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INTEGRAL BASES FOR AN INFINITE FAMILY OF 
CYCLIC QUINTIC FIELDS* 

DANIEL ELOFF?, BLAIR K. SPEAR MAN^^ , AND KENNETH S. WILLIAMS$§ 

Abstract. An explicit integral basis is given for infinitely many cyclic quintic fields. 
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1. Introduction. We denote the set of integers by Z and the set of positive 
integers by N. Let n E Z. The Lehmer quintic f n ( x )  E Z [ x ]  is defined by 

see [5,  p. 5391. Schoof and Washington [6,  p. 5481 have shown that f n ( x )  is irrre- 
ducible for all n E Z .  Let 0 E @ be a root of f,(x) = 0. Set K = Q ( 0 )  so that 
[ K  : Q ]  = 5. It is known that K is a cyclic field [6,  p. 5481. We denote the ring of 
integers of K by OK.  The discriminant d ( K )  of K has been determined by Jeannin 
[4,  p. 761, see also Spearman and Williams [7, p. 2151, namely d ( K )  = f  ( K ) 4 ,  where 
the conductor f  (K) of K is given by 

where v,(k) denotes the exponent of the largest power of the prime p dividing the 
nonzero integer k  and 

Set 

From (1.3) we have 

m = (n  + 2 ) ( n  + 1 )  ( ( n  + 1)' + 6 )  + 11 
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and, as (n + 2)(n + 1) > 0 for all n E Z, we deduce that m > 11 so that 

Then, from (1.5), we obtain a = m2(m - 10) + 5m > 176 so that 

As x3 + 5x2 + lox + 7 is irreducible in Z[x], we deduce from (1.4) that 

A MAPLE calculation gives 

From (1.2) and (1.3) we observe that 

From (1.4) and (1.9) we see that 

(1.11) a = 1 + dk, 

where 

GaAl and Pohst [2, p. 16901 have shown that under the condition 

(1.13) p2 i/ m for any prime p # 5 

an integral basis for K is given by 

where 

Although it is very likely that there are infinitely many n E Z such that (1.13) holds 
this has not yet been proved. GaAl and Pohst used their integral basis in a search 
for cyclic quintic fields with a power basis. They proved under the condition that m 
is squarefree that the field K admits a power basis if and only if n = -1 or n = -2 
[2, Theorem, p. 16951, and noted that these values of n give the same field K [2, p. 
16891. They also observed [2, Remark, p. 16951 that their result is a special case of 
a theorem of Gras [3], which asserts that there is only one cyclic quintic field with a 
power basis, namely, the maximal real subfield of the cyclotomic field of 11-th roots 
of unity. 

In this work we give an integral basis for K under the weaker condition 

(1.16) m is cubefree. 
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From now on we assume that (1.16) holds except in Lemma 2.2. In view of (1.6) ,  
(1.10) and (1.16),  we have 

where b is given by (1.2) and P, Q E N are such that 

(1.18) 5 j P, 5 1 Q,  (P, Q )  = 1 ,  P, Q squarefree. 

By [4, Lemme 2.1 . l ]  every prime factor (# 5 )  of m is =: 1 (mod 5 ) .  Hence, by (1 .  I ) ,  
we have 

(1.19) f ( K )  = 5 b ~ ~  

and 

(1.20) p (prime) I P Q  + p = 1 (mod 5 ) .  

By (1.17) we have Q I m. By (1.5)  we have m I a. Hence Q I a. Then, by (1.11), we 
have Q I 1 + dk from which we deduce 

(1.21) 

We define 

and 

We note that (1.8)  ensures that v5 is well-defined. We prove 

THEOREM. Under the assumption (1.16) 

is  an  integral basis for K .  

We note that if (1.13) holds then 

Appealing to (1.1 1 )  we deduce 

As dw5 - e4 is a cubic polynomial in 8 with coefficients in Z, we deduce from the 
theorem that { I ,  8 ,  e2, 03 ,  w5} is an integral basis for K showing that our theorem 
includes that of Gad and Pohst [2,  p. 16901. 

By a theorem of Erdos [ I ]  there exists an infinite set S of integers n such that 
m = n4 + 5n3 + 15n2 + 25n  + 25 is cubefree. For n E S the integer m has the form 
(1.17).  Clearly S contains an infinite subset Sl such that the values of 5 b ~ ~  are 
distinct for n E S1. Thus, by (1.19),  the conductors f ( K )  are distinct for n E S1 thus 
ensuring that the cyclic quintic fields K are distinct for n E S1. Thus our theorem 
gives an integral basis for infinitely many cyclic quintic fields. 
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2. Proof of Theorem. We require a number of lemmas. 

LEMMA 2.1. Under  the  assumption (1.16) ,  we have v4 E OK.  

Proof. The asserted result is immediate if Q  = 1. Hence we may assume that 
Q  > 1. By (1.19)  we see that Q ( f  ( K )  . Hence all the prime divisors q  of Q  ramify 
in O K .  Moreover, as K is a cyclic quintic field, each prime factor q  ramifies totally. 
Hence there is a prime ideal p  of OK such that < q  >= p5 and N ( p )  = q. Let 
g, ( x )  E Z [ x ]  be the minimal polynomial of 58 + n2. Using MAPLE we find 

From (1.17)  and (2.1) we deduce that 

Let 

be the prime ideal decomposition of < 58 + n2 > into distinct prime ideals of OK SO 

(2 .4)  l ~ ( 5 8  + n2) ( = N(< 58 + n2 >) = N(Pl)al  . . . N ( P r ) a r .  

From (2.2)  and (2 .4)  we see that 

(2.5)  q2 1 N ( P l ) a l  . N ( P r ) a r .  

Thus Pi = p  and a; 2 2 for some i E { 1 , 2 , .  . . , r ) .  Hence by (2.3) we have 

(2.6)  p2 I <  58 + n2 > . 

Since p5 I Q  we deduce from (2.6) that 

(2 .7)  p2 1 < 5 8 + n 2 - n 2 ~ > .  

As 5 1 Q  we have p  +< 5 >. Also by (1.20) we have Q - 1 (mod 5 ) .  Thus 

Hence 

As (2.8)  is true for each prime divisor q  of Q  we have 

This proves that 
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as asserted. 0 

LEMMA 2.2. For all n E Z we have w5 E OK.  

Proof. The proof is given in [2, pp. 1690-16911, where the case n = -2 should 
be dealt with separately. 0 

LEMMA 2.3. Under the assumption (1.16), we have v5 E O K .  

Proof. Let 

By Lemmas 2.1 and 2.2 we have v4 E OK and w5 E OK SO 

a E O K .  

From (1.5) and (1.17) we have Q I a. Hence 

in OK.  From (1.1 1) we have d I 1 - a. Hence 

a, - 0 (modd) 

in O K .  Then, by (1.21), we deduce that 

a - 0 (mod dQ) 

in OK SO that by (1.23) and (2.9) 

as claimed. O 

Proof of Theorem. We have 

where 

Thus 

where 
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Similarly 

where 

e(e) E Z[e], dege(8) _< 2. 

Thus 

disc(1, e, e2, Q V ~ ,  (Y) = disc(1, e, e2, e3, (Y) = disc(l,e, e2, e3, e4) = m4d2, 

by [2, p. 16911. Therefore 

As vd E OK and v5 E OK by Lemmas 2.1 and 2.3 respectively, we deduce that 
{I, 8, e2, v4, v5) is an integral basis for K. U 
We conclude with an example. 

EXAMPLE. Let n = 14 so that 

We use the theorem to determine an integral basis for K. Here 

and 

with 

so that 

v5 = 50339 + 276246 + ii2706e2 + 22060ie3 + e4 
274841 

(mod 1). 

Thus by the theorem 
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is an integral basis for K. As 

65823 + 624638 + 701258~ + 38250~  + e4 

we see that 

is also an integral basis for K in agreement with MAPLE. 

We close by remarking that when m is not cubefree the cyclic quintic field K may 
not have an integral basis of the type given in our theorem. To see this take n = 44 
so that m = 413 x 61. In this case (18 + 208 + e2)/41 is an integer of K and so 8' is 
not a minimal integer of degree 2. Hence K cannot have an integral basis of the type 
{I ,  8,  8'7 *, *I. 

REFERENCES 

[I] P .  ERDOS, Arithmetic properties of polynomials, J. London Math. Soc., 28 (1953), pp. 416-425. 
[2] I. GALL AND M. POHST, Power integral bases i n  a parametric family of totally real cyclic 

quintics, Math. Comp., 66 (1997), pp. 1689-1696. 
[3] M. -N. GRAS, Non monoge'ne'ite' de 1 'anneau des entiers des extensions cycliques de Q de degre' 

premier 1 2 5, J. Number Theory, 23 (1986), pp. 347-353. 
[4] S. JEANNIN, Nombre de classes et unite's des corps de nombres cycliques quintiques d'E. Lehmer, 

J. Th6or. Nombres Bordeaux, 8 (1996), pp. 75-92. 
[5] E. LEHMER, Connection between Gaussian periods and cyclic units, Math. Comp., 50 (1988), 

pp. 535-541. 
[6] R. SCHOOF AND L. C. WASHINGTON, Quintic polynomials and real cyclotomic fields with large 

class numbers, Math. Comp., 50 (1988), pp. 543-556. 
[7] B. K.  SPEARMAN AND K. S. WILLIAMS, Normal integral bases for Emma Lehmer's parametric 

family of cyclic quintics, J .  Th6or. Nombres Bordeaux, 16 (2004), pp. 215-220. 




