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Abstract

The field index i(K) of a cyclic cubic field K is 1 or 2. For i ∈ {1, 2}
we determine explicitly the set

Li := {n ∈ N | n = ind(θ), where θ is an algebraic integer such

that Q(θ) is a cyclic cubic field with field index i}.

Moreover for each � ∈ Li we show that there exist infinitely many cyclic
cubic fields K with field index i such that OK possesses an element of
index �.
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1 Introduction

Let I ∈ N. Huard [1, Theorem B, p. 189] has proved that there exist infinitely

many cyclic cubic fields that contain an integer of index I. It is known that
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the field index of a cyclic cubic field is 1 or 2 [3, p. 585]. For i ∈ {1, 2} we set

Ci := {K | K is a cyclic cubic field with field index i(K) = i}.(1.1)

In this paper we investigate the indices of integers in Ci. To do this we define

for i ∈ {1, 2}
Li := {n ∈ N | n = ind(θ), where θ is an algebraic integer such(1.2)

that Q(θ) is a cyclic cubic field with field index i}.
We determine the set Li explicitly and show that each element of Li occurs

as an index for infinitely many K in Ci. We prove the following theorem in

Section 3 after some preliminary results are proved in Section 2.

Theorem 1.1.

(i) L1 = {8an | a ∈ N ∪ {0}, n ∈ 2N−1}.
(ii) L2 = {2n | n ∈ N}.
(iii) For each i ∈ {1, 2} and each � ∈ Li there exist infinitely many cyclic

cubic fields K in Ci such that OK possesses an element of index �.

Although every positive integer is an index of some cyclic cubic field, Theorem

1.1 shows that the density of indices is 4/7 = 0.56... in the field index one case

and 1/2 = 0.5 in the field index two case.

2 Preliminary Results

If K is a cubic field, the cubic trinomial x3 + Ax + B (A, B ∈ Z) is said to be

a defining polynomial for K if x3 + Ax + B possesses a root θ ∈ C such that

K = Q(θ).

A cubic trinomial x3 +Ax+B (A, B ∈ Z) is said to satisfy the simplifying

assumption if

R2 | A, R3 | B (R ∈ N) =⇒ R = 1.(2.1)

Lemma 2.1. Let K be a cyclic cubic field. Let x3 + Ax + B be a defining

polynomial for K satisfying (2.1). Then

i(K) =

{
1, if B is odd,

2, if B is even.
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Proof. If B is odd then the discriminant −4A3 − 27B2 of x3 + Ax + B is also

odd and thus i(K) = 1.

If B is even we suppose that i(K) = 1 and obtain a contradiction so that

i(K) = 2. Let θ ∈ C be a root of x3 + Ax + B. As x3 + Ax + B is a defining

polynomial for K and K is a normal extension of Q we have K = Q(θ). Let

〈θ〉 = P1P2 · · ·Pr be the prime ideal factorization of the principal ideal 〈θ〉 in

OK . As θ3 + Aθ + B = 0 we have N(θ) = −B so that

N(P1)N(P2) · · ·N(Pr) = N(〈θ〉) = |N(θ)| = |B| ≡ 0 (mod 2).

Hence 2 | N(Pj) for some j ∈ {1, 2, . . . , r}. Thus N(Pj) = 2t for some

t ∈ N. Since 2 does not divide the discriminant of any cyclic cubic field [2,

Theorem, p. 4], 2 does not ramify in K. Thus, as K/Q is a normal extension

of degree 3, either 〈2〉 is a prime ideal of OK or 〈2〉 = ℘1℘2℘3 for distinct

prime ideals ℘1, ℘2, ℘3 of OK . If 〈2〉 = ℘1℘2℘3 then by [5, Corollary, p. 180]

we have i(K) = 2, contradicting i(K) = 1. Thus 〈2〉 is a prime ideal of OK

so 〈2〉 = Pj. Hence 〈2〉 | 〈θ〉 and so 2 | θ in OK . Thus θ/2 ∈ OK . As

(θ/2)3 + (A/4)(θ/2) + (B/8) = 0 and A/4, B/8 ∈ Q, the monic irreducible

cubic polynomial in Z[x] satisfied by θ/2 is x3+(A/4)x+(B/8). Thus A/4 ∈ Z

and B/8 ∈ Z. This contradicts (2.1).

Lemma 2.2. Let K ∈ C1. If θ ∈ OK has even index then (θ + k)/2 ∈ OK for

some k ∈ Z.

Proof. Suppose that θ ∈ OK has even index. As θ ∈ OK there exist a, b, c ∈ Z

such that θ is a root of g(x) = x3 +ax2 + bx+ c. Then 3θ +a ∈ OK is a root of

h(x) = x3 + Ax + B, where A = −3a2 + 9b ∈ Z and B = 2a3 − 9ab + 27c ∈ Z.

We note that disc(h(x)) = 36disc(g(x)). As ind(θ) ≡ 0 (mod 2), we have

disc(g) ≡ 0 (mod 2) and so −4A3 − 27B2 = disc(h) ≡ 0 (mod 2). Thus

B ≡ 0 (mod 2). If either 22 � A or 23 � B then by Lemma 2.1, we have

i(K) = 2, contradicting K ∈ C1. Thus 22 | A and 23 | B so (3θ + a)/2 ∈ OK .

Hence (θ + a)/2 = (3θ + a)/2 − θ ∈ OK as required.

Lemma 2.3. Let K ∈ C1. Let θ ∈ OK be such that K = Q(θ). Then

ind(θ) = 8an

for some a ∈ N ∪ {0} and n ∈ 2N − 1.

Proof. Suppose that there exists θ ∈ OK and K = Q(θ) with 2t ‖ ind(θ)

for some t ∈ N ∪ {0} with t 	≡ 0 (mod 3). Let θ∗ ∈ OK have the least
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such value of t, say t∗. Then, by Lemma 2.2, there exists k ∈ Z such that

(θ∗ + k)/2 ∈ OK and K = Q((θ∗ + k)/2). Hence 2t∗−3 ‖ ind((θ∗ + k)/2) so

t∗−3 ≥ 0. As t∗−3 	≡ 0 (mod 3) this contradicts the minimality of t∗. Hence,

for every θ ∈ OK with K = Q(θ) we have 2t ‖ ind(θ) with t ≡ 0 (mod 3).

Thus ind(θ) = 23an for some a ∈ N ∪ {0} and n ∈ 2N − 1.

We next state a theorem of Nagel [6] in the case of a quadratic polynomial.

Proposition 2.1. Let f(x) ∈ Z[x] be a quadratic polynomial which is primitive

and has a nonzero discriminant. Then there exist infinitely many x ∈ N such

that f(x) is squarefree.

In [7] the following extension of Proposition 2.1 was proved.

Proposition 2.2. Let d 	= 0, e, f ∈ Z be such that gcd(d, e, f) = 1 and

e2 − 4df 	= 0. Let m be a positive squarefree integer. Let r be an integer such

that dr2 + er + f 	= 0 and for every prime p satisfying p | m, p2 | dr2 + er + f

we have p � 2dr + e. Then there exist infinitely many positive integers x ≡
r (mod m) such that dx2 + ex + f is squarefree.

We need the following special cases of Proposition 2.2.

Lemma 2.4. (a) Let d, e, f ∈ N be such that gcd(d, e, f) = 1, e2−4df 	= 0 and

3 ‖ e2 − 4df . Then for any r ∈ Z there exist infinitely many positive integers

v ≡ r (mod 3) such that dv2 + ev + f is squarefree.

(b) Let e, f ∈ N be such that e2 − 4f 	= 0, e ≡ 0 (mod 3) and f 	≡ 2 (mod 3).

Then there exist infinitely many positive integers v 	≡ 0 (mod 3) such that

v2 + ev + f is squarefree.

(c) Let d, f ∈ N be such that gcd(d, f) = 1. Then there exist infinitely many

positive integers v 	≡ 0 (mod 3) such that dv2 + f is squarefree.

3 Proof of Theorem 1.1.

We first examine L1. By Lemma 2.3 the only possible integers in L1 are those

of the form 8an, where a ∈ N ∪ {0} and n ∈ 2N − 1. We show that all

such integers are in L1 and occur as indices of infinitely many cyclic cubic
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fields of index 1. It is enough to do this for the odd positive integers since

ind(2aθ) = 8aind(θ) for Q(θ) ∈ C1. As ind(3bθ) = 33bind(θ) for Q(θ) ∈ C1 we

can further restrict n to satisfy 33 � n.

Let I ∈ 2N − 1 be such that 33 � I. We show that I ∈ L1 and that there

exist infinitely many cyclic cubic fields K such that OK possesses an element

of index I. Define F (x) ∈ Z[x] by

F (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2 + Ix + I2, if 3 � I,

3x2 + Ix + (I2/9), if 3 ‖ I,

x2 + 9Ix + 27I2, if 32 ‖ I.

(3.1)

If 3 � I by Lemma 2.4(a) there exist infinitely many positive integers v ≡
I + 1 (mod 3) such that F (v) is squarefree. If 3 ‖ I again by Lemma 2.4(a)

there exist infinitely many positive integers v ≡ (I/3) + 1 (mod 3) such that

F (v) is squarefree. If 32 ‖ I by Lemma 2.4(b) there exist infinitely many

positive integers v 	≡ 0 (mod 3) such that F (v) is squarefree. We denote the

set of such v by V in each of the three cases 3 � I, 3 ‖ I and 32 ‖ I.

We show that 2 � F (v) for v ∈ V . Suppose 2 | F (v). Then by (3.1) we have

2 | v and 2 | I, contradicting that 2 � I.

Next we note that it is easy to check using (3.1) and the congruences

modulo 3 satisfied by v ∈ V that F (v) ≡ 1 (mod 3) for v ∈ V .

For v ∈ V we have

F (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

4
((2v + I)2 + 3I2), if 3 � I,

1

12
((6v + I)2 + 3(I/3)2), if 3 ‖ I,

1

4
((2v + 9I)2 + 27I2), if 32 ‖ I.

(3.2)

As 2 � F (v), 3 � F (v) and F (v) is squarefree, we see that the only primes p

dividing F (v) satisfy p ≡ 1 (mod 3).

We now show that for v ∈ V⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gcd(F (v), 2v + I) = 1, if 3 � I,

gcd(F (v), 6v + I) = 1, if 3 ‖ I,

gcd(F (v), 2v + 9I) = 1, if 32 ‖ I.

(3.3)
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Let p be a prime divisor of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gcd(F (v), 2v + I), if 3 � I,

gcd(F (v), 6v + I), if 3 ‖ I,

gcd(F (v), 2v + 9I), if 32 ‖ I.

As p | F (v) and F (v) ≡ 1 (mod 3) we see that p 	= 3. From the identities

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4F (v) − (2v + I)2 = 3I2, F (v) − (2v + I)2 + 3v(2v + I) = 3v2, if 3 � I,

12F (v) − (6v + I)2 =
1

3
I2, 9F (v) − (6v + I)2 + 3v(6v + I) = 9v2, if 3 ‖ I,

4F (v) − (2v + 9I)2 = 27I2, 3F (v) − (2v + 9I)2 + v(2v + 9I) = v2, if 32 ‖ I,

we deduce that p | gcd(I, v). Then, by (3.1), p2 | F (v), contradicting that

F (v) is squarefree. This completes the proof of (3.3).

From the congruences (mod 3) satisfied by v ∈ V we have⎧⎪⎪⎨
⎪⎪⎩

2v + I ≡ 2 (mod 3), if 3 � I,

6v + I ≡ 3I + 6 ≡ 6 (mod 9), if 3 ‖ I,

2v + 9I 	≡ 0 (mod 3), if 32 ‖ I.

(3.4)

To summarize we have shown that for each v ∈ V we have F (v) ∈ N,

F (v) > 1, 2 � F (v), 3 � F (v), F (v) is squarefree, and that (3.3) and (3.4) hold.

For v ∈ V we define a cubic polynomial p(x) ∈ Z[x] by

p(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x3 − 3F (v)x + (2v + I)F (v), if 3 � I,

x3 − 9F (v)x + 3(6v + I)F (v), if 3 ‖ I,

x3 + vx2 +

(
v2 − F (v)

3

)
x +

(
v3 − F (v)v + 9IF (v)

27

)
, if 32 ‖ I.

(3.5)

We have

disc(p(x)) =

⎧⎪⎪⎨
⎪⎪⎩

34I2F (v)2, if 3 � I,

34I2F (v)2, if 3 ‖ I,

I2F (v)2, if 32 ‖ I.

(3.6)
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We observe that

q(x) = 33p

(
x − v

3

)
= x3 − 3F (v)x + (2v + 9I)F (v), if 32 ‖ I.(3.7)

We set

A =

⎧⎪⎪⎨
⎪⎪⎩

−3F (v), if 3 � I,

−9F (v), if 3 ‖ I,

−3F (v), if 32 ‖ I,

and

B =

⎧⎪⎪⎨
⎪⎪⎩

(2v + I)F (v), if 3 � I,

3(6v + I)F (v), if 3 ‖ I,

(2v + 9I)F (v), if 32 ‖ I,

so that

x3 + Ax + B =

{
p(x), if 3 � I or 3 ‖ I,

q(x), if 32 ‖ I,

and

−4A3 − 27B2 = C2,

where

C =

{
32IF (v), if 3 � I or 3 ‖ I,

33IF (v), if 32 ‖ I.

We show that x3 + Ax + B satisfies (2.1). Suppose R ∈ N is such that R2 | A

and R3 | B. If 3 � I or 32 ‖ I then A is squarefree so R = 1. If 3 ‖ I then

the only square dividing A is 32 so R | 3. Moreover, as F (v) ≡ 1 (mod 3) and

v ≡ I/3 + 1 (mod 3) in this case we have

B = 3(6v + I)F (v) ≡ 3(6v + I) ≡ 3(3I + 6) ≡ 18 (mod 27),

so that R 	= 3. Thus R = 1.

We show next that p(x) is irreducible over Q for v ∈ V . In the case 32 ‖ I

it suffices to prove that q(x) is irreducible in view of (3.7). We can choose a

prime p 	= 2, 3 with p ‖ F (v). Clearly p ‖ A and p | B. From (3.3) we deduce

that p ‖ B. Hence x3 + Ax + B is p-Eisenstein and so irreducible over Q.
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Next we show that

Gal (p(x)) � Z/3Z, v ∈ V.

This is clear as p(x) is irreducible over Q and disc(p(x)) ∈ Z2 by (3.6).

Our next goal is to show that if v ∈ V and K = Q(θ), where θ is a root of

p(x), then

d(K) =

{
34F (v)2, if 3 � I or 3 ‖ I,

F (v)2, if 32 ‖ I.

To do this we appeal to the following result, see [4, p. 831] and [2, Theorem,

p. 4].

Proposition 3.1. If K is a cyclic cubic field given by K = Q(φ), where φ3 +

Aφ + B = 0 and A and B are integers satisfying (2.1), then the discriminant

of K is given by

d(K) = f(K)2,

where

f(K) = 3α
∏

p ≡ 1 (mod 3)

p | A, p | B

p

where p runs through primes and

α =

{
0, if 3 � A or 3 ‖ A, 3 � B, 33 | C,

2, if 32 ‖ A, 32 ‖ B or 3 ‖ A, 3 � B, 32 ‖ C,

where C ∈ N is given by C2 = −4A3 − 27B2.

We have ⎧⎨
⎩

3 ‖ A, 3 � B, 32 ‖ C, if 3 � I,

32 ‖ A, 32 ‖ B, if 3 ‖ I,

3 ‖ A, 3 � B, 33 | C, if 32 ‖ I,

so that

α =

{
0, if 32 ‖ I,

2, if 3 � I or 3 ‖ I.
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In all three cases (3 � I, 3 ‖ I and 32 ‖ I) we have∏
p ≡ 1 (mod 3)

p | A, p | B

p = F (v).

Hence

d(K) =

{
34F (v)2, if 3 � I or 3 ‖ I,

F (v)2 if 32 ‖ I.

Finally in all three cases we have

ind(θ) =

√
disc(p(x))

d(K)
= I.

As F (v) = F (v′) has at most two solutions for v′, we can find an infinite

subset of V for which the values of F (v) are distinct thus ensuring that the

corresponding field discriminants are distinct. This gives an infinite set of

cyclic cubic fields K posssessing an integer of index I. As B is odd, by Lemma

2.1 each K ∈ C1.

We now turn to the determination of L2. If K ∈ C2 the index of any

θ ∈ OK such that K = Q(θ) is even. Thus we may suppose that I is even. As

ind(3bθ) = 33bind(θ) for Q(θ) ∈ C2 we can further restrict I to satisfy 33 � I.

Define F (x) ∈ Z[x] by

F (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2 + (3I2/4), if 3 � I,

3x2 + (I/6)2, if 3 ‖ I,

x2 + 27(I/2)2, if 32 ‖ I.

(3.8)

By Lemma 2.4(c) there exist infinitely many positive integers v 	≡ 0 (mod 3)

such that F (v) is squarefree. We denote the set of such v by V . Moreover

F (v) ≡ 1 (mod 3) for v ∈ V . We show next that gcd(v, F (v)) = 1. Suppose

there exists a prime p with p | v and p | F (v). As 3 � v we have p 	= 3. Suppose

p = 2. As F (v) is squarefree we have 2 ‖ F (v). By (3.8) F (v) = a2 + 3b2 for

some integers a and b. Hence 2 ‖ a2 + 3b2, contradicting a2 + 3b2 ≡ 0, 1 or 3

(mod 4). Hence p 	= 2. Then, from (3.8), we see that as p | F (v) and p | v we

have p | I so p2 | F (v), a contradiction.

As 2 � F (v), 3 � F (v) and F (v) is squarefree, we see that the only primes p

dividing F (v) satisfy p ≡ 1 (mod 3).
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For v ∈ V we define a cubic polynomial p(x) ∈ Z[x] by

p(x) =

⎧⎪⎨
⎪⎩

x3 − 3F (v)x + 2vF (v), if 3 � I,

x3 − 9F (v)x + 18vF (v), if 3 ‖ I,

x3 + vx2 − 9(I/2)2x − v(I/2)2, if 32 ‖ I.

(3.9)

Let θ be a root of p(x) and set K = Q(θ). We have

disc(p(x)) =

{
34I2F (v)2, if 3 � I or 3 ‖ I,

I2F (v)2, if 3 ‖ I.
(3.10)

We observe that

q(x) = 33p

(
x − v

3

)
= x3 − 3F (v)x + 2vF (v), if 32 ‖ I.

We set

A =

⎧⎪⎨
⎪⎩

−3F (v), if 3 � I,

−9F (v), if 3 ‖ I,

−3F (v), if 32 ‖ I,

and

B =

⎧⎪⎨
⎪⎩

2vF (v), if 3 � I,

18F (v), if 3 ‖ I,

2vF (v), if 32 ‖ I,

so that

x3 + Ax + B =

{
p(x), if 3 � I or 3 ‖ I,

q(x), if 32 ‖ I,

and

−4A3 − 27B2 = C2,

where

C =

{
32IF (v), if 3 � I or 3 ‖ I,

33IF (v), if 32 ‖ I.

Clearly, as 3 � v, 3 � F (v) and F (v) is squarefree, the polynomial x3 + Ax + B

satisfies the simplifying assumption (2.1). We show next that the polynomial
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x3 + Ax + B is irreducible over Q. For v ∈ V we have F (v) > 1. Let p

be a prime divisor of F (v). As 2 � F (v) and 3 � F (v) we have p 	= 2, 3.

As gcd(v, F (v)) = 1 we see that p ‖ A and p ‖ B. Hence x3 + Ax + B is

p−Eisenstein and so is irreducible over Q. Thus p(x) is irreducible over Q.

As p(x) is irreducible over Q and disc(p(x)) ∈ Z2, we have

Gal(K) � Z/3Z, v ∈ V.

We have ⎧⎪⎨
⎪⎩

3 ‖ A, 3 � B, 32 ‖ C, if 3 � I,

32 ‖ A, 32 ‖ B, 33 ‖ C, if 3 ‖ I,

3 ‖ A, 3 � B, 35 | C, if 32 ‖ I,

so that

α =

{
0, if 32 ‖ I,

2, if 3 � I or 3 ‖ I.

In all three cases (3 � I, 3 ‖ I and 32 ‖ I) we have∏
p ≡ 1 (mod 3)

p | A, p | B

p = F (v).

Hence

d(K) =

{
34F (v)2, if 3 � I or 3 ‖ I,

F (v)2, if 32 ‖ I.

Finally, in all three cases (3 � I, 3 ‖ I and 32 ‖ I), we have

ind(θ) =

√
disc(p(x)

d(K)
= I.

As before there exists an infinite set of cyclic cubic fields K possessing an

integer of index I. As B is even, by Lemma 2.1 each of these K ∈ C2.
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