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Abstract: A class of sums of the type

OZ": 1
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n=1 n

n=a,...,a, (mod m)

is evaluated, where k, m and r are positive integers with m > 2 and ay, ..., a, are integers satisfying 1 <
a1 <a<---<ar<m-1.
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1 Introduction

Let N := {1,2,3,...}, Ng := {0,1,2,...}and Z := {0, +1, +2,...}. Let Q, Q and R denote the fields of
rational numbers, algebraic numbers and real numbers, respectively.
In the eighteenth century Euler proved that

= , keN, (1.1)

i 1 B (_1)k—122k—1szn—2k
& n2k (2k)!

where By (¢ € Np) denotes the £th Bernoulli number. Euler’s formula (1.1) is well known and many proofs of
it occur in the literature, see for example [2, 3, 8].

Some subsums of Euler’s sum Y ;2; ﬁ of the type

S 1
Z — k,m,reN, m>2, (1.2)
= n2k
n=ai,...,a, (mod m)
where aq,...,a, € Zsatisfy0 < a; < a; <--- < a, < m- 1, have been evaluated. One very simple example
is
0 1 _1)k-192k-1p_, 22k
y == (1) - kT k,meN, (1.3)
= n? m2k(2k)!
n=0 (mod m)
which follows immediately from (1.1). Another simple example is
0 1 -1 k-1 221( - 1)B 7'[2k
I Gt VY, SO
~Z n? 2(2k)!
n=1 (mod 2)

which follows by subtracting (1.3) with m = 2 from (1.1).
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232 —— K.S.Williams, A class of subsums of Euler’s sum DE GRUYTER

Recently Navas, Ruiz and Varona [6, p. 34, Proposition 3.5] evaluated the subsum

0

1
Z —k’ k, m,s €N,
n=1 n

n=+s (mod m)

form = 1(mod2), m > 3and s € {1,2,...,(m - 1)/2} in terms of values of trigonometric functions and
values of Bernoulli polynomials. They stated that there is a similar evaluation for m = 0 (mod 2) but did not
give it. We now state their theorem in a form valid for all m € Nwith m > 3 and all s € Z with 2s # 0 (mod m),
and give a very simple proof of it in Section 2. We recall that the Bernoulli polynomial B,,(x) (n € Ny, x € R)
is defined by

Bu(x) := Zn: (':)B,x”_r,

r=0

and we note the properties
Bn(0) = By Bak(x) = Bar(1 -x), n, k€ No. (1.4)

Theorem 1.1 (Navas, Ruiz and Varona). Letk, m € N withm > 3. Let s € Z be such that 2s # 0 (mod m). Then

e8] 1 -1 k—122k 2k m-1
n; = ()mT)'ﬂ };} Bax(j/m) cos(27sj/m).

n=+s (mod m)

As Byi(j/m) € Q and cos(2msj/m) € Q N R, we see that

2k
t n=1
n=+s (mod m)

Hence a sum of the form (1.2) with

<‘rEO(modZ), l<ai<a<---<a,<m-1,

(aj)m)zl’ ar+1—j:m_ajyj:19---’ry
is a sum of sums of the type given in Theorem 1.1, namely

0
1
DT

mod m)

~
~
N

=

1
n=ta

]

-

=1

where each 2a; # 0 (mod m), and thus is of the form am?*, where @ € QnR. We give a class of subsums of this
type for which a can be given explicitly as a rational linear combination of squareroots of positive integers,
see Theorem 4.7. The idea of such a result is implicit in the work of Shanks and Wrench [7] and our purpose
is to make it completely explicit. Two examples are

1 (8-5V2+4V3-3Ve)r
n2 288 ’

Mg

n=1
n=11,13 (mod 24)

—~

see Corollary 5.10, and
o0 1 7.[2
y = =—(3-7),
= n 49
n=5,11,13,15,17,23 (mod 28)

see Corollary 5.12.

In Section 2 we prove Theorem 1.1. In Section 3 we define the class of subsums of Euler’s sum that we
shall evaluate in Section 4. In Section 4 we make use of Theorem 1.1 to prove our main result (Theorem 4.7).
In Section 5 we give some examples illustrating Theorem 4.7.
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DE GRUYTER K.S. Williams, A class of subsums of Euler’s sum =—— 233

2 Proof of Theorem 1.1

We make use of the Fourier expansion of the Bernoulli polynomial B,y (x) (k € IN), namely,

(-1 2k)! & cos2nax

Ba) = o T x €[0,1], 2.1)
n=
see for example [1, p. 805]. Appealing to (2.1), we obtain
m-1 m-1 k-1 (58] 3
-1 2k)! cos(2mjn/m
Z cos(2msj/m)Bax(j/m) = Z cos(Znsj/m)( 2)k 1(2k) ( 2]k /m)
j=0 j=0 297 o n

e R 1 . .
=== — Y’ cos(27sj/m) cos(27nj/m)
22172k L4 p

j=0
DR &1 el , ;
_ D! z)zk (zk ) D = Y (cos(2m(n - 5)j/m) + cos(2m(n + 5)j/m)).
T n=1 """ j=0
Now
m-1 m if n = £s (mod m),
Z cos(2mt(n ¥ s)j/m) =
frd 0 ifn# +s(modm),
and s # —s (mod m) (as 2s # 0 (mod m)) so
m-1 ) . D102k 'm S 1
Z cos(2msj/m)Bak(j/m) = % Z 2k
s n=1

n=+s (mod m)

from which the asserted formula follows.

3 Aclass of subsums of Euler’s sum

We begin with some definitions.

Definition 3.1. We call a positive integer d a discriminant if d is not a perfect square and d = O or 1 (mod 4).
A discriminant d is called a fundamental discriminant if there is no integer g > 1 such that g%|d and d/g? =
0 or 1 (mod 4). The conductor f = f(d) of a discriminant d is the largest positive integer such that f?|d and
d/f? = 0 or 1 (mod 4). The fundamental discriminant A = A(d) associated with the discriminant dis A = d/f?,
where f is the conductor of d.

We emphasize that in this paper we are restricting discriminants to be positive integers. The Kronecker symbol
for a discriminant d and a positive integer n is written as (%). Properties of the Kronecker symbol are given in
[4, pp. 304-306]. The Kronecker symbol (%) is a completely multiplicative function of n. Moreover,

<§)_ 0 if(n,d)>1, (3.1)
n/  |+1 ifm,d)=1. ’

Also, if f is the conductor of the discriminant d and A = d/f? is the fundamental discriminant associated with

d then
d 0 if (n,f) > 1,
) = 3.2
() {(%) if (n, f) = 1. o2

Two further properties of the Kronecker symbol are

(£)=< d ) l<n<d-1, (3.3)

n d-n
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234 —— K.S.Williams, A class of subsums of Euler’s sum DE GRUYTER

see [4, p. 305, Theorem 3.3] for a proof, and

df (g) - 0. (3.4)

r=1
(r,d)=1
By (3.3) we have
> (9)- 3 (53
1<r<d/2 r d/2<r<d-1 r 2 r= r
(r,d)=1 (r,d)=1 (rd)=1

as d/2 is not an integer if d is odd and (d/2, d) = d/2 > 1if d is even since d > 8 in this case. Hence, by (3.4),
we deduce

d

_) -0. (3.5)
1<r<d/2 r
(r,d)=1

The final property of the Kronecker symbol that we need is the identity

i < > 2ﬂint/A:<%>\/Z, (3.6)

t=1
t,A)=1

which is valid for any positive integer n and any fundamental discriminant A, see [5, p. 221, Theorem 215].
As (2)VA € R we have from (3.6)

A-1

<%)cos(2nnt/A) = (%)\/Z (3.7)

1

t
(t

2

Our next three definitions are of quantities that we need in order to be able to state our main result
(Theorem 4.7).

Definition 3.2. For k, m € IN and a discriminant d, we define

Pi(m) := ]‘[(1 - z%)

plm
and dy 1 dy 1
pima < (1 () )T ()7
ptd

where p runs through the primes satisfying the given conditions.
In particular, we have Py(1) = 1 and Pyx(m, d) = 1 if m|d.
Definition 3.3. For m € Ny and a discriminant d, we define
d
Smdi= Y (£)em.
1<t<d/2
(t,d)=1

We note that So(d) = 0 by (3.5).
Definition 3.4. Let k € N and d a discriminant. Let f be the conductor of d and A = d/f? the fundamental

discriminant associated with d. We define

2k-1 2k
Hi(d) := Azkpk(f A) Z ( )A’B,SZk_rm).

We note that in the sum in Hy(d) the terms with r (odd) > 3 vanish as By,,1 = O for n € IN.
Our final definition defines the class of congruences in (1.2) that we consider.
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DE GRUYTER K.S. Williams, A class of subsums of Euler’s sum =—— 235

Definition 3.5. The set of congruences

n=ap,...,a(modm),
where m and r are positive integers with m > 2 and ay, ..., a, are integers satisfying 1 < a; < a; < --- <
a, < m - 1, is said to be discriminantly determined if there exist €; = *1, ..., €; = +1 and discriminants
di, ..., ds with no nonempty product equal to a perfect square such that

n=adai,...,a,(modm) ifand only if (%) =€1,...,(%) = €s.

The congruences n = 7, 17 (mod 24) are discriminantly determined as

n=7,17 (mod24) ifand only if (%)—1 <1n2) -1

However the congruence n = 1 (mod 4) is not discriminantly determined. Our main result evaluates the sum
(1.2) for the class of congruences which are discriminantly determined.

4 Proof of main result

In this section we evaluate some infinite series and then state and prove our main result Theorem 4.7.
Proposition 4.1. Let e, k € IN. Let d be a discriminant. Then

> (D= (S 2 (D

n=

eln
Proof. We have
DN EI T o ey ETE
Z\n/n2k ~ &\en)(en)2k ~ & \e/\n)e2k n2k
eln
and the asserted result now follows. 0

Proposition 4.2. Let k, m € N. Let d be a discriminant. Then

Z y(e) = Pe(m) and Z}i(e)< ) ! = Py(m, d),
eIm elm

where u denotes the Mobius function.

Proof. We just prove the first formula as the second formula can be proved in a similar manner. As u(e)/ek

is a multiplicative function of the positive integer e, and u(p) = -1 and u(p?) = pu(p?) = --- = 0 for any prime
p, we have
ue) I k) | p0?) u(pvﬂ(’"’)) < 1 )
— = 1+ +eet = H 1-— .
elm ek PP |Im ka p4k p2vp(m) plm ka
The asserted formula now follows by Definition 3.2. O

Proposition 4.3. Let k, m € N. Then

( 1)k—122k lB kﬂ
n? (2k)!

Pyr(m).

118
»IH

=
Il
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236 —— K.S. Williams, A class of subsums of Euler’s sum DE GRUYTER

Proof. Appealing to (1.3) and Proposition 4.2, we obtain

S 1
y z (Y we)z
(nn’:)l 1 n? = e|(n,m)
= D ue) Z
elm
eln
_1)k-152k-1g . -2k
_ Zﬂ(e)( 1) - 2kTT
4 e2k(2)!
_ (_1)k—122k—1szﬂ2k Z M
(2k)! o e2k
- (_l)k—122k—1B2kn2k
= 20! Py(m)
as asserted. O

Proposition 4.4. Let k € N. Let A be a fundamental discriminant. Then

0 _1yk=192k 2k 2k-1
z<é)i = M Z 2k A"B;Sai—r(D).
n=1 1 n?k (2k)! A2k VA =0 \ T

Proof. Letry, ..., rpn)2 be the integers such that

A A
1<ry<---<rgppyp<A-1, (_>:...:( ):1,
8 Tp()/2
and sy, ..., S¢)/2 the integers such that
A A
1<sy < - <Spy2 <A-1, <—>:~--:< >:—1.
S1 Sp)/2

We note that ¢(A) = 0(mod 4) and (1, A) = (Sm, D) = 1, rg@y2+1-m = A = Tm, Sp)/241-m = A — Sy for
m=1,2,...,¢(A)/2. Appealing to (3.1), the theorem of Navas, Ruiz and Varona (Theorem 1.1) and (3.7),
we obtain

(2 X (e

n=1 n=1

(n,A)=1

$(D)/2 00 1 $(D)/2 o) 1

S R N
n=rpy (mod A) n=sy, (mod A)

o(D)/4 00 o(B)/4 00

D T N

m=1 n=1 n m=1 n=1 n

n=+r,, (modA) n=+s,, (mod A)

(=1)k-122k g2k qb(AZ):M Ail

D T e— By (t/A) cos(2mry,t/A)
2k)!'A = 5
(=1)k-122k 72k d)/4 A-1

@IA m; ;)sz(t/A)cos(Znsmt/A)

( 1)k 122k 17'[2k A-1

GITA ZBZk(t/A) Y (5)cosmut/a)

=1
(u,A)=1
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DE GRUYTER K.S. Williams, A class of subsums of Euler’s sum =— 237

( 1)k 122)( 7'[2k

(2k)! VA Z( )sz(t/A)

- (_1)](—122]( 1 2k A-1

(2k)!' VA Z

(tA

( )Bar(t/).

By (3.3) and (1.4) we have, for 1 < t < A — 1 with (¢, A) = 1,
A A
(7) - (A—_t) Bax(t/A) = Bar((A - t)/A).

We remark that when A is even we have (A/2,A) = A/2 + 1as A > 8,s0t + A/2. Hence, pairing t and A - ¢,
we obtain appealing to Definition 3.3

A-1

A
Y (3)Batm=2 ¥ (3)Baiesn)
t=1 1<t<A/2
(t,0)=1 (t,A)=1
A tzk—r
=2 ), (?) (r) " AZK-T
1<t<A/2
(t,A)=
k
= i 3 (Zk) B, (A>t2k—r
k r=0 r 1<t<A/2 t
(t,A)=1
2 %2
—kZ( )AB Sak-r(8)
r=0
7 2kl
= 7k Z ( )A By Sak-—r(D),
as So(A) = 0. The asserted formula now follows. O

Proposition 4.5. Let k € N. Let d be a discriminant. Let f be the conductor of d and A = d/f? the fundamental
discriminant associated with d. Then

® d 1 _(_1)k—122k71n—2k
;(E)ﬁ_ (2k)!VA Hid).

Proof. By (3.1) we have

L6 2 G @
(n,d)=1

Replacing d by Af? in the right-hand sum in (4.1), and noting that (n, Af?) = 1is equivalent to (n, A) = (n, f) =
1, we deduce that

(0]

&) 2
2 2 ()

By (3.2) we have (ATfZ) = (&) for (n,f)=1s0

(o8]
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Hence i
> (= (3 w0)(3)ar = T X (7)
n=1 n=1 " e|(n,f)
eIn
Appealing to Propositions 4.1, 4.2 and 4.4, as well as Definition 3.4, we obtain
Srdy 1 Ay 1 S/AN 1
_ ) = e _ ) — _ ) —
Z;(n)rﬂk %}1( )<e>e2k nZ::1(n>n2k
/AN 1
= Pe(f, B) Z(H)ﬁ
~ ( 1)k 122k 2k 2k-1 2k .
=P D e Z A"BrSai-+(8)
~ (_1)k 122k_17'[2k
- @kIVA i@,
which is the asserted result. O

Proposition 4.6. Let k, m € N. Let d be a discriminant. Let f be the conductor of d. Let A = d/f?* be the
fundamental discriminant associated with d. Then

o) d 1 (_1)k—122k—1n—2k
— )= =" = Pi(m, d)Hr(d).
) (%)% Ve P D)
(n,m)=1

Proof. Appealing to Propositions 4.1, 4.2 and 4.5, we deduce

> (D=2 3 o))

n=1 = el(n,m)
(n,m)=1
= ) ue Z( )nzk
elm
eln
dy 1
= Y ue(5) —
-S4 5 3(4) %
(_1)k7122k71ﬂ2k
= Py(m,d)————Hy(d),
k(m, d) 20! VA k(d)
which is the asserted result. O

We are now ready to state and prove our main result.

Theorem 4.7. Let m and h be positive integers with m > 2 and a1, . . ., ap integers satisfying 1 < a; < a <
-+ < ap <m - 1. Suppose that the set of congruences

n=ai,...,ay(modm)
is discriminantly determined, say by discriminants d1, . . ., d, (with no nonempty product dj, --- d;, (1 < j1 <
-+ < js < 1) equal to a perfect square) and €1 = +1, ..., €, = +1. Then
(o) 1 -1 k—122k—1—rB nzk
I 2 p(dy -+ dy)

n2k (2k)!
(_1)1(—1 22k—1—rn2k r
(2k)!

H (d- ...d.s)
y €j1"'estPk(dl'“dhdjl"'djs)-
s=1 1<j; <<js<r A(djl "'djs)

Brought to you by | Carleton University OCUL
Authenticated
Download Date | 11/3/16 6:27 PM
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Proof. As d, ..., d, are discriminants such that no nonempty product d;, ---dj, (1 < ji1 <--- < js <r)isa
perfect square, we deduce that dj, --- dj, (1 <j; < --- < js < r) is a discriminant. We have
I W
= n2k = n2k
=ay,...,ap (mod m) (%):6‘1,...,(%):6‘,
>
£ n2k
(&)=€1,...,(4)=e,
(n,dy+dy)=1

1]
S
D18
=~
S

[En

+
N3
S

<
SN——
SN—
=
N =
=~

05T ()

Il
S
(M8
—

(n,d?zcll,):l s=1 1<ji<<js<r
1 1 19 e dj,---dj,\ 1
3 Y otz Y oaa Y (T )
n=1 s=1 1<ji<<js<r n=1
(n,dy~dy)=1 (n,dydy)=1
The theorem now follows on appealing to Propositions 4.3 and 4.6. O

5 Examples

In this section we give some special cases of Theorem 4.7.

Theorem 5.1. Let k € IN. Then

>

io: 1 _(_1)k—122k—2n2k B i 1 _(_1)k—122k—2ﬂ2k .

KT s n2k — 52k(2k)!

where
2k-1

2
A* =552 -1)By+2 ) ( r")sf(sz-f - 1)B, V5.
r=0

Proof. The congruences n = 1, 4 (mod 5) are discriminantly determined as n = 1, 4 (mod 5) & (%) =+1.By
Theorem 4.7 we obtain

(o] 1 -1 k7122k72B 2k -1 k7122k72 2k H
N A TN e . TP
Z n 2k (2k)! V5

n=1,4 (mod 5)

By Definition 3.2 we have Py(5) = 52;2;1 and Px(1, 5) = Py(5, 5) = 1. By Definition 3.4 we have
2 2k-1 2k -
Hi(5) = 5 Y ( . )5'(1 - 2°kNB,.
r=0
The first asserted formula now follows. The second formula follows in a similar manner. O

Taking k = 1 and k = 2 in Theorem 5.1, we obtain the following corollary.
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240 — K.S.Williams, A class of subsums of Euler’s sum DE GRUYTER

Corollary 5.2. The following four evaluations hold:

X 1 2(5+ V5)m? X
It D)

o n? 125 — n? 125
n=1,4 (mod 5) n=2,3 (mod 5)
and
i 1 413 +5V5)n" i 1 4(13-5V5)r"
Z ot 9375 Z ot 9375
n=1,4 (mod 5) n=2,3 (mod 5)
Theorem 5.3. Let k € IN. Then
i 1 ~ (_1)](—17.[2’( B i 1 ~ (_1)](—17.[2](
= n2k — 24k+3(2f)! ’ = n2k — 24k+3(2)! ’
n=1,7 (mod 8) n=3,5 (mod 8)

where
2k-1 2k
B* =242k~ 1)By + ) ( ; )23r(32’” - 1)B,V2.
r=0

Proof. The congruences n = 1, 7 (mod 8) are discriminantly determined as n = 1, 7 (mod 8) & (%) =+1. By
Theorem 4.7 withr = 1, d; = 8 and €; = +1, we obtain the first formula. For the second formula we choose
r=1,d; =8ande; = -1. O

Taking k = 1 and k = 2 in Theorem 5.3, we obtain the following corollary.

Corollary 5.4. We have

i": 1 _Q+V2)r? i": 1 _@2-Vvor?
Z n2 32 7 Z n2 0 32
n=1,7 (mod 8) n=3,5 (mod 8)
and
i 1 (16 +11v2)n* i 1 (16-11vV2)n*
L ont 3072 L ont 3072
n=1,7 (mod 8) n=3,5 (mod 8)
Theorem 5.5. Let k € IN. Then
i L ~ (_1)]{—17.[2]( B i i ~ (_1)]{—17.[21( .
= n2k 22k+232k+1(2 k)1 ’ n2k 22k+232k+1(2 k)1 ’

= n=1
n=1,11(mod 12) n=5,7 (mod 12)

where
2k-1

c* =232 - )3 - By Y <2rk>22'3'(52’<—f -1)B,V3.
r=0

Proof. The congruences n = 1, 11 (mod 12) are discriminantly determined as n = 1, 11 (mod 12) (1_nz) =
+1. By Theorem 4.7 with r = 1, d; = 12 and €; = +1, we obtain the first formula. For the second formula we
chooser=1,d; =12 and ¢; = -1. O

Taking k = 1 and k = 2 in Theorem 5.5, we obtain the following corollary.

Corollary 5.6. The following four evaluations hold:

Q1 e+ Q1 _@-vir
) =36 ) =36

= n2 36 = n2 36
n=1,11 (mod 12) n=5,7 (mod 12)
and
i 1 (40+23V3)n* i 1 (40-23V3)n*
L ont 7776 Z ont 7776
n=1,11 (mod 12) n=5,7 (mod 12)
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Theorem 5.7. Let k € IN. Then

OZO: 1 B (_1)k—1n2k i 1 ~ (_1)k—1n2k
L on2ko4.52k102))1 L onp2k 4521001 0
n=1,9 (mod 10) n=3,7 (mod 10)
where
2k-1 2k
D* :=5(2% - 1)(5% - 1)By £ 2% + 1) ) ( ; )(sz-f - 1)5"B, V5.
r=0

Proof. Asn=1,9 (mod10) & (%) =+1wechooser =1, d; =20and €; = +1 in Theorem 4.7 to obtain the
first formula. For the second formula we chooser =1, d; = 20 and €; = -1. O

Taking k = 1 and k = 2 in Theorem 5.7, we obtain the following corollary.

Corollary 5.8. The following four evaluations hold:

i": 1 _@+V5r i": 1 _G-V5r
= n2 50 = n2 50
n=1,9 (mod 10) n=3,7 (mod 10)
and
i 1 (39+17V5)r* i 1 (39-17V5)r"
& ont 7500  ° Z  ont 7500
n=1,9 (mod 10) n=3,7 (mod 10)

Theorem 5.9. Let k € IN. Then

1
ﬁ=E+F\/§+G\/§+H\/€,

18

n=1
n=1,23 (mod 24)

Y %:E—F\/E—G\/?+H\/g,
n

8

=

O3
=]

n=5,1 od 24)

1

— =E+FV2-GV3-HVe,
n

ns7,1§l(r}10d24)

f i:E—F\/LG@—H\/E,

n2k

Mg

n=1
n=11,13 (mod 24)

where
£ CDIRH - DG - DByt
o 8 - 32k(2k)! ’
_ CDRIEHR e 2k 2 2k o e,
F:= 24k+432K(2 )] r;) r 27 =378y,
. (_1)k71ﬂ2k 2l 2k 2rqr 2k-r
G = 22k+332k+1(2 )] rZ(:) r 273°(1 - 578,

(_1)k—1ﬂ2k 2k-1

k
. 2k 3rqr 2k-r 2k-r 2k-r
H.:m Zo(r>2 37(1+ 527 - 72T —11%)B,.
r=

Proof. We have
8
n=1,23(mod24) (E) = (—) =1,
8
n=5,19(mod24) (-) = (_) =-1,
n n
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n=7,17(mod24) (%):1, (— =-1,
n=11,13 (mod24) e (%):4,(12):1,

The asserted formulae follow by taking

r=2, d1=8, d2=12, €1 =1, e =1,
r=2, di=8, d,=12, €1=-1, € =-1,
)’22, d1=8, dz =12, €1 =1, €2 =-1,
r=2, d1:8, d2=12, e1=-1, e =1,
respectively, in Theorem 4.7. O

Taking k = 1 in Theorem 5.9, we obtain the following corollary.

Corollary 5.10. The following four evaluations hold:

n? 288

"Z": 1 :(8+5\/§+4\/§+3\/€)n2

n=1
n=1,23 (mod 24)

f 1 _(8-5V2-4V3+3Ve)m’

n? 288

n=1
n=5,19 (mod 24)

i 1 (8+5V2-4V3-3Ve)n’
n2 288 ’

n=1
n=7,17 (mod 24)

i 1 _(8-5V2+4V3-3Ve)n’

n? 288

n=1
n=11,13 (mod 24)

Theorem 5.11. Let k € IN. Then

S 1 S 1
D —= =] +KV7, y = J-KV7,
2k 2k
n=1 n n=1 n
n=1,3,9,19,25,27 (mod 28) n=5,11,13,15,17,23 (mod 28)

where
(D122~ 1)(7%K - 1)Bym?k
B 2272k(2k)!

(_1)](—17.[2]( 2k-1 <2k

K= 22k+272k+1(2k)! ;) r

J:

)22771’(12’(—1’ + 32’(—}’ _ 52](—?" + 92k—r _ 112’(—?’ _ 132k—r)Br‘

Proof. We have
28
n=1,3,9,19,25,27 (mod 28) — (—) =1

n
and )8
n=5,11,13,15,17,23 (mod 28) <7)=—1
so the congruences are discriminantly determined and we can apply Theorem 4.7 with d = A = 28 and
f=1. O

Taking k = 1 in Theorem 5.11 we obtain the following result.

Corollary 5.12. The following two evaluations hold:

X 1 2 X 1
LT 5V, L T 5ove.
nZ'l n2 49( ) n; n? 49( )
n=1,3,9,19,25,27 (mod 28) n=5,11,13,15,17,23 (mod 28)
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