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Abstract. Jacobi’s four squares theorem asserts that the number of representations of a posi-
tive integer n as a sum of four squares is 8 times the sum of the positive divisors of n, which
are not multiples of 4. A formula expressing an infinite product as an infinite sum is called
a product-to-sum identity. The product-to-sum identities in a single complex variable q from
which Jacobi’s four squares formula can be deduced by equating coefficients of qn (the “par-
ents”) are explored using some amazing identities of Ramanujan, and are shown to be unique
in a certain sense, thereby justifying the title of this article. The same is done for Legendre’s
four triangular numbers theorem. Finally, a general uniqueness result is proved.

1. INTRODUCTION. A formula expressing an infinite product as an infinite series
is called a product-to-sum identity. Many such identities are known. Perhaps the most
famous product-to-sum identity was given by Jacobi in 1829, in his monumental work
on elliptic functions, Fundamenta Nova Theoriae Functionum Ellipticarum, which is
reproduced in his Gesammelte Werke [6, Vol. I, pp. 49–239]; see page 234. Jacobi’s
formula, now known as Jacobi’s triple product identity, asserts that

∞∏
n=1

(1− q2n)(1+ aq2n−1)(1+ a−1q2n−1) =

∞∑
n=−∞

anqn2
(1)

for all complex numbers a and q satisfying a 6= 0 and |q| < 1. A wide variety of
interesting proofs of this identity appear in the literature. We refer the reader to the
easy-to-read proof given in [4, Theorem 352, pp. 282–283].

In this article we are particularly interested in the two product-to-sum identities
(valid for |q| < 1)

∞∏
n=1

(1− qn)−8(1− q2n)20(1− q4n)−8
= 1+

∞∑
n=1

(8σ(n)− 32σ(n/4))qn (2)

and

∞∏
n=1

(1− qn)8(1− q2n)−4
= 1+

∞∑
n=1

(−8σ(n)+ 48σ(n/2)− 64σ(n/4))qn, (3)

where σ(m) denotes the sum of the positive divisors of m if m is a positive integer, and
σ(m) = 0 if m is not a positive integer but is a rational number. In Section 2 we sketch
proofs of these two identities, by introducing the reader to some amazing identities
due to Ramanujan. In Section 3, we show that these two identities are the “parents”
of Jacobi’s arithmetic formula, for the number r4(n) of representations of a positive
integer n as a sum of four squares of integers (in the sense that Jacobi’s formula can
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be deduced from them). Jacobi’s formula is implicit in his work [6, Vol. I, p. 239] and
states that r4(n) is 8 times the sum of the positive divisors of n that are not multiples
of 4; that is,

r4(n) := card
{
(x1, x2, x3, x4) ∈ Z4

∣∣ n = x2
1 + x2

2 + x2
3 + x2

4

}
= 8

∑
d|n
4-d

d = 8σ(n)− 32σ(n/4), (4)

where, as usual, Z denotes the set of all integers. Since the only representation of 0
as the sum of four squares of integers is 0 = 02

+ 02
+ 02
+ 02, we set r4(0) = 1. An

elementary arithmetic proof of (4), in the spirit of Liouville, is given in [9] and [11,
p. 116]. Proofs in the spirit of Ramanujan are given in [2, pp. 59, 62]. A modern proof
using modular forms is given in [11, pp. 266–268]. In Section 4 we give an elementary
argument to show that, in a certain sense, there are no other formulas like (2) and (3),
so that the “parents” of Jacobi’s four squares theorem are unique; see Theorem 1. In
Section 5, from Jacobi’s triple product identity, we deduce a “sibling” formula to (2)
and (3), namely

q
∞∏

n=1

(1− q2n)−4(1− q4n)8 =

∞∑
n=1

(σ (n)− 3σ(n/2)+ 2σ(n/4))qn. (5)

In Section 6 we show that (5) is the “single parent” of Legendre’s arithmetic formula,
for the number t4(n) of representations of a nonnegative integer n as a sum of four tri-
angular numbers. Recall that a triangular number is a (necessarily nonnegative) integer
of the form 1

2 x(x + 1) for some nonnegative integer x . Legendre’s formula, namely

t4(n) := card

{
(x1, x2, x3, x4) ∈ N4

0

∣∣ n =
1

2
x1(x1 + 1)+

1

2
x2(x2 + 1)

+
1

2
x3(x3 + 1)+

1

2
x4(x4 + 1)

} (6)

=

∑
d|2n+1

d = σ(2n + 1),

where N0 denotes the set of nonnegative integers, appears in his book on elliptic func-
tions Traité des fonctions elliptiques [7, Vol. III, pp. 133–134]. A proof using modular
forms has been given by Ono, Robins, and Wahl [8, pp. 79–80]. Elementary arith-
metic proofs are given in [5, pp. 259–262] and [11, p. 209]. In Section 7 we prove, in
an elementary fashion, that there are no other formulas like (5), so that the “parent” of
Legendre’s four triangular numbers theorem is unique; see Theorem 2. In Section 8 we
show that there are no identities of a certain type similar to (2), (3) and (5), that is, there
are no further “siblings”; see Theorem 3. In Section 9 we put together the previous re-
sults to obtain a general uniqueness theorem (Theorem 4). Section 10 contains some
concluding remarks and problems, as well as some ideas for further investigation.

2. PROOFS OF PRODUCT-TO-SUM FORMULAS (2) AND (3). In [6, Vol. I,
p. 235] Jacobi introduced his famous theta functions. One of these, in the notation
of Whittaker and Watson’s classic text, A Course of Modern Analysis [10, p. 464], is
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defined for complex numbers z and q with |q| < 1 by

θ3(z, q) := 1+ 2
∞∑

n=1

qn2
cos 2nz.

On the other hand, Ramanujan studied the theta function defined by

f (a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2,

where a and b are complex numbers satisfying |ab| < 1; see, for example, [2, p. 6].
Our interest is in the theta function given by

ϕ(q) :=
∞∑

n=−∞

qn2
, (7)

which is a special case of Jacobi’s theta function θ3(z, q) as ϕ(q) = θ3(0, q) and a
special case of Ramanujan’s theta function f (a, b) as ϕ(q) = f (q, q). Both Jacobi
and Ramanujan determined the fundamental relations satisfied by ϕ(q), namely

ϕ(q)+ ϕ(−q) = 2ϕ(q4), (8)

ϕ2(q)+ ϕ2(−q) = 2ϕ2(q2), (9)

and
ϕ(q)ϕ(−q) = ϕ2(−q2). (10)

Taking a = 1 in Jacobi’s triple product identity (1), and noting that

∞∏
n=1

(1+ q2n−1) =

∞∏
n=1

(1+ q2n−1)(1+ q2n)

(1+ q2n)

=

∞∏
n=1

(1+ qn)

(1+ q2n)

=

∞∏
n=1

(1− q2n)/(1− qn)

(1− q4n)/(1− q2n)

=

∞∏
n=1

(1− q2n)2

(1− qn)(1− q4n)
,

we deduce from (1) and (7) that

∞∏
n=1

(1− q2n)5

(1− qn)2(1− q4n)2
=

∞∑
n=−∞

qn2
= ϕ(q). (11)

Formula (11) expresses ϕ(q) as an infinite product and ensures that ϕ(q) 6= 0 for
|q| < 1. Following Berndt [2, p. 120], it is convenient to introduce the notation

x = x(q) := 1−
ϕ4(−q)

ϕ4(q)
, z = z(q) := ϕ2(q). (12)
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Making use of the basic properties of ϕ(q) given in (8)–(10), we can determine how
x(q) and z(q) transform under the mapping q → q2. We find

x(q2) =

(
1− (1− x)1/2

1+ (1− x)1/2

)2

, and z(q2) =
1

2
(1+ (1− x)1/2)z. (13)

The second formula in (13) follows easily from (9) and (12) as

z(q2) = ϕ2(q2)

=
1

2
(ϕ2(q)+ ϕ2(−q))

=
1

2

(
1+

ϕ2(−q)

ϕ2(q)

)
ϕ2(q)

=
1

2
(1+ (1− x)1/2)z.

The first formula in (13) can be proved similarly. The transformation (13) is due to
Jacobi and is known as Jacobi’s duplication principle. Ramanujan was the first mathe-
matician to investigate the relationship between the theta function ϕ(q) and Eisenstein
series. We now describe this connection. The classical Eisenstein series E2k(q) is de-
fined for a positive integer k by the Lambert series

E2k(q) := 1−
4k

B2k

∞∑
m=1

m2k−1qm

1− qm
,

where B2k is the 2k-th Bernoulli number; see, for example, [2, p. 87]. When k = 1, we
have

E2(q) = 1− 24
∞∑

m=1

mqm

1− qm
= 1− 24

∞∑
n=1

σ(n)qn, (14)

as B2 =
1
6 . Ramanujan’s deep insight allowed him to express E2(q) in terms of the

theta function ϕ(q), namely

E2(q) = (1− 5x)z2
+ 12x(1− x)z

dz

dx
; (15)

see [2, p. 125]. Applying the duplication principle to (15), we obtain (after some cal-
culation)

E2(q
2) = (1− 2x)z2

+ 6x(1− x)z
dz

dx
; (16)

see [2, p. 125]. Applying the duplication principle again, this time to (16), we deduce

E2(q
4) =

(
1−

5

4
x

)
z2
+ 3x(1− x)z

dz

dx
; (17)

see [2, p. 128]. The reader interested in the details of these calculations should consult
[3, p. 60]. We are now ready to prove (2). We have
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∞∏
n=1

(1− qn)−8(1− q2n)20(1− q4n)−8

= ϕ4(q) (by (11))

= z2 (by (12))

=
4

3

(
(1−

5

4
x)z2
+ 3x(1− x)z

dz

dx

)
−

1

3

(
(1− 5x)z2

+ 12x(1− x)z
dz

dx

)
=

4

3
E2(q

4)−
1

3
E2(q) (by (15) and (17))

= 1+ 8
∞∑

n=1

σ(n)qn
− 32

∞∑
n=1

σ(n)q4n (by (14))

= 1+
∞∑

n=1

(8σ(n)− 32σ(n/4))qn,

which is (2).
The product-to-sum formula (3) can be proved in exactly the same way as (2). The

only difference is that, instead of working with ϕ(q), we use

ϕ(−q) =
∞∑

n=−∞

(−q)n
2
=

∞∏
n=1

(1− qn)2

(1− q2n)
, (18)

where the infinite product in (18) comes from taking a = −1 in Jacobi’s triple product
identity (1). However, it is easier just to map q → −q in (2). The relation (3) then
follows from (2) in view of the easily-proved relations

∞∏
n=1

(1− (−q)n) =
∞∏

n=1

(1− qn)−1(1− q2n)3(1− q4n)−1 (19)

and for a positive integer n

(−1)n(8σ(n)− 32σ(n/4)) = −8σ(n)+ 48σ(n/2)− 64σ(n/4). (20)

The “parents” of (4) are thus in a relationship.

3. DEDUCTION OF JACOBI’S FOUR SQUARES THEOREM FROM THE
PRODUCT-TO-SUM FORMULAS (2) AND (3). Jacobi’s four squares theorem
(equation (4)) follows from the product-to-sum identity (2) by equating coefficients of
qn , where n is a positive integer, as

1+
∞∑

n=1

r4(n)q
n
=

∞∑
n=0

r4(n)q
n
=

(
∞∑

n=−∞

qn2

)4

=

∞∏
n=1

(1− qn)−8(1− q2n)20(1− q4n)−8 (by (11))

= 1+
∞∑

n=1

(8σ(n)− 32σ(n/4))qn (by (2))
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so that

r4(n) = 8σ(n)− 32σ(n/4) = 8
∑
d|n
4-d

d. (21)

Equation (21) is the required formula (4). Similarly, Jacobi’s four squares theorem
follows from the product-to-sum identity (3) by equating coefficients of (−q)n , where
n is a positive integer, as

1+
∞∑

n=1

r4(n)(−q)n =
∞∑

n=0

r4(n)(−q)n =

(
∞∑

n=−∞

(−q)n
2

)4

=

∞∏
n=1

(1− qn)8(1− q2n)−4 (by (18))

= 1+
∞∑

n=1

(−8σ(n)+ 48σ(n/2)− 64σ(n/4))qn (by (3))

= 1+
∞∑

n=1

(8σ(n)− 32σ(n/4))(−q)n (by (20)).

4. PARENTS OF JACOBI’S FOUR SQUARES THEOREM ARE UNIQUE. The
natural question arises: “Are there any more product-to-sum identities like (2) and
(3)?” We show that, in a certain sense, there are no others. We prove that the “parents”
of Jacobi’s four squares theorem (formulas (2) and (3)) are unique in the sense that
there are no other product-to-sum formulas of the type

∞∏
n=1

(1− qn)a(1− q2n)b(1− q4n)c = 1+
∞∑

n=1

(xσ(n)+ yσ(n/2)+ zσ(n/4))qn,

for integers a, b, c, x, y, z with (a, b, c) 6= (0, 0, 0). We exclude (a, b, c) = (0, 0, 0)
as this possibility gives only the trivial solution (a, b, c, x, y, z) = (0, 0, 0, 0, 0, 0).
We prove the following.

Theorem 1. If a, b, c, x, y, z are integers with (a, b, c) 6= (0, 0, 0) such that

∞∏
n=1

(1− qn)a(1− q2n)b(1− q4n)c = 1+
∞∑

n=1

(xσ(n)+ yσ(n/2)+ zσ(n/4))qn (22)

holds, then

(a, b, c, x, y, z) = (−8, 20,−8, 8, 0,−32) or (8,−4, 0,−8, 48,−64).

Proof. Using MAPLE, we find that the left-hand side of (22) is

1− aq +

(
1

2
a2
−

3

2
a − b

)
q2
+

(
−

1

6
a3
+

3

2
a2
−

4

3
a + ab

)
q3

+

(
1

24
a4
−

3

4
a3
+

59

24
a2
−

7

4
a −

1

2
a2b +

3

2
ab +

1

2
b2
−

3

2
b − c

)
q4
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+

(
−

1

120
a5
+

1

4
a4
−

43

24
a3
+

15

4
a2
−

6

5
a +

1

6
a3b −

3

2
a2b

+
17

6
ab −

1

2
ab2
+ ac

)
q5

+

(
1

720
a6
−

1

16
a5
+

113

144
a4
−

55

16
a3
+

1697

360
a2
− 2a −

1

24
a4b

+
3

4
a3b −

77

24
a2b + 4ab +

1

4
a2b2
−

3

4
ab2
−

1

6
b3
+

3

2
b2

−
4

3
b −

1

2
a2c +

3

2
ac + bc

)
q6

+

(
−

1

5040
a7
+

1

80
a6
−

35

144
a5
+

89

48
a4
−

2021

360
a3
+

92

15
a2
−

8

7
a +

1

120
a5b

−
1

4
a4b +

49

24
a3b − 6a2b +

68

15
ab −

1

12
a3b2
+

3

4
a2b2
−

13

6
ab2
+

1

6
ab3

+
1

6
a3c −

3

2
a2c +

4

3
ac − abc

)
q7
+ · · · .

The right-hand side of (22) is

1+ xq + (3x + y)q2
+ 4xq3

+ (7x + 3y + z)q4
+ 6xq5

+ (12x + 4y)q6
+ 8xq7

+ · · · .

Equating coefficients of q , q3, q5, and q7, we obtain

− a = x, (23)

−
1

6
a3
+

3

2
a2
−

4

3
a + ab = 4x, (24)

−
1

120
a5
+

1

4
a4
−

43

24
a3
+

15

4
a2
−

6

5
a+

1

6
a3b−

3

2
a2b+

17

6
ab−

1

2
ab2
+ ac = 6x, (25)

and

−
1

5040
a7
+

1

80
a6
−

35

144
a5
+

89

48
a4
−

2021

360
a3
+

92

15
a2
−

8

7
a +

1

120
a5b

−
1

4
a4b +

49

24
a3b − 6a2b +

68

15
ab −

1

12
a3b2
+

3

4
a2b2
−

13

6
ab2
+

1

6
ab3

+
1

6
a3c −

3

2
a2c +

4

3
ac − abc = 8x . (26)

Assume now that a 6= 0. The possibility that a = 0 will be treated at the end of the
proof. From (23) and (24), we deduce that

b =
1

6
a2
−

3

2
a −

8

3
. (27)

From (23), (25), and (27), we obtain

c = −
1

180
a4
+

7

36
a2
+

1

2
a +

284

45
. (28)
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Using (23), (27), and (28) in (26), we deduce that

−
18584

2835
a −

64

135
a3
−

1

2835
a7
+

4

135
a5
= −8a

so that

a7
− 84a5

+ 1344a3
− 4096a = 0.

That is,

a(a − 2)(a + 2)(a − 4)(a + 4)(a − 8)(a + 8) = 0.

Hence, as we are assuming here that a 6= 0, we have

a = 2,−2, 4,−4, 8, or − 8. (29)

Equating coefficients of q2 in (22), we obtain

1

2
a2
−

3

2
a − b = 3x + y.

Appealing to (23) and (27), we deduce that

y =
1

3
a2
+ 3a +

8

3
. (30)

Equating coefficients of q4 in (22), we obtain

1

24
a4
−

3

4
a3
+

59

24
a2
−

7

4
a −

1

2
a2b +

3

2
ab +

1

2
b2
−

3

2
b − c = 7x + 3y + z.

Appealing to (23), (27), (28), and (30), we have

z = −
1

45
a4
+

7

9
a2
− 2a −

304

45
. (31)

From (29), (27), (28), (23), (30), and (31), we deduce that the only possible values of
(a, b, c, x, y, z) are

(a, b, c, x, y, z) = (2,−5, 8,−2, 10,−8), (−2, 1, 6, 2,−2, 0),

(4,−6, 10,−4, 20,−8), (−4, 6, 6, 4,−4, 8),

(8,−4, 0,−8, 48,−64), (−8, 20,−8, 8, 0,−32).

For each of these six possibilities we determine the coefficients of q8 in

X :=
∞∏

n=1

(1− qn)a(1− q2n)b(1− q4n)c
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and

Y := 1+
∞∑

n=1

(xσ(n)+ yσ(n/2)+ zσ(n/4))qn.

We obtain the following table.

(a, b, c, x, y, z) Coefficient of q8 in X Coefficient of q8 in Y

(2,−5, 8,−2, 10,−8) 25 16
(−2, 1, 6, 2,−2, 0) 25 16

(4,−6, 10,−4, 20,−8) 20 56
(−4, 6, 6, 4,−4, 8) 20 56

(8,−4, 0,−8, 48,−64) 24 24
(−8, 20,−8, 8, 0,−32) 24 24

Thus (a, b, c, x, y, z) = (8,−4, 0,−8, 48,−64) and (−8, 20,−8, 8, 0,−32) are
the only two viable possibilities, because they are the product-to-sum formulae (3)
and (2) respectively proved in Section 2.

We now turn to the case a = 0. Assume that there is a formula of the type (22) with
a = 0, that is,

∞∏
n=1

(1− q2n)b(1− q4n)c = 1+
∞∑

n=1

(xσ(n)+ yσ(n/2)+ zσ(n/4))qn.

Equating the coefficients of q on both sides, we deduce that x = 0, so that

∞∏
n=1

(1− q2n)b(1− q4n)c = 1+
∞∑

n=1

(yσ(n/2)+ zσ(n/4))qn

= 1+
∞∑

n=1

(yσ(n)+ zσ(n/2))q2n.

Replacing q2 by q , we deduce that

∞∏
n=1

(1− qn)b(1− q2n)c = 1+
∞∑

n=1

(yσ(n)+ zσ(n/2))qn.

If b 6= 0, then this falls under the case treated at the outset and we see that there are no
solutions. If b = 0, then (as (a, b, c) 6= (0, 0, 0)) we have c 6= 0 and

∞∏
n=1

(1− q2n)c = 1+
∞∑

n=1

(yσ(n)+ zσ(n/2))qn.

Equating coefficients of q , we deduce that y = 0, so

∞∏
n=1

(1− q2n)c = 1+
∞∑

n=1

zσ(n/2)qn
= 1+ z

∞∑
n=1

σ(n)q2n.
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Replacing q2 by q , we obtain

∞∏
n=1

(1− qn)c = 1+ z
∞∑

n=1

σ(n)qn.

As c 6= 0, this again is covered by the first treated case and there are no solutions.
This completes the proof of Theorem 1.

5. A SIBLING TO (2) AND (3). Replacing both q and a by q1/2 in Jacobi’s triple
product identity (1), we obtain

∞∏
n=1

(1− qn)(1+ qn)(1+ qn−1) =

∞∑
n=−∞

qn(n+1)/2. (32)

Since

∞∏
n=1

(1+ qn−1) = 2
∞∏

n=1

(1+ qn),

∞∏
n=1

(1+ qn) =

∞∏
n=1

(1− q2n)

(1− qn)
,

and

∞∑
n=−∞

qn(n+1)/2
= 2

∞∑
n=0

qn(n+1)/2,

we deduce from (32) that

∞∏
n=1

(1− q2n)2

(1− qn)
=

∞∑
n=0

qn(n+1)/2. (33)

Replacing q by q8 in (33), and then completing the square in the exponent of q , we
obtain

q
∞∏

n=1

(1− q16n)2

(1− q8n)
=

∞∑
n=0

q (2n+1)2
=

1

2

∞∑
n=−∞

q (2n+1)2 . (34)

Now, by (7) and (8), we have

∞∑
n=−∞

q (2n+1)2
=

∞∑
n=−∞

qn2
−

∞∑
n=−∞

q (2n)2
= ϕ(q)− ϕ(q4) =

1

2
(ϕ(q)− ϕ(−q))

so that

ϕ(q)− ϕ(−q) = 4q
∞∏

n=1

(1− q16n)2

(1− q8n)
. (35)

Next, by (8) and (11), we have

ϕ(q)+ ϕ(−q) = 2ϕ(q4) = 2
∞∏

n=1

(1− q8n)5

(1− q4n)2(1− q16n)2
(36)
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and, by (9) and (11),

ϕ2(q)+ ϕ2(−q) = 2ϕ2(q2) = 2
∞∏

n=1

(1− q4n)10

(1− q2n)4(1− q8n)4
. (37)

Multiplying (35), (36), and (37) together, we obtain

ϕ4(q)− ϕ4(−q) = 16q
∞∏

n=1

(1− q4n)8

(1− q2n)4
. (38)

From (12) and (38) we have

xz2
=

(
1−

ϕ4(−q)

ϕ4(q)

)
ϕ4(q) = ϕ4(q)− ϕ4(−q) = 16q

∞∏
n=1

(1− q4n)8

(1− q2n)4
.

Now, by (15), (16), (17), and (14), we have

xz2
= −

2

3

(
(1− 5x)z2

+ 12x(1− x)z
dz

dx

)
+ 2

(
(1− 2x)z2

+ 6x(1− x)z
dz

dx

)
−

4

3

(
(1−

5

4
x)z2
+ 3x(1− x)z

dz

dx

)
= −

2

3
E2(q)+ 2E2(q

2)−
4

3
E2(q

4)

= 16
∞∑

n=1

(σ (n)− 3σ(n/2)+ 2σ(n/4))qn

so that

q
∞∏

n=1

(1− q2n)−4(1− q4n)8 =

∞∑
n=1

(σ (n)− 3σ(n/2)+ 2σ(n/4))qn,

which is formula (5). Thus formula (5) is the “uncle” of Jacobi’s four squares theorem.
It is very similar to both the “parents” of Jacobi’s four squares theorem (identities (2)
and (3)) except that it has a “q” on the left-hand side and no constant term on the right-
hand side. Perhaps it too is a “parent” of an arithmetic formula. Indeed, we show in
Section 6 that it is the “parent” of Legendre’s four triangular numbers theorem (identity
(6)). Formula (5) is a “single parent” of Legendre’s four triangular numbers theorem,
as mapping q to −q in (5) does not yield a new formula as

σ(n)− 3σ(n/2)+ 2σ(n/4) = 0 for n even.

6. DEDUCTION OF LEGENDRE’S FOUR TRIANGULAR NUMBERS THE-
OREM FROM FORMULA (5). We prove Legendre’s four triangular numbers the-
orem (identity (6)) by deducing it from the product-to-series formula (5), and so (5) is
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the “parent” of (6). We have by (33) and (5) that

∞∑
n=0

t4(n)q
2n+1
= q

∞∑
n=0

t4(n)q
2n

= q

(
∞∑

x=0

(q2)x(x+1)/2

)4

= q
∞∏

n=1

(1− q4n)8

(1− q2n)4

=

∞∑
n=1

(σ (n)− 3σ(n/2)+ 2σ(n/4))qn

=

∞∑
n=1

n odd

σ(n)qn

=

∞∑
n=0

σ(2n + 1)q2n+1.

Equating coefficients of q2n+1, we obtain

t4(n) = σ(2n + 1), n = 0, 1, 2, . . . ,

which is (6).

7. THE PARENT OF LEGENDRE’S FOUR TRIANGULAR NUMBERS THE-
OREM IS UNIQUE. We show that the “parent” of Legendre’s four triangular num-
bers theorem (identity (5)) is unique in the sense that there are no other product-to-sum
formulas of the type

q
∞∏

n=1

(1− qn)a(1− q2n)b(1− q4n)c =

∞∑
n=1

(xσ(n)+ yσ(n/2)+ zσ(n/4))qn

for integers a, b, c, x, y, z. The proof is similar to that of Theorem 1, so we abbreviate
the details.

Theorem 2. If a, b, c, x, y, z are integers such that

q
∞∏

n=1

(1− qn)a(1− q2n)b(1− q4n)c =

∞∑
n=1

(xσ(n)+ yσ(n/2)+ zσ(n/4))qn (39)

holds, then

(a, b, c, x, y, z) = (0,−4, 8, 1,−3, 2).

Proof. Using MAPLE, we find that the left hand side of (39) is

q − aq2
+

(
1

2
a2
−

3

2
a − b

)
q3
+

(
−

1

6
a3
+

3

2
a2
−

4

3
a + ab

)
q4
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+

(
1

24
a4
−

3

4
a3
+

59

24
a2
−

7

4
a −

1

2
a2b +

3

2
ab +

1

2
b2
−

3

2
b − c

)
q5

+

(
−

1

120
a5
+

1

4
a4
−

43

24
a3
+

15

4
a2
−

6

5
a +

1

6
a3b −

3

2
a2b

+
17

6
ab −

1

2
ab2
+ ac

)
q6

+

(
1

720
a6
−

1

16
a5
+

113

144
a4
−

55

16
a3
+

1697

360
a2
−2a−

1

24
a4b+

3

4
a3b−

77

24
a2b

+ 4ab +
1

4
a2b2
−

3

4
ab2
−

1

6
b3
+

3

2
b2
−

4

3
b −

1

2
a2c +

3

2
ac + bc

)
q7
+ · · · .

The right-hand side of (39) is

xq + (3x + y)q2
+ 4xq3

+ (7x + 3y + z)q4
+ 6xq5

+ (12x + 4y)q6
+ 8xq7

+ · · · .

Equating coefficients of q, q3, and q5, we obtain

x = 1, (40)

b =
1

2
a2
−

3

2
a − 4, (41)

and

c = −
1

12
a4
+

7

12
a2
+

1

2
a + 8. (42)

Equating coefficients of q7, we obtain the equation a6
− 20a4

+ 64a2
= 0 so that

a = 0, 2,−2, 4, or − 4. (43)

From the coefficients of q2 we deduce

y = −a − 3. (44)

From the coefficients of q4 we obtain

z =
1

3
a3
−

7

3
a + 2. (45)

Hence, we have the following possibilities:

(a, b, c, x, y, z) = (0,−4, 8, 1,−3, 2), (2,−5, 10, 1,−5, 0), (46)

(−2, 1, 8, 1,−1, 4), (4,−2,−2, 1,−7,−14),

(−4, 10,−6, 1, 1,−10).

For each of these five possibilities we determine the coefficients of q8 in

U := q
∞∏

n=1

(1− qn)a(1− q2n)b(1− q4n)c
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and

V :=
∞∑

n=1

(xσ(n)+ yσ(n/2)+ zσ(n/4))qn.

We obtain the folowing table.

(a, b, c, x, y, z) Coefficient of q8 in U Coefficient of q8 in V

(0,−4, 8, 1,−3, 2) 0 0
(2,−5, 10, 1,−5, 0) 0 −20
(−2, 1, 8, 1,−1, 4) 0 20
(4,−2,−2, 1,−7, 14) 0 8
(−4, 10,−6, 1, 1,−10) 0 −8

Thus (a, b, c, x, y, z) = (0,−4, 8, 1,−3, 2) is the only viable possibility. It is
valid, as it is the identity (5), which was proved in Section 5.

This completes the proof of Theorem 2.

8. A NON-EXISTENT IDENTITY. We now seek identities of the form (39), with
the q on the left-hand side replaced by qr with r ≥ 2.

Theorem 3. There are no integers r, a, b, c, x, y, z with r ≥ 2 such that

qr
∞∏

n=1

(1− qn)a(1− q2n)b(1− q4n)c =

∞∑
n=1

(xσ(n)+ yσ(n/2)+ zσ(n/4))qn. (47)

Proof. Suppose there exist integers r, a, b, c, x, y, and z with r ≥ 2 such that an iden-
tity of the type (47) exists. Then we have

xq + (3x + y)q2
+ 4xq3

+ (7x + 3y + z)q4
+ · · ·

=

∞∑
n=1

(xσ(n)+ yσ(n/2)+ zσ(n/4))qn

= qr
∞∏

n=1

(1− qn)a(1− q2n)b(1− q4n)c

= qr
− aqr+1

+

(
1

2
a2
−

3

2
a − b

)
qr+2
+ · · · .

Thus, if r ≥ 5, we must have

x = 3x + y = 4x = 7x + 3y + z = 0

so that

x = y = z = 0.

Hence, the right-hand side of (47) is 0, a contradiction. Thus we have only to examine
r = 2, 3, and 4.
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If r = 2, then we have

q2
− aq3

+ · · · = xq + (3x + y)q2
+ 4xq3

+ · · · ,

so that

x = 0, y = 1, a = 0.

Thus (47) takes the form

q2
∞∏

n=1

(1− q2n)b(1− q4n)c =

∞∑
n=1

(σ (n/2)+ zσ(n/4))qn
=

∞∑
n=1

(σ (n)+ zσ(n/2))q2n.

Replacing q2 by q , we obtain

q
∞∏

n=1

(1− qn)b(1− q2n)c =

∞∑
n=1

(σ (n)+ zσ(n/2))qn.

By Theorem 2 we see that this cannot occur.
If r = 3, then we have

q3
− · · · = xq + (3x + y)q2

+ 4xq3
+ · · ·

so that

x = 0, y = 0, 4x = 1,

which is clearly impossible.
If r = 4, then we have

q4
−aq5

+

(
1

2
a2
−

3

2
a−b

)
q6
+· · · = xq+(3x+y)q2

+4xq3
+(7x+3y+z)q4

+ 6xq5
+ (12x + 4y)q6

+ · · ·

so that

x = 0, y = 0, z = 1, a = 0, b = 0.

Thus (47) takes the form

q4
∞∏

n=1

(1− q4n)c =

∞∑
n=1

σ(n/4)qn
=

∞∑
n=1

σ(n)q4n.

Replacing q4 by q , we deduce

q
∞∏

n=1

(1− qn)c =

∞∑
n=1

σ(n)qn.

By Theorem 2 this cannot occur.
This completes the proof of Theorem 3.
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9. A UNIQUENESS THEOREM. Putting together Theorems 1, 2, and 3, we obtain
the following uniqueness theorem.

Theorem 4. Let r, u, a, b, c, x, y, and z be integers with r ≥ 0 such that

qr
∞∏

n=1

(1− qn)a(1− q2n)b(1− q4n)c = u +
∞∑

n=1

(xσ(n)+ yσ(n/2)+ zσ(n/4))qn.

Then

(r, u, a, b, c, x, y, z) = (0, 1, 0, 0, 0, 0, 0, 0), (0, 1,−8, 20,−8, 8, 0,−32),

(0, 1, 8,−4, 0,−8, 48,−64),

or (1, 0, 0,−4, 8, 1,−3, 2).

Proof. This theorem follows immediately from Theorems 1, 2, and 3, on noting that
we have included the trivial case (a, b, c) = (0, 0, 0), which was excluded in Theorem
1, and that putting q = 0 in the identity gives u = 1 if r = 0 and u = 0 if r ≥ 1.

This completes the proof of Theorem 4.

10. CONCLUDING REMARKS. The integers 1, 2, 4 occurring in Theorem 4 are
precisely the (positive) divisors of 4. If they are replaced by the divisors of another
positive integer h, then there may well be many product-to-sum formulas of the type

qr
∞∏

n=1

∏
d|h

(1− qdn)ad = u +
∞∑

n=1

∑
d|h

bdσ(n/d)q
n (48)

with integers r(≥ 0), u, ad , and bd . The author has found 126 such formulas when
h = 12 (and there could be more!); see [12]. Two examples are

∞∏
n=1

(1− qn)−2(1− q2n)2(1− q3n)−2(1− q4n)4(1− q6n)6(1− q12n)−4

= 1+
∞∑

n=1

(2σ(n)− 3σ(n/2)+ 4σ(n/4)+ 9σ(n/6)− 36σ(n/12))qn

and

q3
∞∏

n=1

(1− qn)(1− q2n)−1(1− q3n)−3(1− q4n)−2(1− q6n)3(1− q12n)6

=

∞∑
n=1

(σ (n/3)− σ(n/4)− σ(n/6)+ σ(n/12))qn.

It appears to be quite complicated to use the elementary method of this article to deter-
mine the number of such product-to-sum formulas of the type (48), even with h = 12.
Since the product

∏
∞

n=1(1 − qn) is intimately related to the Dedekind eta function,
which is a modular form, and certain linear combinations of Eisenstein series are also
modular forms, it seems likely that the theory of modular forms could be used to de-
termine the number of such identities of the type (48).
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We leave it to the reader to investigate the parents of Jacobi’s two, six, and eight
squares theorems [2, pp. 56, 63, 67].
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