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Some Infinite Products of Ramanujan Type

Ayşe Alaca, Şaban Alaca, and Kenneth S. Williams

Abstract. In his “lost” notebook, Ramanujan stated two results, which are equivalent to the identities
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We give several more identities of this type.

1 Introduction

A nonsquare integer ∆ is called a discriminant if ∆ ≡ 0 or 1 (mod 4). A discrim-
inant ∆ is said to be fundamental if the largest integer m such that ∆/m2 is also a

discriminant is m = 1. The Legendre–Jacobi–Kronecker symbol corresponding to

the discriminant ∆ is denoted by
(

∆

∗

)

. Throughout this paper q denotes a complex
variable satisfying |q| < 1. The expansions of the infinite products
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are due to Ramanujan [18, (1.51) and (1.52), p. 354]. Proofs have been given by
Bailey [4, 5], Darling [9], Farkas and Kra [11], and Mordell [16]. In this note we give

several more infinite products similar to the left-hand sides of (1.1) and (1.2), whose

power series expansions are of the form
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where a is an integer, b ∈ {0, 1, 2}, and ∆ is a fundamental discriminant, see Theo-
rems 2.2–2.5, 3.2–3.7, and 4.2–4.6. We note that when b = 0, we have

∑

d|n

(

∆

d

)

db
=

∑

d|n

(

∆

n/d

)

db.

To do this we make use of identities due to Carlitz [8], Bailey [5], and Andrews, Lewis,

and Liu [3, Theorem 1] in conjunction with the classical Gauss sum
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where ω|∆| = e2πi/|∆|, which is valid for any positive integer d and any fundamental

discriminant ∆ [15, Theorem 215, p. 221]. The number of terms in the sum on
the left hand side of (1.4) is φ(|∆|), where φ is Euler’s phi function. We recall that

φ(n) = 2 if and only if n = 3, 4, 6, φ(n) = 4 if and only if n = 5, 8, 10, 12, and

φ(n) = 8 if and only if n = 15, 16, 20, 24, 30.

2 Carlitz’s Formula

The following formula is due to Carlitz [8, (1.3), p. 168], who derived it from a well-

known formula in the theory of elliptic functions for the derivative of the Weierstrass
℘ -function. An elementary proof has been given by Dobbie [10].

Theorem 2.1 Let a be a complex number such that a 6= 0, a 6= −1, and a 6= qn for

any integer n. Then
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We wish to choose a to be a |∆|-th root of unity in such a way that ad − a−d is a

Gaussian sum (1.4) for a suitable fundamental discriminant ∆. Clearly we must have
φ(|∆|) = 2 so that ∆ = −3 or −4, as 3, 4, 6, and −6 are not discriminants.

With ∆ = −3, we can choose a = ω3 so that by (1.4)
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−3, Theorem 2.1 gives the following identity, see [8, (3.1), p. 170].

Theorem 2.2

∞
∏

n=1

(1 − qn)9

(1 − q3n)3
= 1 − 9

∞
∑

n=1

(

∑

d|n

( −3

d

)

d2
)

qn.



Some Infinite Products of Ramanujan Type 483

Guided by this choice, if we replace q by q3 in Theorem 2.1 and take a = q, we
obtain the following result after a little simplification, see [8, (2.1), p. 169 (xn + x−n

should be replaced by xn − x−n)].
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With ∆ = −4 we can choose a = ω4 so that by (1.4)
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As (1−a)3
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=
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−4, Theorem 2.1 gives the following result, see [8, (4.3), p. 170].

Theorem 2.4

∞
∏

n=1

(1 − qn)4(1 − q2n)6

(1 − q4n)4
= 1 − 4

∞
∑

n=1

(

∑

d|n

( −4

d

)

d2
)

qn.

Again, guided by this choice, we replace q by q4 in Theorem 2.1 and take a = q.
After a little simplification, we obtain the following result, see [8, (4.1), p. 170].
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3 Bailey’s Formula

The following formula is implicit in the work of Bailey [5, (4) and (5)], who obtained
it from a formula for the difference of two values of the Weierstrass ℘ -function. An

elementary proof has been given by Dobbie [10].

Theorem 3.1 Let a and b be complex numbers such that a 6= 0, b 6= 0, a 6= b, ab 6= 1,

a 6= qn for any integer n and b 6= qn for any integer n. Then
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Carlitz [8] noted that if we divide ad + a−d − bd − b−d by a − b in Theorem 3.1

and let b → a, we obtain Theorem 2.1.
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We wish to choose a and b to be |∆|-th roots of unity so that ad + a−d − bd −
b−d is a Gauss sum for an appropriate fundamental discriminant ∆. We must have

φ(|∆|) = 4 so that ∆ = 5, 8, 12, or −8 (as −5, 10, and −10 are not discriminants
and −12 is not a fundamental discriminant).

With ∆ = 5 we can choose a = ω5 and b = ω2
5 so that by (1.4)
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Theorem 3.2
∞
∏

n=1

(1 − qn)5

(1 − q5n)
= 1 − 5

∞
∑

n=1

(

∑

d|n

( 5

d

)

d
)

qn.

Guided by this choice, we replace q by q5 and choose a = q and b = q2 in Theo-
rem 3.1. After a little simplification we obtain Ramanujan’s identity (1.2).
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With ∆ = 8, we can choose a = ω8 and b = ω3
8 so that by (1.4)
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Then, as
(1 − a)2(1 − b)2

(a − b)(1 − ab)
= − 1√

2
,

Theorem 3.1 gives the following result, see ([8, (6.2), p. 172] and [17, (19 ′), p. 8

(with an obvious misprint corrected)].
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Guided by this choice, we replace q by q8 and take a = q and b = q3 in Theo-

rem 3.1. After a little simplification we obtain the following identity.
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With ∆ = 12, we can choose a = ω12 and b = ω5
12 so that
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Theorem 3.1 gives the following result, which was not given in [8].
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Again, guided by the above choice, we replace q by q12 and take a = q and b = q5

in Theorem 3.1. After some simplification we obtain the following identity.
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We show that Theorem 3.6 also follows from a classical identity due to Petr [17]
and a recent identity of the authors [2]. The authors proved the following result in

[2], where N0 denotes the set of nonnegative integers.

Theorem 3.8 Suppose that a(k1, k2, k3, k4, k5) ((k1, k2, k3, k4, k5) ∈ N
5
0) are complex

numbers (not all zero and nonzero for only finitely many (k1, k2, k3, k4, k5) ∈ N
5
0 ) such

that

∑
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Choosing in Theorem 3.8

a(0, 0, 0, 0, 0) = 3, a(0, 0, 0, 1, 0) = 1, a(0, 0, 0, 0, 1) = −2,

and a(k1, k2, k3, k4, k5) = 0, otherwise, we obtain, after a short calculation using

Jacobi’s identity
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and Theorem 3.6 follows. Theorem 3.7 follows in a similar way from [17, (30), p. 15].
Petr’s work also gives
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in terms of ϕ(q), see [1, Section 3].

Finally, with ∆ = −8, it is easy to check that no choice of a and b as |∆|-th roots

of unity makes ad + a−d − bd − b−d into a Gauss sum.

4 The Identity of Andrews, Lewis, and Liu

The following identity was proved recently by Andrews, Lewis, and Liu [3, Theo-
rem 1].

Theorem 4.1 Let a, b, and c be complex numbers such that a 6= 0, b 6= 0, c 6= 0,

ab 6= 1, bc 6= 1, ca 6= 1, a 6= qn for any integer n, b 6= qn for any integer n, c 6= qn for

any integer n, and abc 6= qn for any integer n. Then
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∞
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Andrews, Lewis, and Liu [3, Theorems 2 and 3] used their theorem to reprove
classical theorems of Jacobi, Dirichlet, Lorenz, and Ramanujan in a uniform man-

ner. They did not deduce any new identities from their result. We deduce three new

identities from Theorem 4.1, see Theorems 4.2, 4.3, and 4.4.

Andrews, Lewis, and Liu [3, Lemma 4] noted that the limiting case c → 1/a of
their theorem is Bailey’s formula (Theorem 3.1). As both Bailey’s formula and Car-

litz’s formula can be obtained from identities involving the Weierstrass ℘ -function,

it would be interesting to know if there is a property of the ℘ -function from which
the identity of Andrews, Lewis, and Liu can be deduced.

We wish to choose a, b, and c to be |∆|-th roots of unity so that

(4.1) ad − a−d + bd − b−d + cd − c−d − (abc)d + (abc)−d

is a Gauss sum for an appropriate fundamental discriminant ∆. We must have

φ(|∆|) = 8 so that ∆ = −15,−20,−24, or 24 as −30, 15, 16, and 30 are not dis-

criminants and −16 and 20 are not fundamental discriminants.

With ∆ = −15, we can choose a = ω15, b = ω2
15 and c = ω4

15 so that abc = ω7
15

and by (1.4) we have

ad − a−d + bd − b−d + cd − c−d − (abc)d + (abc)−d

=
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)
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)
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=
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d

)√
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Then, as
(1 − a)(1 − b)(1 − c)(1 − abc)

(1 − ab)(1 − bc)(1 − ca)
=

1√
−15

,

we obtain the following result from Theorem 4.1.
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Theorem 4.2
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With ∆ = −20, we can choose a = ω20, b = ω3
20, and c = ω7

20 so that abc = ω11
20 ,

and by (1.3) we have
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d
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As
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=
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,

we obtain the following result from Theorem 4.1.

Theorem 4.3

∞
∏

n=1

(1 − q2n)(1 − q4n)(1 − q5n)(1 − q10n)

(1 − qn)(1 − q20n)
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(

∑
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d
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With ∆ = −24, we can choose a = ω24, b = ω5
24, and c = ω7

24 so that abc = ω13
24

and by (1.3) we have

ad − a−d + bd − b−d + cd − c−d − (abc)d + (abc)−d

=
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1

)
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( −24

5
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7
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+
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13

)
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24 +
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)
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)
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24 +
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)
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=

( −24

d

)√
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As
(1 − a)(1 − b)(1 − c)(1 − abc)

(1 − ab)(1 − bc)(1 − ca)
=

1√
−24

,

we obtain the following identity from Theorem 4.1.

Theorem 4.4

∞
∏

n=1

(1 − q2n)(1 − q3n)(1 − q8n)(1 − q12n)

(1 − qn)(1 − q24n)
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∞
∑
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(

∑

d|n

( −24

d
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qn.
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We note that for ∆ = 24 there are no values of a, b, and c as 24-th roots of unity
which make ad − a−d + bd − b−d + cd − c−d − (abc)d + (abc)−d a Gauss sum.

By allowing equalities between a, b, and c, it is possible to make (4.1) a multiple of
a Gauss sum for certain fundamental discriminants ∆. This occurs for ∆ = −4 and

∆ = −8.

With ∆ = −4, we can choose a = b = c = ω4 so that abc = ω3
4 = ω−1

4 = a−1.
Then, by (1.4), we have

ad − a−d + bd − b−d + cd − c−d − (abc)d + (abc)−d
= 4(ad − a−d)

= 4(ωd
4 − ω3d

4 ) = 4
(( −4

1

)

ωd
4 +

( −4

3

)

ω3d
4

)

= 4
( −4

d

)√
−4.

Then, as
(1 − a)(1 − b)(1 − c)(1 − abc)

(1 − ab)(1 − bc)(1 − ca)
=

−i

2
,

we obtain the following result from Theorem 4.1.

Theorem 4.5

∞
∏

n=1

(1 − q2n)10

(1 − qn)4(1 − q4n)4
= 1 + 4

∞
∑

n=1

(

∑

d|n

( −4

d

))

qn.

By (3.1), the left‘hand side of Theorem 4.5 is ϕ2(q). Thus Theorem 4.5 gives the

well-known Lambert series expansion

ϕ2(q) = 1 + 4

∞
∑

n=1

( −4

n

) qn

1 − qn
,

see for example [6, (3.2.8), p. 58].

With ∆ = −8, we can choose a = b = ω8 and c = ω3
8 so that abc = ω5

8 = ω−3
8 =

c−1. Then, by (1.4), we have

ad − a−d + bd − b−d + cd − c−d − (abc)d + (abc)−d

= 2(ad + cd − c−d − a−d)

= 2(ωd
8 + ω3d

8 − ω5d
8 − ω7d

8 )

= 2
(( −8

1

)

ωd
8 +

( −8

3

)

ω3d
8 +

( −8

5

)

ω5d
8 +

( −8

7

)

ω7d
8

)

= 2
( −8

d

)√
−8.

Then, as
(1 − a)(1 − b)(1 − c)(1 − abc)

(1 − ab)(1 − bc)(1 − ca)
= −1

4
i
√

2,

we obtain the following result from Theorem 4.1.
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Theorem 4.6

∞
∏

n=1

(1 − q2n)3(1 − q4n)3

(1 − qn)2(1 − q8n)2
= 1 + 2

∞
∑

n=1

(

∑

d|n

( −8

d

))

qn.

By (3.1), the left-hand side of Theorem 4.6 is ϕ(q)ϕ(q2). Thus Theorem 4.6 gives

the well-known Lambert series expansion

ϕ(q)ϕ(q2) = 1 + 2

∞
∑

n=1

( −8

n

) qn

1 − qn
,

see for example [6, Theorem 3.7.2, p. 73].

We close this section by relating Theorems 4.2, 4.3, and 4.4 to binary quadratic

forms. Suppose D < 0 is a fundamental discriminant. Let

A = {a1x2 + b1xy + c1 y2, . . . , ahx2 + bhxy + ch y2}

be a representative set of inequivalent, primitive, integral, positive-definite, binary
quadratic forms of discriminant D. The number of representations of n ∈ N by the

forms in the set A is given by

w(D)
∑

d|n

( D

d

)

,

where w(D) = 6, 4, or 2, according as D = −3, D = −4, or D < −4, respectively,
see for example [13, p. 294] or [14]. Representative sets of forms for D = −15,−20,

and −24 are {x2 + xy + 4y2, 2x2 + xy + 2y2}, {x2 + 5y2, 2x2 + 2xy + 3y2}, and

{x2 + 6y2, 2x2 + 3y2}, respectively. Theorems 4.2, 4.3, and 4.4 then give the identities
of our final theorem.

Theorem 4.7

∞
∑

x,y=−∞

(qx2+xy+4y2

+ q2x2+xy+2y2

) = 2

∞
∏

n=1

(1 − q3n)
2
(1 − q5n)

2

(1 − qn)(1 − q15n)
,

∞
∑

x,y=−∞

(qx2+5y2

+ q2x2+2xy+3y2

) = 2

∞
∏

n=1

(1 − q2n)(1 − q4n)(1 − q5n)(1 − q10n)

(1 − qn)(1 − q20n)
,

∞
∑

x,y=−∞

(qx2+6y2

+ q2x2+3y2

) = 2

∞
∏

n=1

(1 − q2n)(1 − q3n)(1 − q8n)(1 − q12n)

(1 − qn)(1 − q24n)
.

The left-hand side of the third identity in Theorem 4.7 is ϕ(q)ϕ(q6) + ϕ(q2)ϕ(q3).
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Appealing to (3.1), we obtain the identity

∞
∏

n=1

(1 − q2n)5(1 − q12n)5

(1 − qn)2(1 − q4n)2(1 − q6n)2(1 − q24n)2

+

∞
∏

n=1

(1 − q4n)5(1 − q6n)5

(1 − q2n)2(1 − q3n)2(1 − q8n)2(1 − q12n)2

= 2

∞
∏

n=1

(1 − q2n)(1 − q3n)(1 − q8n)(1 − q12n)

(1 − qn)(1 − q24n)
.

5 Conclusion

The negative fundamental discriminants are −3, −4, −7, −8, . . . . In view of Theo-

rems 2.2 and 2.4 it is natural to ask if there is an identity of the form

(5.1)

∞
∏

n=1

(1 − qn)a(1 − q7n)b
= 1 + c

∞
∑

n=1

(

∑

d|n

( −7

d

)

d2
)

qn

for some integers a, b and c 6= 0. Equating the coefficients of q, q2 and q3, we obtain

−a = c,
a(a − 1)

2
− a = 5c,

−a(a − 1)(a − 2)

6
+ a2 − a = −8c.

As c 6= 0 the first two equations give (a, c) = (−7, 7), which do not satisfy the third
equation. Hence no such identity of the form (5.1) exists. Similarly there are no

integers a and b such that

q

∞
∏

n=1

(1 − qn)a(1 − q7n)b
=

∞
∑

n=1

(

∑

d|n

( −7

n/d

)

d2
)

qn.

The positive fundamental discriminants are 5, 8, 12, 13, . . . . Theorems 3.2, 3.4
and 3.6 give identities involving the discriminants 5, 8 and 12. Thus one can ask if

there is a similar identity for discriminant 13, that is, are there integers a, b and c 6= 0

such that

(5.2)

∞
∏

n=1

(1 − qn)a(1 − q13n)b
= 1 + c

∞
∑

n=1

(

∑

d|n

( 13

d

)

d
)

qn?

Again it is easy to check that no such identity of the form (5.2) exists. Similarly there
are no integers a and b such that

q

∞
∏

n=1

(1 − qn)a(1 − q13n)b
=

∞
∑

n=1

(

∑

d|n

( 13

n/d

)

d
)

qn.
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In view of Theorems 4.5 and 4.6 it is natural to ask about the sum
∞
∑

n=1

(

∑

d|n

( −3

d

))

qn.

In this case we have from the work of Borwein, Borwein, and Garvan [7, Proposi-
tion 2.2, (2.21) and (2.1)] that

(5.3)

∞
∏

n=1

(1 − qn)3

1 − q3n
+ 9q

∞
∏

n=1

(1 − q9n)3

1 − q3n
= 1 + 6

∞
∑

n=1

(

∑

d|n

( −3

d

))

qn.

Formula (5.3) is implicit in the work of Ramanujan [18, (1.41), p. 353 and (1.42),

p. 354]. Although we have obtained a number of formulae of Ramanujan type in a
uniform manner, clearly much still remains to be discovered.
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