii) we have
[E¢ESapys =0 for all k € No.
Hence, by Lemma 2.1, we have for ¢ € Z

[E{ESES)ars =0 for all k € Ny.
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Table 1. Values of (a,b,c) for which
[E{ E3E{]sk+4 = 0.

No. » s t wu a b c
1 4 1 2 1 —6 15 0
2 3 1 2 2 -4 10 0
3 3 1 1 4 -4 12 -9
4 3 1 0 4 -4 14 -14
5 4 2 1 6 —4 16 —15
6 4 2 0 2 -4 18 —12
7 2 1 4 1 =2 1 14
8 2 1 3 3 =2 3 5
9 2 1 2 3 =2 5 0

10 2 1 1 1 =2 7 -1

11 3 2 2 1 =2 9 2

12 1 1 4 2 0o —4 14

13 0O 0 1 0 0o -2 5

14 0O 0 0 O 0 0 0

15 1 1 1 2 0 2 -1

16 2 2 2 2 0 4 2

17 1 2 4 1 2 =5 16

18 1 2 3 3 2 -3 7

19 1 2 2 3 2 -1 2

20 1 2 1 1 2 1 1

21 2 3 2 1 2 3 4

22 1 3 2 2 4 =2 4

23 1 3 1 4 4 0 -5

24 1 3 0 4 4 2  —10

25 2 4 1 6 4 4 11

26 2 4 0 2 4 6 -8

27 1 4 2 1 6 -3 6

Thus
[E¢ESES)spss =0 for all k € N.

Using MAPLE we find that the identity (2.9) of Lemma 2.5 with [ = 3 is satisfied
for (r,s,t,u) = (8,3,2,2) and (3,8,2,2). Hence, by Lemma 2.5, we have

[ETVEBE i3 =0, [E'E3E)siis =0 forall k€ Np.
Part (iii) of Theorem 1.2 now follows by Lemma 4.3.

(iv) Using MAPLE we find that the identity (2.9) of Lemma 2.5 with [ = 4 is
satisfied for the 27 values of (r,s,t,u) listed in Table 1. The corresponding 27
values of (a,b,c) for which [E¢ ESES]sk+4 = 0, for all k € Ny, are also given.

Part (iv) of Theorem 1.2 now follows by Lemma 4.4.
(v) Let b, ¢ € Z. From the proof of part (i) we have for (a,b,c) = (0,b,¢)

[E{ESES)skes = [ESES]sks = 0 for all k € Ny,
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Table 2. Values of (a,b,c) for which
[Ef E3E§]sk+5 = 0.

No. » s t wu a b c
1 5 1 2 1 -8 20 —2
2 5 1 1 3 -8 22 —11
3 5 1 0 3 -8 24 —16
4 6 2 1 5 -8 26 —17
5 6 2 0 1 -8 28  —14
6 4 1 2 2 -6 15 -2
7 3 1 4 1 -4 6 12
8 3 1 3 3 —4 8 3
9 3 1 2 3 -4 10 —2

10 3 1 1 1 -4 12 -3

11 4 2 2 1 -4 14 0

12 2 1 4 2 =2 1 12

13 1 0 1 0 -2 3 3

14 1 0 0 0 -2 5 -2

15 2 1 1 2 =2 7 -3

16 3 2 2 2 =2 9 0
17 1 2 4 2 2 =5 14
18 1 2 3 4 2 -3 5
19 0 1 0 O 2 -1 0

20 1 2 1 2 2 1 -1

21 2 3 2 2 2 3 2

22 1 3 4 1 4 -6 16

23 1 3 3 3 4 —4 7

24 1 3 2 3 4 =2 2

25 1 3 1 1 4 0 1

26 2 4 2 1 4 2 4

27 1 4 2 2 6 -3 4

28 1 5 2 1 8 —4 6

29 1 5 1 3 8 =2 -3

30 1 5 0 3 8 0 —8

31 2 6 1 5 8 2 -9

32 2 6 0 1 8 4 —6

Using MAPLE we find that the identity (2.9) of Lemma 2.5 with [ = 5 is satisfied for
the 32 values of (r,s,¢,u) listed in Table 2. The corresponding 32 values of (a, b, ¢)
for which [E¢ESE§|sk+5 = 0, for all k € Ny, are also given.

Part (v) of Theorem 1.2 now follows by Lemma 4.5.

(vi) Using MAPLE we find that the identity (2.9) of Lemma 2.5 with I = 6 is
satisfied for the 44 values of (r,s,t,u) listed in Table 3. The corresponding 44
values of (a, b, c) for which [E¢ESE$]sk+6 = 0, for all k € Ny, are also given.

Part (vi) of Theorem 1.2 now follows.
(vii) Let

(a,b) = (—8,24), (—4,10), (-2,5), (0,d), (2,—1), (4,-2), (8,0),
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0.

Table 3. Values of (a,b,c¢) for which

(B¢ ESE]sk+6

No.

—18

34
25
33
20
11

—12
—10
—10

10

15

10

12
16
18
22

10
11

—15
—16
—14

12
13
14
15
16
17
18
19
20
21

24
10

13

24
10

22
23
24
25

26
12

26
27
28
29
30
31

14

32

33
34

—11
—12
—10

35

36

10

37
38
39
40

16

41

10
10

42

10

43

44
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where b € Z. By Theorem 1.1(iii) we have
[E¢E8apr3 =0 for all k € No.
Hence, by Lemma 2.1, we have for ¢ € Z
[E{ESES)arys =0 for all k € Ny.
Thus
[E¢ESES|srr =0 for all k € Np.

As we have already mentioned MAPLE was unable to solve the equations in a, b, ¢
resulting from [E{ESES]sk+7 = 0 for several small values of k € Ny. Thus instead
we ran through (r,s,t,u) € N§ satisfying

0<rst,u<9

and determined which quadruples (r, s, t, u) satisfied the identity (2.9) of Lemma 2.5.
The computer found 50 quadruples (r, s, t, u) that satisfied (2.9). They are listed in
Table 4 along with the corresponding values of (a, b, ¢).

Table 4. Values of (a,b,c¢) for which
[E{ E3E{]sk+7 = 0.

No. » s t wu a b c
1 9 1 0 1 -—16 44 —20
2 7T 1 2 1 =12 30 —6
3 6 1 2 2 -—10 25 —6
4 5 1 4 1 -8 16 8
5 5 1 2 3 -8 20 —6
6 5 1 1 3 -8 22 —11
7 6 2 1 5 -8 26 —17
8 6 2 0 3 -8 28 —18
9 7 3 0 1 -8 32 —16

10 4 1 4 2 —6 11 8

11 3 0 0 O —6 15 —6

12 5 2 2 2 —6 19 —4

13 8 5 4 2 —6 27 0

14 3 1 6 1 —4 2 22

15 3 1 4 3 —4 6 8

16 3 1 3 3 —4 8 3

17 3 1 1 1 —4 12 -3

18 4 2 2 3 —4 14 —4

19 5 3 2 1 —4 18 -2

20 2 1 6 2 -2 =3 22

21 1 0 2 0 -2 1 8

22 1 0 1 0 -2 3 3

23 2 1 1 2 -2 7 -3

24 2 1 0 0 —2 9 —4

25 5 4 4 6 -2 13 -2

(Continued)
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Table 4. (Continued)

No. s t u a b c

26 1 2 6 2 2 -9 24
27 0o 1 2 0 2 -5 10
28 0O 1 1 0 2 -3 5
29 1 2 1 2 2 1 —1
30 1 2 0 O 2 3 -2
31 3 4 2 2 2 7 0
32 1 3 6 1 4 -10 26
33 1 3 4 3 4 —6 12
34 1 3 3 3 4 —4 7
35 1 3 1 1 4 0 1
36 2 4 2 3 4 2 0
37 3 5 2 1 4 6 2
38 1 4 4 2 6 -7 14
39 0O 3 0 0 6 -3 0
40 2 5 2 2 6 1 2
41 5 8 4 2 6 9 6
42 1 5 4 1 8 -8 16
43 1 5 2 3 8 —4 2
44 1 5 1 3 8 -2 -3
45 2 6 1 5 8 2 -9
46 2 6 0 3 8 4 =10
47 3 7 0 1 8 8 -8
48 1 6 2 2 10 -5 4
49 1 7 2 1 12 —6 6
50 1 9 0 1 16 —4 —4

Part (vii) of Theorem 1.2 now follows.
(viii) This part is trivial.
This completes the proof of Theorem 1.2. O

It is possible that the lists of parts (vi), (vii) and (viii) of Theorem 1.2 are
complete but we cannot prove this.

5. Final Remarks

In principle the methods of this paper can be used to find the quadruples (a, b, ¢, d) €
7Z* such that

[E{ESESEY 166400 =0 for all k € N, (5.1)
where [ € {1,2,...,15}, but the details would be quite challenging! It uses

" (@) (—a)" ()" (¢*)e" (¢°)

_ —2r42s pbr—s—2t p—2r+5t—2u —2t+5u—2v m—2u+5v r—2v
_El E2 E4 ES E16 E32
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and

—2r42s br—s—2t 17 —2r+5t—2u —2t+5u—2v r—2u+5v p—2v
[E} E, N Eg Els B35 16kt

—2r4+2s br—s—2t 17 —2r+5t—2u 1 —2t+5u—2v
(E; ES E; Eg J16k+1,

and requires the parametrizations in terms of A and B of ¢(+w"q), p(w?'¢?),

o(w*q*) and p(wdhq®), where
i V24+V2 V22
w=e16 = +1
2 2
and h € {0,1,2,...,15}. There are identities of the type (5.1) to be discovered. We

give just one such example.

Theorem 5.1.
[E{E{ES 166413 =0  for all k € Ny.

Proof. We prove this result by appealing to a recent theorem of the fourth author
[2, Theorem 1.1, p. 80]. We take

in this theorem to obtain

4 179 h—2 _ 4 2,2
(B E{ES "] = E (z7 — 3x13),
(w1, 22, 3) € Z?
mf+z§+2z§:n

which is valid for all n € N. As 2% + 23 + 222 # 14 (mod 16) we deduce that
[¢EtESES *16k114 = 0 for all k € N.
The asserted result follows on dividing by gq. O

Further examples of this type are given in [3], as well as references to related
results in the literature.
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