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Abstract

An asymptotic formula is given for the sum Z; < n?, where a = -1,

and the asterisk indicates that the summation is restricted to those
positive integers n whose prime factors belong to certain congruence
classes.

1. Introduction

Let & reN with 1<r <d¢(k), where ¢(k) denotes Euler’s phi
function. Let [, ..., I, be integers such that 1</ <... <. <k and

(k) = (I, k) = - = (L, k) = 1. Let
T, lg, ..., 1., k) = {p(prime) | p = |, Iy, ..., L. (mod k)} (1.1
and
S, Iy, ..., L., k) = {n e N|p(prime)|n = p =1, Iy, ..., I, (mod k)}. (1.2)

Let ¥ be a Dirichlet character modulo k. The character % is defined
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by %(n) = x(n) the complex conjugate of y(n). The principal character

(mod k) is denoted by yq. It is well known that

L{, y) = Z@ #0 for x # 0. (1.3)

n=1

For each character y (mod k) and each prime p, we set

ky(p) = p{l - [1 - %} [1 - %jﬁ'(p)}, (1.4)

and define a completely multiplicative function k, : N - C by
kx(n) = Hkx(p)u, ne N. (1.5)
p*|n

It is shown in [5, p. 355] that for all x

© -1
K, y) = ZM = H[1 - MJ £ 0. (1.6)
D

n
n=1 p

We prove the following asymptotic formula. As usual I'(x) denotes the
gamma function. We write S for S(ly, Iy, ..., L, k).
Theorem 1.1. Let € € R be such that 0 < & < 1. Set

" 1 o(k) r/d(k) L{, x) Z§=1i(lj)/¢(k)
- r(1+(r/d>(k)))[ k j XI;XIO[K(L X)j . am

Then, as x — », we have

z% — C(log x) %) 4 O((log xy#W)-1+5) (1.8)

n<x

neS

and for each fixed N > 0

= %ﬁcxx(log x4 O (log x)#H)-24%), (1.9)

n<x

neS
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where the constants tmplied by the O-symbols depend at most on ¢, k,

L, ..., L. and \.

2. Proof of Theorem 1.1

Define the constant C as in (1.7). Let € € R be such that 0 < g < 1.

We begin by recalling a theorem due to Odoni [2, Theorem 11, p. 205; Note
added in proof, p. 216].

Proposition 2.1. Let [ : N - R be multiplicative with f(n) 2 0, for
all n € N. Suppose that there exist constants a; >1 and as > 1 such

that
0< f(pk) < a;k2, 2.1)

for all primes p and all k ¢ N, and also that there exist constants © and 3

with 1 > 0 and 0 < B <1 such that

X
Z f(p 1Og o 0[( 1+B]’ (2.2)

P<x ]-Og x)

as x — o, then there ts a constant B > 0 such that
D mn™t = Bllogx)" + O((log x)"), (2.3)
n<x
as x = . Further, for each fixed » > 0, we have
Z fyn* ' = X ltBx*(log x)* ! + O(x*(log x)* 1Py, (2.49)
n<x
as x — .
We define
1, if nes,
) = {0, if nes,

where S = S(lj, Iy, ..., L,, k) is defined in (1.2). Clearly / : N — {0,1} is

a multiplicative function, which satisfies (2.1) with a; = ay = 2. Further,
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by the prime number theorem for arithmetic progressions [3, p. 139], (2.2)
is satisfied with t = r/¢(k) and B =1 -¢. Appealing to Proposition 2.1,

we obtain from (2.3)

"L _ Bllog %9 4 0log x/4O17%), 2.5)

neS

as x - «, for some constant B > 0, and then from (2.4) we obtain for
A>0

. % 6(%) Bx*(log x) W1 4 O(x*(log x) 140242y (2.6)

n<x

neS
as x — . Rieger [4, Satz 1, p. 247] has proved the following theorem.

Proposition 2.2. Let T be an infinite set of prime numbers p such
that

R °
p (log x)

psx
peT

as x > o, for some 1 = (T) > 0 and some & = 8(T) > 0. Then

P r(e:r) (1+ 0 1og fongjg(l - %jl @8)

n<x

pin=peT peT

as x = », wherey is Euler’s constant.

Taking T = T, lg, ..., L., k) (defined in (1.1)), we see that (2.7) is
satisfied with © = r/¢(k) and § = 1, see for example [1, p. 449]. Then (2.8)

gives

n<x
neS peT

as x — «. Williams [5, Theorem 1, p. 356] has shown the following result.



PRIME FACTORS IN CONGRUENCE CLASSES 157
Proposition 2.3.

[T [ ;}“[ (k)H(IIf((i X)j J/q)(k)(ng)‘l/“k)

psx
p=l(mod k)

+ O((log x) /ety

as x — w, where the product on the right-hand side is taken over all
characters y (mod k) different from the principal character Yo (mod k),
and the constant implied by the O-symbol depends only on k.
From Proposition 2.3 we obtain
I1 (1 ) %] = M(log ) *") 1 O((log ) 7/*) ) (2.10)
p<x

peT

as x — o, where

M eévr/(b(k)[i

7/4(k) K1, )\ o1 X/ 001
e I I [ 2.1

L(1, x)
X#X0

Appealing to (1.7) and (2.11), we see that
MY = TQ + (r/o(k) e *)C, (2.12)

Then, using (2.10) and (2.12) in (2.9), we obtain

_ r/o(k) \\'
Z~ C(log x) [1 4 O[log g% ). (2.13)
n<y
neS

as x — «. Comparing (2.5) and (2.13) we deduce that 5 -~ C. Then (2.5)
gives (1.8) and (2.6) gives (1.9).

We note that (1.8) is stronger than the estimate /. 13) derived from
Rieger’s work (Proposition 2.2),

3. Applications

We give explicit versions of Theorem 1.1 when # =3 and k& =4. If
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is a real character (mod k) and p denotes a prime, then

0, if (p)=1oro0,
k() = %, if x(p) = -1,

so that

-1
K(1, 1) = (1 - L] .
x(l;[—l p’

It is convenient to define

la, b) = ](_[ [1—%} 1<a<b, (ab)=1
p=a (mod b) p

First we treat k = 3. There is exactly one nonprincipal character

) =(22).

(mod 3), namely

Thus
2
K1, y) =12 3" = 42L7l(1, 3).

Also

oo

-3)1 1 1 1 on
L(I’X)‘Z(TJE‘I‘E+Z"3+"'“—3J§'

n=1

With r =1 and [} =1, we have

L(1, ) jzklﬂ’f‘)/‘“k) 2 gy
1:[0(1{(1, 1) 33/ . 3

Thus, by Theorem 1.1, we have

3/2
Z 1. 25—l(2, 3)1/2(log x)l/2 + O((log x)”l/zﬂ)
n gb/4

n<x
pln=p=1(mod 3)
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and for A > 0

A

1/2 A
A1 2 /2 X x
o= (2, 3) + O[ ]
Z A3t (log x)* "\ (log x)***
p|n=p=1(mod 3)

In particular with A = 1, we have

2!/2 1/2 x [ x ]
E 1=2_-12 3) +0 > |-
pln=p=1(mod 3)

With r =1 and {; = 2, we have

L, )\ G gz

XFX0

Then, by Theorem 1.1, we obtain

5/2
> Lo 27000, 3)2(0g 22 + 0(log )7V
n<x n 35/
pln=p=2(mod 3)

and for A > 0
3/2 A A
A-1 2 /2 X x
E nt = I, 3)"* ———— + O[‘—“]
~— A3%/4 (log x)l/2 (log x)3/2 E

pln=p=2(mod 3)
In particular with A = 1, we have
_ 2%/2 1/2 X x
Z 1= i 11, 3) 75+ 0 e

n<x (log x)
p|ln=p=2(mod 3)

Finally we treat the case k = 4. There is exactly one nonprincipal

x(n) = (:—fj

character (mod 4), namely
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Thus

K, 1) = [
p=3(mod 4) p
Also

With r =1 and [} =1, we have

%) /o(k) ‘
3 {F

Thus, by Theorem 1.1, we have

Z ’l = 1/2 1(3, 4% (log x)/? + O((log x) Y2*%)
Pl n:>£zslx(mod 4)

and for A > 0
A A
A1 1 1/2 X x
E n = —= (3, 4) — + O[-**f]

p|n=>p=1(mod 4)
In particular with A =1, we have
_ 1 1/2 x x

= (log x) log x
p|n=>p=1{(mod 4)

With r =1 and }; = 3, we have

L, 3) o ) m) 2 /
XL_I( K(1, 7;)] = nl/z 11, 4)72.

Thus, by Theorem 1.1, we have

> 717 — 10, Y2 (log )2 + O((log x)Y27%)
pli= 1;':3x(mod 4)
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and for A > 0
Z W= L, a)2 <! + O[ Al
o 2A (log x)l/2 (log 36)3/2_E J

pln=p=3(mod 4)

In particular with A =1, we have

(1]

(2]

{3

(4]

(51

1 1/2 x x
E 1 =211, 4) + O[ — J
2 (log x)* " (log x)¥*~*
pln=p=3(mod 4)
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