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1. Introduction. In his lost notebook [R2] Ramanujan stated that the
Dirichlet series

∑∞
n=1 a(n)n

−s (Re(s) > 1), where the Dirichlet coefficients
a(n) (n = 1, 2, . . .) are given by

q
∞
∏

n=1

(1− q2n)(1− q22n) =
∞
∑

n=1

a(n)qn (|q| < 1),

has an Euler product and gave an explicit formulation for the Euler product.
In this paper we develop the theory of binary quadratic forms in order to
determine the Euler product for

∑∞
n=1 a(n)n

−s, and other similarly defined
Dirichlet series, in a completely elementary and natural manner.
Let N, Z, R and C be the sets of natural numbers, integers, real numbers

and complex numbers respectively. A nonsquare integer d with d ≡ 0, 1
(mod 4) is called a discriminant. The conductor of the discriminant d is the
largest positive integer f = f(d) such that d/f2 ≡ 0, 1 (mod 4). As usual we
set w(d) = 1, 2, 4, 6 according as d > 0, d < −4, d = −4 or d = −3.
For integers a, b and c, we use (a, b, c) to denote the integral, binary

quadratic form ax2 + bxy + cy2. The form (a, b, c) is said to be primitive
if gcd(a, b, c) = 1. The discriminant of the form (a, b, c) is the integer d =
b2 − 4ac. If d < 0, we only consider positive definite forms, that is, forms
(a, b, c) with a > 0 and c > 0. Two forms (a, b, c) and (a′, b′, c′) are equivalent
((a, b, c) ∼ (a′, b′, c′)) if there exist integers α, β, γ and δ with αδ − βγ = 1
such that the substitution x = αX+βY, y = γX+δY transforms (a, b, c) to
(a′, b′, c′). It is known that (a, b, c) ∼ (c,−b, a) and for k ∈ Z that (a, b, c) ∼
(a, 2ak + b, ak2 + bk + c). We denote the equivalence class of (a, b, c) by
[a, b, c]. The equivalence classes of primitive, integral, binary quadratic forms
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of discriminant d form a finite abelian group under Gaussian composition,
called the form class group. We denote this group by H(d) and its order
by h(d). The identity of H(d) is the so-called principal class [1, 0,−d/4] or
[1, 1, (1−d)/4] according as d ≡ 0 (mod 4) or d ≡ 1 (mod 4), and the inverse
of the class K = [a, b, c] is the class K−1 = [a,−b, c].
Let (a, b, c) be an integral, binary quadratic form of discriminant d. The

positive integer n is said to be represented by (a, b, c) if there exist integers
x and y with n = ax2 + bxy + cy2, and the pair {x, y} is called a represen-
tation. If d < 0, every representation {x, y} is called primary. If d > 0, the
representation {x, y} is called primary if it satisfies

2ax+ (b−
√
d)y > 0 and 1 ≤

∣

∣

∣

∣

2ax+ (b+
√
d)y

2ax+ (b−
√
d)y

∣

∣

∣

∣

< ε(d)2,

where ε(d) = (x1 + y1
√
d)/2 and (x1, y1) is the solution in positive integers

to the equation X2 − dY 2 = 4 for which (x1 + y1
√
d)/2 (or equivalently y1)

is least (see [Di], [H]). For a, b, c ∈ Z and n ∈ N we define

(1.1) R(a, b, c;n) = |{{x, y} | n = ax2 + bxy + cy2, {x, y} is primary}|.
If (a, b, c) ∼ (a′, b′, c′), by [SW, Remark 3.1] we have

R(a, b, c;n) = R(a,−b, c;n) = R(a′, b′, c′;n).
From this we define R([a, b, c], n) = R(a, b, c;n) as in [SW].

Let d be a discriminant. Suppose H(d) = {Ak11 · · ·Akrr | 0 ≤ k1 <
h1, . . . , 0 ≤ kr < hr} with h1 · · ·hr = h(d). For n ∈ N andM = Am11 · · ·Amrr
∈ H(d), following [SW, Definition 7.1] we define
(1.2) F (M,n)

=
1

w(d)

∑

0≤k1<h1
···

0≤kr<hr

cos 2π

(

k1m1
h1
+ · · ·+ krmr

hr

)

·R(Ak11 · · ·Akrr , n).

In particular, if h(d) = 2, 3, 4 and H(d) is cyclic with principal class I and
generator A, then (see [SW, Theorem 7.4])

(1.3) F (A, n) =















1

w(d)
(R(I, n)−R(A, n)) if h(d) = 2, 3,

1

w(d)
(R(I, n)−R(A2, n)) if h(d) = 4.

Let s ∈ C with Re(s) > 1. In this paper we introduce

(1.4) L(M, s) =
∞
∑

n=1

F (M,n)

ns
for M ∈ H(d).
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From [SW, Theorem 7.2] we know that F (M,n) is a multiplicative function
of n ∈ N. Thus, if Re(s) > 1, then

(1.5) L(M, s) =
∏

p

(

1 +

∞
∑

t=1

F (M,pt)p−st
)

,

where p runs over all primes.
From (1.5) we see that L(M, s) has an Euler product. The main pur-

pose of this paper is to give the Euler product for L(M, s). When H(d) is
cyclic, in Section 5 we completely determine the Euler product for L(M, s)
(M ∈H(d),Re(s) > 1), see Theorem 5.3. As consequences, in Sections 6–8
we give explicit Euler products for L(M, s) in the cases h(d) = 2, 3 and H(d)
is cyclic of order 4.
For |q| < 1 let ψ(q) and φ(q) be the theta functions defined by

(1.6)

ψ(q) =
∞
∑

n=0

qn(n+1)/2,

φ(q) =

∞
∏

m=1

(1− qm) =
∞
∑

n=−∞
(−1)nq(3n2−n)/2.

Ramanujan (see for example [B]) established many identities involving ψ(q)
and φ(q). In Section 4 of this paper we prove some of these identities from
our point of view.
For k = 1, . . . , 12 let

(1.7) qφ(qk)φ(q24−k) =
∞
∑

n=1

φk(n)q
n (|q| < 1).

Ramanujan ([R1], [R2]) conjectured that the Dirichlet series
∑∞
n=1

φk(n)
ns

(k = 1, 2, 3, 4, 6, 8, 12) have Euler products and gave the explicit Euler prod-
ucts in the cases k = 1, 2, 3. Unfortunately his formulae for k = 2, 3 are
wrong. In [Ra] Rangachari outlined the proofs of the formulae for k = 1, 2, 3
using class field theory and modular forms. But Rangachari’s formulae for
k = 2, 3 are also wrong and his proofs are neither clear nor elementary. So
it remains to correct the results and to give elementary proofs of them. For
instance, the corrected form of Ramanujan’s conjecture in his lost notebook
([R2]) is
∞
∑

n=1

φ2(n)

ns
=

1

1− 11−s
∏

p≡2,6,7,8,10 (mod 11)
p 6=2

1

1− p−2s

×
∏

p=3x2+2xy+4y2

1

1 + p−s + p−2s

∏

p=x2+11y2 6=11

1

(1− p−s)2 ,
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where p runs over all primes. We note that this formula also corrects the
incorrect formula in [Ra].

Let δk = (1 − (−1)k)/2 and n ∈ N. In Section 2 we show that for
k = 1, . . . , 12,

φk(n) =
1

2
(R(1, δk, (24k − k2 + δk)/4;n)−R(4, 4− k, k + 1;n)).

Moreover, we obtain explicit formulas for φk(n) in the cases k = 1, 2, 3, 4, 6,
8, 12 (see Theorems 4.4 and 4.5). From the above it follows that for k =
1, 2, 3, 4, 6, 8, 12,

∞
∑

n=1

φk(n)

ns
= L(Ak, s) for Re(s) > 1,

where Ak = [2, 1, 3], [3, 2, 4], [2, 1, 8], [3, 2, 7], [4, 2, 7], [3, 2, 11], [5, 4, 8] ac-
cording as k = 1, 2, 3, 4, 6, 8, 12. Thus using the results for Dirichlet se-
ries L(M,n) we obtain the Euler products for

∑∞
n=1 φk(n)n

−s in the cases
k = 1, 2, 3, 4, 6, 8, 12. In this way we prove all of Ramanujan conjectures for
φk(n), and our proofs are natural and elementary. It seems that Ramanu-
jan’s conjecture for φ12(n) was first proved by Mordell ([M]).

We should mention that the Euler products for
∑∞
n=1 φk(n)n

−s in the
cases k = 1, 2, 3, 4, 6, 8, 12 are connected with modular forms (see for exam-
ple [Ra]).

In addition to the above notation, we also use throughout this paper the
following notation: ordp n denotes the nonnegative integer α such that p

α |n
but pα+1 ∤n, pα ‖n means pα |n but pα+1 ∤n,

(

a
m

)

is the Kronecker symbol,
(a, b) is the greatest common divisor of the integers a and b (not both zero),
I denotes the principal class in H(d), and R(K) denotes the set of integers
represented by forms in the class K.

Throughout this paper p denotes a prime and products (sums) over p
run through all primes p satisfying any restrictions given under the product
(summation) symbol. For example the condition p = x2 + 11y2 under a
product restricts the product to those primes p which are of the form x2 +
11y2 for some integers x and y.

2. Generating functions for 12 (R(I, n) − R(K,n)) when I,K ∈
H(d). For q ∈ R, m ∈ N and r ∈ Z let

(2.1) f(r,m; q) =

∞
∑

n=−∞
(−1)nq(mn2−rn)/2 (|q| < 1).

From Jacobi’s identity (cf. [HW, Theorem 352, p. 282 (with x = qm/2, z =
−q−r/2)]) we know that
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(2.2) f(r,m; q)

=
∞
∏

n=0

{(1− qmn+(m−r)/2)(1− qmn+m)(1− qmn+(m+r)/2)} (|q| < 1).

Definition 2.1. For r ∈ Z, m ∈ N and k ∈ {1, . . . , 4m} with 2 | k(m−r)
we define

qr
2

f(r,m; qk)f(r,m; q8m−k) =
∞
∑

n=0

fk(r,m;n)q
n.

Proposition 2.1. Let r ∈ Z and let k,m, n ∈ N with k ≤ 4m and
2 | k(m− r). Then

fk(r,m;n)

=







































2
∑

x,y∈Z
4x2−2kxy+2kmy2=n
x≡r/2 (modm)

1−
∑

x,y∈Z
4x2−kxy+ km2 y2=n
x≡r/2 (modm)

1 if 2 | r,

∑

x,y∈Z
x2−kxy+2kmy2=n
x≡r (mod 2m)

1−
∑

x,y∈Z
k(m−1)+2

2 x2+k(2m−1)xy+2kmy2=n
x≡r (mod 2m)

1 if 2 ∤ r.

Proof. From (2.1) and Definition 2.1 we have

fk(r,m;n) =
∑

x,y∈Z
k(mx2−rx)

2 + (8m−k)(my
2
−ry)

2 +r2=n

(−1)x+y.

It is clear that

16

(

k(mx2 − rx)
2

+
(8m− k)(my2 − ry)

2
+ r2
)

= (kx+ (8m− k)y − 4r)2 + k(8m− k)(x− y)2.
Thus

fk(r,m;n) =
∑

x,y∈Z
(kx+(8m−k)y−4r)2+k(8m−k)(x−y)2=16n

(−1)x−y

=
∑

y,z∈Z
(8my+kz−4r)2+k(8m−k)z2=16n

(−1)z

=
∑

x,z∈Z
x2+k(8m−k)z2=16n
x≡kz−4r (mod 8m)

(−1)z =
∑

y,z∈Z
y2+2kyz+8kmz2=16n
y≡−4r (mod 8m)

(−1)z
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=
∑

x,z∈Z
16x2−8kxz+8kmz2=16n
−4x≡−4r (mod 8m)

(−1)z =
∑

x,y∈Z
2x2−kxy+kmy2=2n
x≡r (mod 2m)

(−1)y.

If r is even, then 2 | km. By the above we must have

fk(r,m;n) =
∑

x,y∈Z
2(2x)2−k(2x)y+kmy2=2n

2x≡r (mod 2m)

(−1)y =
∑

x,y∈Z
4x2−kxy+ km2 y2=n
x≡r/2 (modm)

(−1)y

= 2
∑

x,y∈Z
4x2−2kxy+2kmy2=n
x≡r/2 (modm)

1−
∑

x,y∈Z
4x2−kxy+ km2 y2=n
x≡r/2 (modm)

1.

If r is odd, then 2 | k(m− 1). From the above we obtain
fk(r,m;n)

=
∑

x,y∈Z
2x2−kxy+kmy2=2n
x≡r (mod 2m), 2|y

1−
∑

x,y∈Z
2x2−kxy+kmy2=2n
x≡r (mod 2m), 2∤y

1

=
∑

x,y∈Z
2x2−2kxy+4kmy2=2n
x≡r (mod 2m)

1−
∑

x,y∈Z
(km−k+2)x2+k(2m−1)x(y−x)+km(y−x)2=2n

x≡r (mod 2m), 2|y−x

1

=
∑

x,y∈Z
x2−kxy+2kmy2=n
x≡r (mod 2m)

1−
∑

x,y∈Z
(km−k+2)x2+k(2m−1)x(2y)+km(2y)2=2n

x≡r (mod 2m)

1

=
∑

x,y∈Z
x2−kxy+2kmy2=n
x≡r (mod 2m)

1−
∑

x,y∈Z
k(m−1)+2

2 x2+k(2m−1)xy+2kmy2=n
x≡r (mod 2m)

1.

This finishes the proof.

Definition 2.2. Let ψ(q) =
∑∞
n=0 q

n(n+1)/2. For k ∈ {1, 2, 3, 4} we
define ψk(n) by

qψ(−qk)ψ(−q8−k) =
∞
∑

n=1

ψk(n)q
n (|q| < 1).

Theorem 2.1. For k ∈ {1, 2, 3, 4} and n ∈ N we have

ψk(n) =
1
2 (R(1, 0, k(8− k);n)−R(4, 4− 2k, k + 1;n)).



Ramanujan identities and Euler products 355

Proof. Since

∞
∑

n=0

qn(n+1)/2 = 1 +
∞
∑

n=1

q(2n−1)(2n)/2 +
∞
∑

n=1

q2n(2n+1)/2

=
∞
∑

n=−∞
q2n

2−n (|q| < 1)

we see that

∞
∑

n=1

ψk(n)q
n = qψ(−qk)ψ(−q8−k)

= q
(

∞
∑

n=−∞
(−qk)2n2−n

)(

∞
∑

n=−∞
(−q8−k)2n2−n

)

= q
(

∞
∑

n=−∞
(−1)nqk(2n2−n)

)(

∞
∑

n=−∞
(−1)nq(8−k)(2n2−n)

)

= qf(1, 2; q2k)f(1, 2; q16−2k) =
∞
∑

n=0

f2k(1, 2;n)q
n (|q| < 1).

Thus ψk(n) = f2k(1, 2;n). Applying Proposition 2.1 we obtain

ψk(n) =
∑

x,y∈Z
x2−2kxy+8ky2=n
x≡1 (mod 4)

1−
∑

x,y∈Z
(k+1)x2+6kxy+8ky2=n

x≡1 (mod 4)

1

=
1

2

(

∑

x,y∈Z
x2−2kxy+8ky2=n

1−
∑

x,y∈Z
x2−2kxy+8ky2=n

2|x

1
)

− 1
2

(

∑

x,y∈Z
(k+1)x2+6kxy+8ky2=n

1−
∑

x,y∈Z
(k+1)x2+6kxy+8ky2=n

2|x

1
)

= 12 (R(1,−2k, 8k;n)−R(4,−4k, 8k;n)
−R(k + 1, 6k, 8k;n) +R(4k + 4, 12k, 8k;n)).

Note that (4k+4, 12k, 8k) ∼ (8k,−12k, 4k+4) ∼ (8k, 4k, 4) ∼ (4,−4k, 8k),
(1,−2k, 8k) ∼ (1, 0, k(8 − k)) and (k + 1, 6k, 8k) ∼ (k + 1, 2k − 4, 4) ∼
(4, 4− 2k, k + 1). We then obtain the desired result.
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Definition 2.3. Let φ(q) =
∑∞
n=−∞(−1)nq(3n

2−n)/2 (|q| < 1). For
k ∈ {1, . . . , 12} define φk(n) by

∞
∑

n=1

φk(n)q
n = qφ(qk)φ(q24−k) (|q| < 1).

As φ(q) = f(1, 3; q) it is clear that φk(n) = fk(1, 3;n).

Theorem 2.2. Let k ∈ {1, . . . , 12} and δk = (1− (−1)k)/2. For n ∈ N
we have

φk(n) =
1
2 (R(1, δk, (24k − k

2 + δk)/4;n)−R(4, 4− k, k + 1;n))

=



















1
2 (R(1, 1, 6;n)−R(2, 1, 3;n)) if k = 1,
1
2 (R(1, δk, (24k − k2 + δk)/4;n)−R(k + 1, 4− k, 4;n)) if 2 ≤ k ≤ 3,
1
2 (R(1, δk, (24k − k2 + δk)/4;n)−R(4, k − 4, k + 1;n)) if 4 ≤ k ≤ 8,
1
2 (R(1, δk, (24k − k2 + δk)/4;n)−R(4, 12− k, 9;n)) if 9 ≤ k ≤ 12.

Proof. As φk(n) = fk(1, 3;n), by Proposition 2.1 we have

φk(n) =
∑

x,y∈Z
x2−kxy+6ky2=n
x≡1 (mod 6)

1−
∑

x,y∈Z
(k+1)x2+5kxy+6ky2=n

x≡1 (mod 6)

1.

Since
∑

x,y∈Z
ax2+bxy+cy2=n
x≡1 (mod 6)

1

=
∑

x,y∈Z
ax2+bxy+cy2=n
2∤x, x≡1 (mod 3)

1 =
∑

x,y∈Z
ax2+bxy+cy2=n
x≡1 (mod 3)

1−
∑

x,y∈Z
4ax2+2bxy+cy2=n
x≡1 (mod 3)

1

=
1

2

(

∑

x,y∈Z
ax2+bxy+cy2=n

1−
∑

x,y∈Z
9ax2+3bxy+cy2=n

1
)

− 1
2

(

∑

x,y∈Z
4ax2+2bxy+cy2=n

1−
∑

x,y∈Z
36ax2+6bxy+cy2=n

1
)

=
1

2
(R(a, b, c;n)−R(9a, 3b, c;n)−R(4a, 2b, c;n) +R(36a, 6b, c;n)),

we see that
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2φk(n) = (R(1,−k, 6k;n)−R(9,−3k, 6k;n)−R(4,−2k, 6k;n)
+R(36,−6k, 6k;n))− (R(k + 1, 5k, 6k;n)−R(9k + 9, 15k, 6k;n)
−R(4k + 4, 10k, 6k;n) +R(36k + 36, 30k, 6k;n)).

Note that (9k+9, 15k, 6k) ∼ (6k,−15k, 9k+9) ∼ (6k,−3k, 9) ∼ (9, 3k, 6k),
(36k+36, 30k, 6k) ∼ (6k,−30k, 36k+36) ∼ (6k, 6k, 36) ∼ (36,−6k, 6k) and
(4k + 4, 10k, 6k) ∼ (4k + 4, 2k − 8, 4) ∼ (4, 8 − 2k, 4k + 4) ∼ (4,−2k, 6k).
We find R(9k + 9, 15k, 6k;n) = R(9,−3k, 6k;n), R(36k + 36, 30k, 6k;n) =
R(36,−6k, 6k;n) and R(4k + 4, 10k, 6k;n) = R(4,−2k, 6k;n). Thus

φk(n) =
1
2 (R(1,−k, 6k;n)−R(k + 1, 5k, 6k;n)).

Clearly (1,−k, 6k) ∼ (1, δk, (24k − k2 + δk)/4) and (k + 1, 5k, 6k) ∼ (k + 1,
k−4, 4) ∼ (4, 4−k, k+1). If 9 ≤ k ≤ 12, then (4, 4−k, k+1) ∼ (4, 12−k, 9).
Also, (4, 3, 2) ∼ (2,−3, 4) ∼ (2, 1, 3). Now combining the above we get the
desired result.

Corollary 2.1. Let n ∈ N, 2 |n and m ∈ {1, 2, 3, 4, 5, 6}. Then
R(1, 0,m(12−m);n) = R(4, 4− 2m, 2m+ 1;n).

Proof. Note that φ2m(n) = 0 by Definition 2.3. Putting k = 2m in
Theorem 2.2 gives the result.

Corollary 2.1 can also be deduced from [KW2, Theorem 1]. For m =
1, 2, 3, 4, 5 see Corollaries 1, 4, 5, 6, 8 in [KW2] respectively.

Let τ be the Ramanujan tau function defined by

q
∞
∏

n=1

(1− qn)24 =
∞
∑

n=1

τ(n)qn (|q| < 1).

Then we have

Corollary 2.2. For any positive integer n we have

τ(n) ≡































0 (mod 23) if there is a prime p such that
(

p
23

)

= −1 and
2 ∤ ordp n, or p = 2x

2 + xy + 3y2 and

3 | ordp n− 2,
(−1)µ

∏

p=x2+xy+6y2 6=23
(1 + ordp n) (mod 23) otherwise,

where

µ =
∑

p=2x2+xy+3y2

ordp n≡1 (mod 3)

1

and p runs over all primes.
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Proof. Euler’s identity states that (see for example [HW, Theorem 353,
p. 284])

∞
∑

n=−∞
(−1)nq(3n2−n)/2 =

∞
∏

n=1

(1− qn) (|q| < 1).

So
∑∞
n=1 τ(n)q

n

∑∞
n=1 φ1(n)q

n
=

q
∏∞
n=1(1− qn)24

q
∏∞
n=1(1− qn)

∏∞
n=1(1− q23n)

=

∏∞
n=1(1− qn)23
∏∞
n=1(1− q23n)

=
∞
∏

n=1

(

1 +

( 22
∑

k=1

(

23

k

)

(−1)kqkn
)

(1− q23n)−1
)

= 1 + 23

∞
∑

n=1

anq
n (an ∈ Z)

and hence applying Theorem 2.2 we get

τ(n) ≡ φ1(n) = 12 (R(1, 1, 6;n)−R(2, 1, 3;n)) = F ([2, 1, 3], n) (mod 23).
Observe that H(−23) = {[1, 1, 6], [2, 1, 3], [2,−1, 3]}. Then applying [SW,
Theorem 10.2(i)] we obtain the result.

We remark that Corollary 2.2 generalizes the known result 23 | τ(n) for
those positive integers n such that

(

n
23

)

= −1 (see for example [BO]).
Theorem 2.3. For k = 1, . . . , 8 and n ∈ N we have

f2k(1, 4;n) + f2k(3, 4;n) =
1
2 (R(1, 0, k(16− k);n)−R(4, 4− 2k, 3k + 1;n)).

Proof. By Proposition 2.1 we have

f2k(1, 4;n) + f2k(3, 4;n)

=
∑

x,y∈Z
x2−2kxy+16ky2=n
x≡1,3 (mod 8)

1−
∑

x,y∈Z
(3k+1)x2+14kxy+16ky2=n

x≡1,3 (mod 8)

1

=
1

2

(

∑

x,y∈Z, 2∤x
x2−2kxy+16ky2=n

1−
∑

x,y∈Z, 2∤x
(3k+1)x2+14kxy+16ky2=n

1
)

=
1

2
{(R(1,−2k, 16k;n)−R(4,−4k, 16k;n))

− (R(3k + 1, 14k, 16k;n)−R(12k + 4, 28k, 16k;n))}.
Note that (12k + 4, 28k, 16k) ∼ (16k,−28k, 12k + 4) ∼ (16k, 4k, 4) ∼
(4,−4k, 16k), (1,−2k, 16k) ∼ (1, 0, k(16 − k)) and (3k + 1, 14k, 16k) ∼
(3k + 1, 2k − 4, 4) ∼ (4, 4− 2k, 3k + 1). We then obtain the result.
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Theorem 2.4. Let k ∈ {1, . . . , 20}, δk = (1− (−1)k)/2, n ∈ N. Then

fk(1, 5;n) + fk(3, 5;n)

= 12 (R(1, δk, (40k − k
2 + δk)/4;n)−R(4, 4− k, 2k + 1;n)).

Proof. By Proposition 2.1 we have

fk(1, 5;n) + fk(3, 5;n)

=
∑

x,y∈Z
x2−kxy+10ky2=n
x≡1,3 (mod 10)

1−
∑

x,y∈Z
(2k+1)x2+9kxy+10ky2=n

x≡1,3 (mod 10)

1

=
1

2

(

∑

x,y∈Z, 2∤x
x2−kxy+10ky2=n

1−
∑

x,y∈Z, x≡5 (mod 10)
x2−kxy+10ky2=n

1
)

− 1
2

(

∑

x,y∈Z, 2∤x
(2k+1)x2+9kxy+10ky2=n

1−
∑

x,y∈Z, x≡5 (mod 10)
(2k+1)x2+9kxy+10ky2=n

1
)

= 12{(R(1,−k, 10k;n)−R(4,−2k, 10k;n))
− (R(25,−5k, 10k;n)−R(100,−10k, 10k;n))
− (R(2k + 1, 9k, 10k;n)−R(8k + 4, 18k, 10k;n))
+ (R(50k + 25, 45k, 10k;n)−R(200k + 100, 90k, 10k;n))}.

Observe that (8k + 4, 18k, 10k) ∼ (8k + 4, 2k − 8, 4) ∼ (4, 8− 2k, 8k + 4) ∼
(4,−2k, 10k), (50k + 25, 45k, 10k) ∼ (10k,−45k, 50k + 25) ∼ (10k,−5k, 25)
∼ (25, 5k, 10k) and (200k + 100, 90k, 10k) ∼ (10k,−90k, 200k + 100) ∼
(10k, 10k, 100) ∼ (100,−10k, 10k). We then obtain

fk(1, 5;n) + fk(3, 5;n) =
1
2{R(1,−k, 10k;n)−R(2k + 1, 9k, 10k;n)}.

Since (1,−k, 10k) ∼ (1, δk, (40k−k2+δk)/4) and (2k+1, 9k, 10k) ∼ (2k+1,
k − 4, 4) ∼ (4, 4− k, 2k + 1), we obtain the desired result.
Corollary 2.3. If n is even and m ∈ {1, . . . , 10}, then

R(1, 0,m(20−m);n) = R(4, 4− 2m, 4m+ 1;n).
Proof. Note that f2m(1, 5;n) = f2m(3, 5;n) = 0 by Definition 2.1. Tak-

ing k = 2m in Theorem 2.4 yields the result.

The case m = 1 of Corollary 2.3 has been given in [KW2, Corollary 3].

Corollary 2.4. For n ∈ N we have
(i) f2(1, 4;n) + f2(3, 4;n) = ψ3(n),
(ii) f4(1, 5;n) + f4(3, 5;n) = φ12(n),
(iii) f8(1, 5;n) + f8(3, 5;n) = f16(1, 4;n) + f16(3, 4;n).
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Proof. From Theorems 2.1–2.4 we see that

f2(1, 4;n) + f2(3, 4;n) =
1
2 (R(1, 0, 15;n)−R(4, 2, 4;n)) = ψ3(n),

f4(1, 5;n) + f4(3, 5;n) =
1
2 (R(1, 0, 36;n)−R(4, 0, 9;n)) = φ12(n)

and

f8(1, 5;n) + f8(3, 5;n)

= 12 (R(1, 0, 64;n)−R(4, 4, 17;n)) = 12 (R(1, 0, 64;n)−R(4,−12, 25;n))
= f16(1, 4;n) + f16(3, 4;n).

So the corollary is proved.

Theorem 2.5. Let p be an odd prime. Let r be odd with p ∤ r and n ∈ N.
Then

f4p(r, p;n) =

{

1
2 (R(1, 0, 4p

2;n)−R(4, 0, p2;n)) if n ≡ r2 (mod 4p),
0 otherwise.

Proof. From Proposition 2.1 we know that

f4p(r, p;n) =
∑

x,y∈Z
x2−4pxy+8p2y2=n
x≡r (mod 2p)

1−
∑

x,y∈Z
(1+2p(p−1))x2+4p(2p−1)xy+8p2y2=n

x≡r (mod 2p)

1.

If n 6≡ r2 (mod 4p), then clearly f4p(r, p;n) = 0 by Definition 2.1. If n ≡ r2
(mod 4p), then x2 ≡ n (mod 4p) if and only if x ≡ ±r (mod 2p). Thus, by
the above we obtain

f4p(r, p;n) =
1
2R(1,−4p, 8p

2;n)− 12R(2p
2 − 2p+ 1, 4p(2p− 1), 8p2;n).

Since (1,−4p, 8p2) ∼ (1, 0, 4p2) and (2p2 − 2p+ 1, 4p(2p− 1), 8p2) ∼ (2p2 −
2p+1, 4p− 4, 4) ∼ (4, 4− 4p, 2p2− 2p+1) ∼ (4, 0, p2), we obtain the result.

3. The Euler product for
∑∞
n=1

∆(n,d)
ns . Let d be a discriminant with

conductor f and d0 = d/f
2. In view of [SW, Lemma 3.5] we introduce

(3.1) C(d) = f
∏

p|f

(

1− 1
p

(

d0
p

))

=















h(d)w(d0)

h(d0)w(d)
if d < 0,

h(d) log ε(d)

h(d0) log ε(d0)
if d > 0,

where p runs over all distinct prime divisors of f . If f is a prime, then clearly
C(d) = f −

(

d0
p

)

.

Definition 3.1. Let d be a discriminant with conductor f . Let d0 =
d/f2 and n ∈ N. Then we define

δ(n, d) =
∑

m|n

(

d

m

)
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and

∆(n, d) =







δ(n, d) if f ∤n,

−C(d)
(

d0
f

)ordf n−1
δ(n, d) if f |n.

Lemma 3.1 ([SW, Lemma 4.1]). Let d be a discriminant and n ∈ N.
Then δ(n, d) is a multiplicative function of n. Moreover ,

δ(n, d) =
∏

( dp )=−1

1 + (−1)ordp n
2

∏

( dp )=1

(1 + ordp n)

and
∞
∑

n=1

δ(n, d)

ns
=
∏

p

1

(1− p−s)
(

1−
(

d
p

)

p−s
) (Re(s) > 1).

From Definition 3.1 and Lemma 3.1 we have

Lemma 3.2. Let d be a discriminant with conductor f . Let s ∈ C with
Re(s) > 1. Set d0 = d/f2. If f is a prime, then ∆(n, d) is a multiplicative
function of n ∈ N and

∞
∑

n=1

∆(n, d)

ns
=

(

1− C(d)f−s

1−
(

d0
f

)

f−s

)

∏

p 6=f

1

(1− p−s)
(

1−
(

d0
p

)

p−s
) .

Lemma 3.3. Let d be a discriminant such that h(d) = 1 and the con-
ductor f is a prime. Set d0 = d/f

2 and δk = (1− (−1)k)/2 for k ∈ Z. For
n ∈ N we have

∆(n, d)

=















1

2

(

R

(

1, δd,
−d+ δd
4
;n

)

−R
(

f, δd0f,
−d0 + δd0
4

f ;n

))

if d < 0,

R

(

1, δd,
−d+ δd
4
;n

)

− C(d)R
(

f, δd0f,
−d0 + δd0
4

f ;n

)

if d > 0.

Proof. Let N(n, d) =
∑

K∈H(d)R(K,n). From [SW, Theorem 4.1] we
know that

(3.2) N(n, d) =



















0 if (n, f2) is not a square,

w(d) ·m
∏

p|m

(

1− 1
p

(

d/m2

p

))

∑

k| n
m2

(

d0
k

)

if (n, f2) = m2 for m ∈ N.
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Observing that h(d) = 1 and f is a prime, by (3.2) we have

(3.3) R(1, δd, (−d+ δd)/4;n) =































0 if f ‖n,
w(d)
∑

k|n

(

d0
k

)

if f ∤n,

w(d)C(d)
∑

k| n
f2

(

d0
k

)

if f2 |n.

Since h(d0) |h(d) (see [SW, Remark 2.2]) we see that h(d0) = 1. If f ∤n,
clearly R(f, δd0f, (−d0+δd0)f/4;n) = 0. If f |n, by (3.2), [SW, Remark 3.1]
and the fact that f(d0) = 1 we have

R(f, δd0f, (−d0 + δd0)f/4;n) = R(1, δd0 , (−d0 + δd0)/4;n/f)

= w(d0)
∑

k|nf

(

d0
k

)

.

Thus

1

w(d)

(

R

(

1, δd,
−d+ δd
4
;n

)

− C(d)w(d)

w(d0)
R

(

f, δd0f,
−d0 + δd0
4

f ;n

))

=















































∑

k|n

(

d0
k

)

− 0 if f ∤n,

0− C(d)
∑

k|nf

(

d0
k

)

= −C(d)
∑

k|n, f ∤k

(

d0
k

)

if f ‖n,

−C(d)
∑

k|nf , k∤ nf2

(

d0
k

)

= −C(d)
∑

k|n, f ∤k

(

d0
kfordf n−1

)

if f2 |n.

To complete the proof, we note that

∑

k|n, f ∤k

(

d0
k

)

=
∑

k|n

(

d0f
2

k

)

= δ(n, d)

and

C(d)w(d)

w(d0)
=

{

1 if d < 0,

C(d) if d > 0.

If q ≡ 1 (mod 4) is a prime such that h(4q) = 1, then h(q) = 1 by [SW,
Remark 2.2]. From (3.1) we find C(4q) = 2

(

1 − 12
(

q
2

))

= 2 − (−1)(q−1)/4.
Now applying Lemmas 3.2 and 3.3 in the cases d = −12,−16,−27,−28, 4q
we get
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Theorem 3.1. Let s ∈ C with Re(s) > 1. Then

(a)
∞
∑

n=1

1
2 (R(1, 0, 3;n)−R(2, 2, 2;n))

ns

=
1− 21−s
1 + 2−s

· 1

1− 3−s
∏

p≡5 (mod 6)

1

1− p−2s
∏

p≡1 (mod 6)

1

(1− p−s)2 ,

(b)
∞
∑

n=1

1
2 (R(1, 0, 4;n)−R(2, 0, 2;n))

ns

= (1− 21−s)
∏

p≡3 (mod 4)

1

1− p−2s
∏

p≡1 (mod 4)

1

(1− p−s)2 ,

(c)

∞
∑

n=1

1
2 (R(1, 1, 7;n)−R(3, 3, 3;n))

ns

= (1− 31−s)
∏

p≡2 (mod 3)

1

1− p−2s
∏

p≡1 (mod 3)

1

(1− p−s)2 ,

(d)
∞
∑

n=1

1
2 (R(1, 0, 7;n)−R(2, 2, 4;n))

ns

=
1− 21−s
1− 2−s ·

1

1− 7−s
∏

p≡3,5,6 (mod 7)

1

1− p−2s
∏

p≡1,2,4 (mod 7)
p 6=2

1

(1− p−s)2 .

(e) If q ≡ 1 (mod 4) is a prime such that h(4q) = 1 (for example q =
5, 13, 17, 29, 41, 53, 61, 73, 89, 97, 109, 113, . . .), then

∞
∑

n=1

R(1, 0,−q;n)− (2− (−1)(q−1)/4)R(2, 2, (1− q)/2;n)
ns

=
1− 21−s

1− (−1)(q−1)/42−s
∏

p>2

1

(1− p−s)
(

1−
(

q
p

)

p−s
) .

Theorem 3.2. For s ∈ C with Re(s) > 1 we have

∞
∑

n=1

ψ1(n)

ns
=

(

2− 1

1− 2−s
)

· 1

1− 7−s
∏

p≡3,5,6 (mod 7)

1

1− p−2s

×
∏

p≡1,2,4 (mod 7)
p 6=2

1

(1− p−s)2
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and
∞
∑

n=1

(−1)n−1ψ1(n)
ns

=
1

(1− 2−s)(1− 7−s)
∏

p≡3,5,6 (mod 7)

1

1− p−2s

×
∏

p≡1,2,4 (mod 7)
p 6=2

1

(1− p−s)2 .

Proof. From Theorem 2.1 we know that

ψ1(n) =
1
2 (R(1, 0, 7;n)−R(2, 2, 4;n)).

Using Lemma 3.3 with d = −28 we see that
(−1)n−1ψ1(n) = (−1)n−1(R(1, 0, 7;n)−R(2, 2, 4;n))/2

= (−1)n−1∆(n,−28) = δ(n,−28).
Thus applying Lemma 3.1 and Theorem 3.1 we obtain the result.

4. Values of ψk(n) and φk(n) and related identities

Theorem 4.1. For n ∈ N we have

ψ1(n) = (−1)n−1
∑

m|n

(−28
m

)

= (−1)n−1
∑

m|n, 2∤m

(

m

7

)

,

ψ2(n) =











(−1)(n−1)/2
∑

m|n

(

m

3

)

if 2 ∤n,

0 if 2 |n
and

ψ4(n) =











(−1)(n−1)/4
∑

m|n

(−1
m

)

if n ≡ 1 (mod 4),

0 if n 6≡ 1 (mod 4).
Proof. From the proof of Theorem 3.1 we see that

(−1)n−1ψ1(n) = δ(n,−28) =
∑

m|n

(−28
m

)

=
∑

m|n, 2∤m

(−7
m

)

=
∑

m|n, 2∤m

(

m

7

)

.

According to Theorem 2.1, [SW, Theorem 9.2] and Lemma 3.1 we have

ψ2(n) =
1

2
(R(1, 0, 12;n)−R(3, 0, 4;n))

=











(−1)(n−1)/2
∑

m|n

(−3
m

)

= (−1)(n−1)/2
∑

m|n

(

m

3

)

if 2 ∤n,

0 if 2 |n,
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ψ4(n) =
1
2 (R(1, 0, 16;n)−R(4, 4, 5;n))

=











(

2

n

)

∑

m|n

(−1
m

)

if 2 ∤n,

0 if 2 |n

=







(−1)(n−1)/4
∑

m|n

(−1
m

)

if n ≡ 1 (mod 4),

0 otherwise.

In the last step we note that if n ≡ 3 (mod 4), then
∑

m|n

(−1
m

)

=
∑

m|n
m<
√
n

((−1
m

)

+

( −1
n/m

))

=
∑

m|n
m<
√
n

(−1
m

)(

1+

(−1
n

))

= 0.

This completes the proof.

Theorem 4.2. For n ∈ N let n = 3αn0 (3 ∤n0). Then

ψ3(n) = (−1)n−1
1 + (−1)α

(

n0
3

)

2

∑

m|n, 2∤m

(

m

15

)

.

Proof. By Theorem 2.1 we have

ψ3(n) =
1
2 (R(1, 0, 15;n)−R(4,−2, 4;n))

=

{

1
2R(1, 0, 15;n) if 2 ∤n,
1
2 (R(1, 0, 15;n)−R(2, 1, 2;n/2)) if 2 |n.

Now we consider the following three cases.

Case 1: 2 ∤n. By the above, [SW, Theorem 9.3] and Lemma 3.1,

ψ3(n) =
1

2
R(1, 0, 15;n) =

1 + (−1)α
(

n0
3

)

2

∑

m|n

(−15
m

)

=
1 + (−1)α

(

n0
3

)

2

∑

m|n, 2∤m

(

m

15

)

.

Case 2: 2‖n. By [SW, Theorem 9.3] and Lemma 3.1, R(1, 0, 15;n) = 0
and

R(2, 1, 2;n/2) =

(

1− (−1)α
(

n0/2

3

))

∑

m|n2

(−15
m

)

=

(

1 + (−1)α
(

n0
3

))

∑

m|n2

(

m

15

)

.
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Thus

2ψ3(n) = R(1, 0, 15;n)−R(2, 1, 2;n/2)

= −
(

1 + (−1)α
(

n0
3

))

∑

m|n2

(

m

15

)

= −
(

1 + (−1)α
(

n0
3

))

∑

m|n, 2∤m

(

m

15

)

.

Case 3: 4 |n. From [SW, Theorem 9.3] and Lemma 3.1 we know that

R(1, 0, 15;n) =

(

1 + (−1)α
(

n0
3

))

∑

m|n4

(

m

15

)

and

R(2, 1, 2;n/2) =

(

1 + (−1)α
(

n0
3

))

∑

m|n2

(

m

15

)

.

Thus

ψ3(n) =
1
2 (R(1, 0, 15;n)−R(2, 1, 2;n/2)) = −

1 + (−1)α
(

n0
3

)

2

∑

m|n2 ,m∤n4

(

m

15

)

.

Observing that

∑

m|n2 ,m∤n4

(

m

15

)

=
∑

m|n, 2∤m

(

2ord2 n−1m

15

)

=
∑

m|n, 2∤m

(

m

15

)

we then get the desired result.

Summarizing the above we prove the following theorem.

Theorem 4.3. Let |q| < 1 and ψ(q) =∑∞n=0 qn(n+1)/2. Then

(i) qψ(q)ψ(q7) =

∞
∑

n=1

(

∑

m|n, 2∤m

(

m

7

))

qn.

(ii) ψ(q)ψ(q3) =
∞
∑

n=0

(

∑

m|2n+1

(

m

3

))

qn.

(iii) ψ2(q) =
∞
∑

n=0

(

∑

m|4n+1
(−1)(m−1)/2

)

qn.

(iv) ψ4(q) =

∞
∑

n=0

(

∑

d|2n+1
d
)

qn.



Ramanujan identities and Euler products 367

Proof. From Definition 2.2 we obtain

qψ(q)ψ(q7) =
∞
∑

n=1

(−1)n−1ψ1(n)qn.

Then, applying Theorem 4.1, we obtain (i). From Definition 2.2 and Theo-
rem 4.1 we have

qψ(−q2)ψ(−q6) =
∞
∑

n=1

ψ2(n)q
n =

∞
∑

n=0

(−1)n
(

∑

m|2n+1

(

m

3

))

q2n+1.

Thus

ψ(−q)ψ(−q3) =
∞
∑

n=0

(−1)n
(

∑

m|2n+1

(

m

3

))

qn.

Replacing q by −q we then obtain (ii).
We now consider (iii). It follows from Definition 2.2 and Theorem 4.1

that

qψ2(−q4) =
∞
∑

n=1

ψ4(n)q
n =

∞
∑

n=0

(−1)n
(

∑

m|4n+1

(−1
m

))

q4n+1,

from which (iii) follows.
Finally we consider (iv). Let rs(n) denote the number of ways in which

n can be represented as a sum of s squares. It is well known that (cf. [IR,
pp. 279, 282], [HW, pp. 242, 314])

r2(n) = 4
∑

d|n, 2∤d
(−1)(d−1)/2 and r4(n) =















8
∑

d|n
d if 2 ∤n,

24
∑

d|n, 2∤d
d if 2 |n.

Set ψ4(q) =
∑∞
n=0 cnq

n. From (iii) and the formula for r2(n) we see that

16ψ4(q) = (4ψ2(q))2 =
(

∞
∑

m=0

r2(4m+ 1)q
m
)2

.

Thus, using the fact that r2(4m+ 3) = 0 we derive that

16cn =
∑

k+m=4n+2
k,m≡1 (mod 4)

r2(k)r2(m) =
∑

1≤k≤4n+2
k≡1 (mod 4)

r2(k)r2(4n+ 2− k)

=
∑

1≤k≤4n+2
k≡1 (mod 2)

r2(k)r2(4n+ 2− k)

=
∑

0≤k≤4n+2
r2(k)r2(4n+ 2− k)−

∑

0≤m≤2n+1
r2(2m)r2(4n+ 2− 2m)
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= r4(4n+ 2)−
∑

0≤m≤2n+1
r2(m)r2(2n+ 1−m)

= r4(4n+ 2)− r4(2n+ 1) = 24
∑

d|4n+2, 2∤d
d− 8

∑

d|2n+1
d

= 16
∑

d|2n+1
d.

So (iv) is true and hence the theorem is proved.

Corollary 4.1 (Ramanujan). If |q| < 1, then

qψ(q)ψ(q7) =
q

1− q −
q3

1− q3 −
q5

1− q5 +
q9

1− q9 +
q11

1− q11 −
q13

1− q13 + · · · ,

where the cycle of coefficients is of length 14.

Proof. Since
∑

m|n, 2∤m

(

m

7

)

=
∑

m|n
m≡1,9,11 (mod 14)

1−
∑

m|n
m≡3,5,13 (mod 14)

1,

the result follows from Theorem 4.3(i).

Remark 4.1. Corollary 4.1 was first found by S. Ramanujan. In
[B, pp. 302–303], Berndt wrote: “The first two formulas (Corollary 4.1 is
the first item in Entry 17.) are of extreme interest, since they appear to
indicate that Ramanujan was acquainted with a theorem equivalent to the
addition theorem for elliptic integrals of the second kind. Although it would
appear to be very difficult to prove (i) without this addition theorem, it
is apparently not found in the notebooks.” In 1999, Williams ([W]) gave
a proof of Theorem 4.3(i) and Corollary 4.1 without the use of elliptic in-
tegrals. Clearly we also prove the above result of Ramanujan without the
addition theorem for elliptic integrals.

From Theorem 4.3(ii) one can easily deduce

Corollary 4.2 (Ramanujan ([B], [W, p. 378])). If |q| < 1, then

qψ(q2)ψ(q6) =
q

1− q2 −
q5

1− q10 +
q7

1− q14 −
q11

1− q22 + · · · .

Remark 4.2. By equating powers of qn in Theorem 4.3 we obtain
∣

∣

∣

∣

{

(x, y)

∣

∣

∣

∣

n− 1 = x(x+ 1)

2
+ 7 · y(y + 1)

2
, x, y ∈ N ∪ {0}

}∣

∣

∣

∣

=
∑

m|n, 2∤m

(

m

7

)

,

∣

∣

∣

∣

{

(x, y)

∣

∣

∣

∣

n =
x(x+ 1)

2
+ 3 · y(y + 1)

2
, x, y ∈ N ∪ {0}

}∣

∣

∣

∣

=
∑

m|2n+1

(

m

3

)

,



Ramanujan identities and Euler products 369

∣

∣

∣

∣

{

(x, y)

∣

∣

∣

∣

n =
x(x+ 1)

2
+
y(y + 1)

2
, x, y ∈ N ∪ {0}

}∣

∣

∣

∣

=
∑

m|4n+1
(−1)(m−1)/2,

∣

∣

∣

∣

{

(x, y, z, t)

∣

∣

∣

∣

n =
x(x+ 1)

2
+
y(y + 1)

2
+
z(z + 1)

2
+
t(t+ 1)

2
,

x, y, z, t ∈ N ∪ {0}
}∣

∣

∣

∣

=
∑

d|2n+1
d.

The last two formulae give the number of representations of n ∈ N as the sum
of two and four triangular numbers respectively. Proofs of these formulae
have been given by Adiga [A] and Ono, Robins and Wahl [ORW]. The latter
formula was known to Legendre [L]. From Definition 2.2, Theorem 4.2 and
[W, (53)] we deduce that if n = 3αn0 ≥ 2 (3 ∤n0), then

|{(x, y) | n− 1 = 3x(x+ 1)/2 + 5y(y + 1)/2, x, y ∈ N ∪ {0}}|

=
1

2

(

1 + (−1)α
(

n0
3

))

∑

m|n, 2∤m

(

m

15

)

and

|{(x, y) | n− 2 = x(x+ 1)/2 + 15y(y + 1)/2, x, y ∈ N ∪ {0}}|

=
1

2

(

1− (−1)α
(

n0
3

))

∑

m|n, 2∤m

(

m

15

)

.

Using modular equations Ramanujan proved (see [B, p. 139])

ψ2(q) =

∞
∑

k=0

(−1)kqk(k+1) 1 + q
2k+1

1− q2k+1 , ψ4(q2) =

∞
∑

n=0

(2n+ 1)q2n+1

1− q4n+2 ,

qψ8(q) =
∞
∑

n=0

n3qn

1− q2n (|q| < 1).

Theorem 4.4. Let n ∈ N. Then

(i)

φ1(n) =















































(−1)

∑

p=2x2+xy+3y2

ordp n≡1 (mod 3)

1

∏

p=x2+xy+6y2 6=23
(1 + ordp n)

if 2 | ordp n for every prime p with
(

p
23

)

= −1,
and if ordp n ≡ 0, 1 (mod 3) for every
prime p = 2x2 + xy + 3y2,

0 otherwise.
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(ii) If 2 |n, then φ2(n) = 0. If 2 ∤n, then

φ2(n) =











































(−1)

∑

p=3x2+2xy+4y2

ordp n≡1 (mod 3)

1

∏

p=x2+11y2 6=11
(1 + ordp n)

if 2 | ordp n for every odd prime p ≡ 2, 6, 7, 8, 10
(mod 11), and if ordp n ≡ 0, 1 (mod 3) for
every prime p = 3x2 + 2xy + 4y2,

0 otherwise.

(iii) If 2 |n or 3 |n, then φ6(n) = 0. If 2 ∤n and 3 ∤n, then

φ6(n) =















































(−1)

∑

p=4x2+2xy+7y2

ordp n≡1 (mod 3)

1

∏

p=x2+27y2

(1 + ordp n)

if 2 | ordp n for every prime p ≡ 5 (mod 6),
and if ordp n ≡ 0, 1 (mod 3) for every
prime p = 4x2 + 2xy + 7y2,

0 otherwise.

Proof. From Theorem 2.2 we know that

(4.1)

φ1(n) =
1
2 (R(1, 1, 6;n)−R(2, 1, 3;n)) = F ([2, 1, 3], n) (d = −23),

φ2(n) =
1
2 (R(1, 0, 11;n)−R(3, 2, 4;n)) = F ([3, 2, 4], n) (d = −44),

φ6(n) =
1
2 (R(1, 0, 27;n)−R(4, 2, 7;n)) = F ([4, 2, 7], n) (d = −108).

Thus applying [SW, Theorem 10.2] we obtain the result.

Theorem 4.5. Let n ∈ N. Then

(i)

φ3(n) =



























(−1)µ
∏

p≡1,4,16 (mod 21)
(1 + ordp n)

if 3 ∤n and 2 | ordp n for every
prime p 6≡ 1, 4, 7, 16 (mod 21),

0 otherwise,

where

µ =
∑

p≡2,8,11 (mod 21)
ordp n≡2 (mod 4)

1 +
∑

p=4x2+xy+4y2

ordp n≡1 (mod 2)

1.
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(ii)

φ4(n) =























(−1)µ
∏

p≡1,9 (mod 20)
(1 + ordp n)

if 2 ∤n and 2 | ordp n
for every prime p 6≡ 1, 5, 9 (mod 20),

0 otherwise,

where

µ =
∑

p≡3,7 (mod 20)
ordp n≡2 (mod 4)

1 +
∑

p=4x2+5y2

ordp n≡1 (mod 2)

1.

(iii)

φ8(n) =























(−1)µ
∏

p≡1 (mod 8)
(1 + ordp n)

if 2 ∤n and 2 | ordp n
for every prime p 6≡ 1 (mod 8),

0 otherwise,

where

µ =
∑

p≡3 (mod 8)
ordp n≡2 (mod 4)

1 +
∑

p=4x2+4xy+9y2

ordp n≡1 (mod 2)

1.

(iv)

φ12(n) =























(−1)µ
∏

p≡1 (mod 12)
(1 + ordp n)

if (n, 6) = 1 and 2 | ordp n
for every prime p 6≡ 1 (mod 12),

0 otherwise,

where

µ =
∑

p≡5 (mod 12)
ordp n≡2 (mod 4)

1 +
∑

p=4x2+9y2

ordp n≡1 (mod 2)

1.

Proof. From [SW, Proposition 11.1(i)] we know that H(d) is a cyclic
group of order 4 when d ∈ {−63,−80,−128,−144}. By Theorem 2.2 we
have

φ3(n) =
1
2 (R(1, 1, 16;n)−R(4, 1, 4;n)) = F ([2, 1, 8], n) (d = −63),

φ4(n) =
1
2 (R(1, 0, 20;n)−R(4, 0, 5;n)) = F ([3, 2, 7], n) (d = −80),

φ8(n) =
1
2 (R(1, 0, 32;n)−R(4, 4, 9;n)) = F ([3, 2, 11], n) (d = −128),

φ12(n) =
1
2 (R(1, 0, 36;n)−R(4, 0, 9;n)) = F ([5, 4, 8], n) (d = −144).

For any prime p it is clear that

p ∈ R([2, 1, 8]) ⇔ p ≡ 2, 8, 11 (mod 21),
p 6= 7, p ∈ R([1, 1, 16]) ∪R([4, 1, 4]) ⇔ p ≡ 1, 4, 16 (mod 21),
p ∈ R([3, 2, 7]) ⇔ p ≡ 3, 7 (mod 20),
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p 6= 2, 5, p ∈ R([1, 0, 20]) ∪R([4, 0, 5]) ⇔ p ≡ 1, 9 (mod 20),
p ∈ R([3, 2, 11]) ⇔ p ≡ 3 (mod 8),
p 6= 2, p ∈ R([1, 0, 32]) ∪R([4, 4, 9]) ⇔ p ≡ 1 (mod 8),
p ∈ R([5, 4, 8]) ⇔ p ≡ 5 (mod 12),
p 6= 2, p ∈ R([1, 0, 36]) ∪R([4, 0, 9]) ⇔ p ≡ 1 (mod 12).

Thus applying [SW, Theorem 11.1] in the cases d = −63,−80,−128,−144
yields the result.

5. The Euler product for L(M, s) (M ∈ H(d)). Let d be a discrimi-
nant. Suppose

(5.1) H(d) = {Ak11 · · ·Akrr | 0 ≤ k1 < h1, . . . , 0 ≤ kr < hr}
with h1 · · ·hr = h(d). For n ∈ N and M = Am11 · · ·Amrr ∈ H(d), following
[SW, Definition 7.1] we define

F (M,n) =
1

w(d)

∑

0≤k1<h1
···

0≤kr<hr

cos 2π

(

k1m1
h1
+ · · ·+ krmr

hr

)

(5.2)

×R(Ak11 · · ·Akrr , n).
Let N(n, d) =

∑

M∈H(d)R(M,n). Let s ∈ C be such that Re(s) > 1.

From [SW, Theorem 4.1] and the same argument as in the proof of
[HKW, Corollary 9.1] we know that for any ε > 0 there exists a con-
stant C(ε) such that N(n, d) ≤ C(ε)nε. Letting ε ∈ (0,Re(s) − 1) we
see that

∑∞
n=1N(n, d)n

−s converges absolutely. Hence
∑∞
n=1R(M,n)n−s

and
∑∞
n=1 F (M,n)n−s converge absolutely since R(M,n) ≤ N(n, d) and

|F (M,n)|≤N(n, d)/w(d). Using the same argument, for p > 1 and Re(s)>1
we see that

∑∞
t=1 F (M,pt)p−st converges absolutely.

Definition 5.1. Let d be a discriminant and M ∈ H(d). Let s ∈ C be
such that Re(s) > 1. Define

Z(M, s) =

∞
∑

n=1

R(M,n)

ns
and L(M, s) =

∞
∑

n=1

F (M,n)

ns
.

Then Z(M, s) and L(M, s) are analytic functions of s in Re(s) > 1, and
they can be continued analytically to the whole complex plane except for a
simple pole at s = 1.

Let d be a discriminant and M = [a, b, c] ∈ H(d). For Re(s) > 1 it is
clear that

Z(M, s) =
∞
∑

n=1

R(M,n)

ns
=
∞
∑

n=1

R(a, b, c;n)

ns
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=
∞
∑

n=1

∑

{x,y} is primary
n=ax2+bxy+cy2

1

ns
=

∑

{x,y} is primary

1

(ax2 + bxy + cy2)s
.

Thus,

(5.3) Z(M, s) =
∑

x,y∈Z
(x,y) 6=(0,0)

1

(ax2 + bxy + cy2)s
for d < 0

and

(5.4) Z(M, s) =
∑

x,y∈Z

2ax+(b−
√
d)y>0

1≤
∣

∣
2ax+(b+

√

d)y

2ax+(b−
√

d)y

∣

∣<ε(d)2

1

(ax2 + bxy + cy2)s
for d > 0.

For a negative discriminant d and M ∈ H(d), by (5.3) and a classical
result due to M. Lerch (see [D], [ZW], [SC]) we have the following functional
equation for Z(M, s):

(5.5)

(
√
−d
2π

)s

Γ (s)Z(M, s) =

(
√
−d
2π

)1−s
Γ (1− s)Z(M, 1− s),

where Γ (s) is the Gamma function.
For a positive discriminant d and M ∈ H(d), we do not know if Z(M, s)

has a functional equation like (5.5).

Theorem 5.1. Let d be a discriminant. Let M ∈ H(d) and s ∈ C.

(i) If Re(s) > 1, then

L(M, s) =
∏

p

(

1 +
∞
∑

t=1

F (M,pt)p−st
)

.

(ii) If d < 0 and s 6= 0, 1, then
(
√
−d
2π

)s

Γ (s)L(M, s) =

(
√
−d
2π

)1−s
Γ (1− s)L(M, 1− s).

Proof. From [SW, Theorem 7.2] we know that F (M,n) is a multi-
plicative function of n ∈ N. By the previous argument, L(M, s) and
∑∞
t=1 F (M,pt)p−st converge absolutely if Re(s) > 1. Thus, for m ∈ N and
Re(s) > 1 we have

∏

p≤m

(

1 +
∞
∑

t=1

F (M,pt)p−st
)

=
∑

n

F
(

M,
∏

p≤m
pordp n

)(

∏

p≤m
pordp n

)−s

=
m
∑

n=1

F (M,n)

ns
+Rm(M, s),
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where the first sum is taken over all those positive integers n whose prime
divisors are less than m, and clearly

|Rm(M, s)| ≤
∞
∑

n=m+1

|F (M,n)n−s|.

Since
∑∞
n=1 F (M,n)n−s converges absolutely, we see that if m → ∞, then

∑∞
n=m+1 |F (M,n)n−s| → 0 and so Rm(M, s)→ 0. Therefore

∏

p

(

1 +
∞
∑

t=1

F (M,pt)p−st
)

converges and

L(M, s) =
∞
∑

n=1

F (M,n)

ns
=
∏

p

(

1 +
∞
∑

t=1

F (M,pt)p−st
)

for Re(s) > 1.

This proves (i).
Now we consider (ii). Suppose H(d) is given by (5.1), d < 0 and M =

Am11 · · ·Amrr . From (5.2) we see that

L(M, s) =
1

w(d)

∑

0≤k1<h1
···

0≤kr<hr

cos 2π

(

k1m1
h1
+ · · ·+ krmr

hr

) ∞
∑

n=1

R(Ak11 · · ·Akrr , n)
ns

=
1

w(d)

∑

0≤k1<h1
···

0≤kr<hr

cos 2π

(

k1m1
h1
+ · · ·+ krmr

hr

)

· Z(Ak11 · · ·Akrr , s).

Thus applying (5.5) we obtain

w(d)

(
√
−d
2π

)s

Γ (s)L(M, s)

=
∑

0≤k1<h1
···

0≤kr<hr

cos 2π

(

k1m1
h1
+ · · ·+ krmr

hr

)

·
(
√
−d
2π

)s

Γ (s)Z(Ak11 · · ·Akrr , s)

=
∑

0≤k1<h1
···

0≤kr<hr

cos 2π

(

k1m1
h1
+ · · ·+ krmr

hr

)

·
(
√
−d
2π

)1−s

× Γ (1− s)Z(Ak11 · · ·Akrr , 1− s)

= w(d)

(
√
−d
2π

)1−s
Γ (1− s)L(M, 1− s).

So (ii) is true and the proof is complete.
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Let d be a discriminant with conductor f , and let H(d) be given by (5.1).
ForK ∈ H(d) we useR(K) to denote the set of integers represented by forms
in K. Let p be a prime not dividing the conductor f . When p | d, from [MW,
Lemma 5.3] (or [SW, Theorem 8.1(ii)]) we know that p is represented by

exactly one class A ∈ H(d) and A = A
ε1h1/2
1 · · ·Aεrhr/2r with ε1, . . . , εr ∈

{0, 1}.
Let M = Am11 · · ·Amrr ∈ H(d) and t ∈ N ∪ {0}. By [SW, Theorem 8.1]

we have

(5.6) F (M,pt)

=



































(1 + (−1)t)/2 if

(

d

p

)

= −1,

(−1)t
∑r
j=1 εjmj if p | d and p ∈ R(Aε1h1/21 · · ·Aεrhr/2r ),

Ut

(

cos 2π
r
∑

j=1

ajmj
hj

)

if p ∤ d and p ∈ R(Aa11 · · ·Aarr ),

where {Un(x)} is the Chebyshev polynomial of the second kind given by

(5.7) U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x)−Un−1(x) (n ≥ 1).

It is well known that (cf. [MOS, p. 259])

(5.8)
∞
∑

n=0

Un(x)q
n =

1

1− 2xq + q2 (|x| < 1, |q| < 1).

Thus, if p is a prime such that
(

d
p

)

= 1 and so p is represented by some class

Aa11 · · ·Aarr ∈ H(d), then for s ∈ C with Re(s) > 1 we have

(5.9) 1 +
∞
∑

t=1

F (Am11 · · ·Amrr , pt)p−st

=
∞
∑

t=0

Ut

(

cos 2π

(

a1m1
h1
+ · · ·+ armr

hr

))

· p−st

=
1

1− 2 cos 2π
(

a1m1
h1
+ · · ·+ armrhr

)

· p−s + p−2s .

Now we are in a position to give

Theorem 5.2. Let d be a discriminant with conductor f . Let H(d) be
given by (5.1). Let M = Am11 · · ·Amrr ∈ H(d) and s ∈ C with Re(s) > 1.
Then
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∞
∑

n=1
(n,f)=1

F (M,n)

ns

=
∏

( dp )=−1

1

1− p−2s
∏

p∈R(Aε1h1/21 ···Aεrhr/2r )
p|d, p∤f

1

1− (−1)ε1m1+···+εrmrp−s

×
∏

p∈R(Aa11 ···Aarr )
p∤d

1

1− 2 cos 2π
(

a1m1
h1
+ · · ·+ armrhr

)

· p−s + p−2s ,

where ε1, . . . , εr ∈ {0, 1} are chosen such that p ∈ R(A
ε1h1/2
1 · · ·Aεrhr/2r )

when p | d and p ∤ f , and a1, . . . , ar ∈ Z are chosen so that p ∈ R(Aa11 · · ·
· · ·Aarr ) when

(

d
p

)

= 1.

Proof. Since F (M,n) is a multiplicative function of n (see [SW, Theorem
7.2]), by the argument similar to the proof of Theorem 5.1(i) we see that

(5.10)
∏

p∤f

(

1 +

∞
∑

t=1

F (M,pt)p−st
)

=

∞
∑

n=1
(n,f)=1

F (M,n)

ns
.

Let p be a prime not dividing f . If
(

d
p

)

= −1, it follows from (5.6) that

1 +
∞
∑

t=1

F (M,pt)p−st =
∞
∑

t=0

1 + (−1)t
2

p−st =
1

1− p−2s .

If p | d, then p is represented by exactly one class A in H(d), and A =
A
ε1h1/2
1 · · ·Aεrhr/2r with ε1, . . . , εr ∈ {0, 1}. By (5.6) we obtain

1 +

∞
∑

t=1

F (M,pt)p−st =
∞
∑

t=0

(−1)t
∑r
j=1 εjmjp−st =

1

1− (−1)
∑r
j=1 εjmjp−s

.

If
(

d
p

)

= 1 so that p is represented by some class Aa11 · · ·Aarr ∈ H(d), by
(5.9) we have

1 +
∞
∑

t=1

F (M,pt)p−st =
1

1− 2 cos 2π
(

a1m1
h1
+ · · ·+ armrhr

)

· p−s + p−2s .

Now putting all the above together we deduce the desired result.

From Theorem 5.2 we have

Corollary 5.1. Let d be a discriminant with conductor f and 2 ∤h(d).
Let H(d) be given by (5.1). For M = Am11 · · ·Amrr ∈ H(d) and s ∈ C with
Re(s) > 1 we have
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∞
∑

n=1
(n,f)=1

F (M,n)

ns

=
∏

( dp )=−1

1

1− p−2s
∏

p|d, p∤f

1

1− p−s

×
∏

p∈R(Aa11 ···Aarr )
p∤d

1

1− 2 cos 2π
(

a1m1
h1
+ · · ·+ armrhr

)

· p−s + p−2s ,

where a1, . . . , ar ∈ Z are determined by p ∈ R(Aa11 · · ·Aarr ) when
(

d
p

)

= 1.

Proof. If p is a prime such that p | d and p ∤ f , then we must have p ∈ R(I)
since 2 ∤h(d). Now the result follows from Theorem 5.2.

Let d be a discriminant with conductor f . Suppose m ∈ N and m | f .
In [SW, Lemma 2.1] we showed that any class in H(d) can be written as
[a, bm, cm2], where a, b, c ∈ Z, (a,m) = 1 and gcd(a, b, c) = 1. Following
[SW] and [KW1] we define ϕ1,m([a, bm, cm

2]) = [a, b, c]. From [SW, Theorem
2.1] or [KW1, p. 355] we know that ϕ1,m is a surjective homomorphism from
H(d) to H(d/m2). Thus, if H(d) is cyclic with generator A, then ϕ1,m(A)
is a generator of H(d/m2).

Theorem 5.3. Let d be a discriminant with conductor f and d0 = d/f
2.

Suppose that H(d) is cyclic with generator A and order h. Let k ∈ Z and
s ∈ C with Re(s) > 1. For a prime p let αp = ordp f , hp = h(d/p2αp),
and let βk,p denote the maximum j ∈ {0, 1, . . . , αp} such that h/h(d/p2j) | k.
Then

L(Ak, s)

=
∏

p∤f

1

1−
(

1 +
(

d0
p

))

cos
2πkap
h p−s +

(

d0
p

)

p−2s

∏

p|f
h∤khp

1− p(1−2s)(1+βk,p)
1− p1−2s

×
∏

p|f
h|khp

(

1− pαp(1−2s)
1− p1−2s +

pαp(1−2s)−1
(

p−
(

d0
p

))

1−
(

1 +
(

d0
p

))

cos
2πkap
h p−s +

(

d0
p

)

p−2s

)

,

where ap ∈ Z is uniquely determined by 0 ≤ ap ≤ hp/2, p ∈ R(Aapp ) and
Ap = ϕ1,pαp (A).

Proof. Let p be a prime such that p | f (that is αp ∈ N). Since

h(d/p2βk,p) |h(d/p2j) for j ≤ βk,p,
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we see that

h/h(d/p2j) | k for j = 0, 1, . . . , βk,p.

Thus, applying [SW, Theorem 8.4] we obtain

1 +

2αp−1
∑

t=1

F (Ak, pt)p−st

= 1 +

αp−1
∑

j=1

F (Ak, p2j)p−2js =

min{βk,p,αp−1}
∑

j=0

pj · p−2js

=

min{βk,p,αp−1}
∑

j=0

pj(1−2s) =
1− pmin{βk,p+1,αp}(1−2s)

1− p1−2s .

Now suppose t ∈ N and t ≥ 2αp. From [SW, Theorem 8.3(ii)] (with n = pt,
m = pαp and s = k) we know that

F (Ak, pt) =







pαp
(

1− 1
p

(

d0
p

))

F (Akpp , p
t−2αp) if βk,p = αp,

0 if βk,p < αp,

where

Ap = ϕ1,pαp (A) ∈ H(d/p2αp) and kp = khp/h ∈ Z.

Thus, if βk,p = αp, then

∞
∑

t=2αp

F (Ak, pt)p−st = pαp
(

1− 1
p

(

d0
p

)) ∞
∑

t=2αp

F (Akpp , p
t−2αp)p−st

= pαp(1−2s)
(

1− 1
p

(

d0
p

)) ∞
∑

j=0

F (Akpp , p
j)p−js.

Since ϕ1,pαp is a surjective homomorphism from H(d) to H(d/p2αp), we see
that Ap is a generator of H(d/p

2αp). Note that

d/p2αp = d0(f/p
αp)2, p ∤ f/pαp and k/h = kp/hp.

By the proof of Theorem 5.2 the sum

1 +
∞
∑

j=1

F (Akpp , p
j)p−js
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is equal to


































1

1− p−2s if

(

d0
p

)

= −1,
1

1− (−1)εpkp p−s if p | d0 and p ∈ R(Aεphp/2p ),

1

1− 2 cos 2πapkphp
p−s + p−2s

if

(

d0
p

)

= 1 and p ∈ R(Aapp ),

=
1

1−
(

1 +
(

d0
p

))

cos
2πkap
h p−s +

(

d0
p

)

p−2s
,

where εp ∈ {0, 1} is given by p ∈ R(A
εphp/2
p ) when p | d0, and ap ∈ Z is

determined by 0 ≤ ap ≤ hp/2 and p ∈ R(Aapp ) when
(

d0
p

)

= 0, 1. Thus

1 +
∞
∑

t=1

F (Ak, pt)p−st = 1 +

2αp−1
∑

t=1

F (Ak, pt)p−st +
∞
∑

t=2αp

F (Ak, pt)p−st

=



















1− p(1−2s)(1+βk,p)
1− p1−2s if βk,p < αp,

1− pαp(1−2s)
1− p1−2s +

pαp(1−2s)−1
(

p−
(

d0
p

))

1−
(

1 +
(

d0
p

))

cos
2πkap
h p−s +

(

d0
p

)

p−2s
if βk,p = αp.

By (5.10) and Theorem 5.2 we have

∏

p∤f

(

1 +
∞
∑

t=1

F (Ak, pt)p−st
)

=
∏

( dp )=−1

1

1− p−2s
∏

p∈R(Aεh/2)
p|d, p∤f

1

1− (−1)kεp−s

×
∏

p∈R(Aa)
( dp )=1

1

1− 2 cos 2πkah p−s + p−2s

=
∏

p∤f

1

1−
(

1 +
(

d0
p

))

cos
2πkap
h p−s +

(

d0
p

)

p−2s
,

where ε ∈ {0, 1} is given by p ∈ R(Aεh/2) when p | d, and a ∈ Z is determined
by 0 ≤ a ≤ h/2 and p ∈ R(Aa) when

(

d
p

)

= 0, 1.

Note that Ap = A when p ∤ f . Putting all the above together with The-
orem 5.1(i) gives the result.

Corollary 5.2. Let d be a discriminant with conductor f and d0 =
d/f2. Suppose that H(d) is cyclic with generator A and h = h(d) ≡ 1
(mod 2). Let k ∈ Z. For a prime p let αp = ordp f , hp = h(d/p

2αp), and let
βk,p denote the maximum number j ∈ {0, 1, . . . , αp} such that h/h(d/p2j) | k.
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For s ∈ C with Re(s) > 1 we have

L(Ak, s)

=
∏

( dp )=−1

1

1− p−2s
∏

p|d, p∤f

1

1− p−s
∏

p∈R(Aa)
( dp )=1

1

1− 2 cos 2πkah p−s + p−2s

×
∏

p|f
h∤khp

1− p(1−2s)(1+βk,p)
1− p1−2s

∏

p|f, h|khp
(
d0
p )=−1

(

1− pαp(1−2s)
1− p1−2s +

pαp(1−2s)−1(p+ 1)

1− p−2s
)

×
∏

p|f, h|khp
p|d0

(

1− pαp(1−2s)
1− p1−2s +

pαp(1−2s)

1− p−s
)

×
∏

p|f, h|khp
(
d0
p )=1, p∈R(A

ap
p )

(

1− pαp(1−2s)
1− p1−2s +

pαp(1−2s)−1(p− 1)
1− 2 cos 2πkaph p−s + p−2s

)

,

where a ∈ Z is determined by 0 ≤ a ≤ (h − 1)/2 and p ∈ R(Aa) when
(

d
p

)

= 1, Ap = ϕ1,pαp (A), and ap ∈ Z is determined by 0 ≤ ap ≤ (hp − 1)/2
and p ∈ R(Aapp ) when p | f and

(

d0
p

)

= 1.

Proof. If p is a prime such that p | d and p ∤ f , from [MW, Lemma 5.3]
or [SW, Lemma 5.2] we know that p is represented by unique class M in
H(d) and M =M−1. Thus we must have p ∈ R(I) since H(d) is cyclic and
2 ∤h(d). Now the result follows from Theorem 5.3.

Theorem 5.4. Let d be a discriminant such that h(d) = 5. Let f be the
conductor of d, and let A be a generator of H(d). Let

F (A, n) =
1

w(d)

(

R(I, n) +

√
5− 1
2

R(A, n)−
√
5 + 1

2
R(A2, n)

)

,

F (A2, n) =
1

w(d)

(

R(I, n)−
√
5 + 1

2
R(A, n) +

√
5− 1
2

R(A2, n)

)

.

For s ∈ C with Re(s) > 1 we have

∞
∑

n=1
(n,f)=1

F (A, n)

ns
=
∏

( dp )=−1

1

1− p−2s
∏

p|d
p∤f

1

1− p−s
∏

p∈R(I)
p∤d

1

(1− p−s)2

×
∏

p∈R(A)

1

1−
√
5−1
2 p−s + p−2s

∏

p∈R(A2)

1

1 +
√
5+1
2 p−s + p−2s

,
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∞
∑

n=1
(n,f)=1

F (A2, n)

ns
=
∏

( dp )=−1

1

1− p−2s
∏

p|d
p∤f

1

1− p−s
∏

p∈R(I)
p∤d

1

(1− p−s)2

×
∏

p∈R(A2)

1

1−
√
5−1
2 p−s + p−2s

∏

p∈R(A)

1

1 +
√
5+1
2 p−s + p−2s

.

Proof. The result follows from Corollary 5.1, [SW, Theorem 7.4] and the
facts

cos
2π

5
= sin

π

10
=

√
5− 1
4

, cos
4π

5
= − cos π

5
= −
√
5 + 1

4
.

From Theorem 5.2 and [SW, Theorem 7.4] we can easily deduce

Theorem 5.5. Let d be a discriminant such that h(d) = 6. Let f be the
conductor of d, and let A be a generator of H(d). Let

F (A, n) =
1

w(d)
(R(I, n) +R(A, n)−R(A2, n)−R(A3, n)),

F (A2, n) =
1

w(d)
(R(I, n)−R(A, n)−R(A2, n) +R(A3, n)),

F (A3, n) =
1

w(d)
(R(I, n)− 2R(A, n) + 2R(A2, n)−R(A3, n)).

For j = 1, 2, 3 and s ∈ C with Re(s) > 1 we have

∞
∑

n=1
(n,f)=1

F (Aj , n)

ns

=
∏

( dp )=−1

1

1− p−2s
∏

p∈R(I)
p|d, p∤f

1

1− p−s
∏

p∈R(A3)
p|d, p∤f

1

1− (−1)jp−s

×
∏

p∈R(I)
p∤d

1

(1− p−s)2
∏

p∈R(A)

1

1− cjp−s + p−2s

×
∏

p∈R(A2)

1

1− (−1)jcjp−s + p−2s
∏

p∈R(A3)
p∤d

1

(1− (−1)jp−s)2 ,

where

cj = 2 cos
jπ

3
=







1 if j = 1,

−1 if j = 2,
−2 if j = 3.
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6. The Euler product for L(A, s) when H(d) = {I, A}. Let d be a
discriminant with h(d) = 2. Suppose I is the principal class and A is the
generator of H(d). We recall that

F (A, n) =

{

R(I, n)−R(A, n) if d > 0,
1
2 (R(I, n)−R(A, n)) if d < 0

and

L(A, s) =
∞
∑

n=1

F (A, n)

ns
(Re(s) > 1).

Putting h = 2 and k = 1 in Theorem 5.3 we deduce

Theorem 6.1. Let d be a discriminant with conductor f . Suppose h(d)
= 2 and H(d) = {I, A}. For a prime p let αp be the nonnegative integer
such that pαp ‖ f , hp = h(d/p2αp), and let βp denote the maximum j ∈
{0, 1, . . . , αp} such that h(d/p2j) = 2. Then for s ∈ C with Re(s) > 1 we
have

L(A, s) =
∏

p|d, p∤f
p∈R(I)

1

1− p−s
∏

p|d, p∤f
p∈R(A)

1

1 + p−s

∏

( dp )=−1

1

1− p−2s

×
∏

p∈R(I)
p∤d

1

(1− p−s)2
∏

p∈R(A)
p∤d

1

(1 + p−s)2

∏

p|f
hp=1

1− p(1−2s)(1+βp)
1− p1−2s

×
∏

p|f
hp=2

(

1− pαp(1−2s)
1− p1−2s +

pαp(1−2s)−1
(

p−
(

d0
p

))

1− (−1)ap
(

1 +
(

d0
p

))

p−s +
(

d0
p

)

p−2s

)

,

where ap = 0 or 1 according as p is represented by the principal class in
H(d/p2αp) or not.

Theorem 6.2. Let d < 0 be a discriminant with h(d) = 2, which is
given in [SW,Table 9.1]. Let f be the conductor of d and H(d) = {I, A}
with A2 = I. Let s ∈ C with Re(s) > 1.

(i) If d 6= −60, then

L(A, s) =
∏

( dp )=−1

1

1− p−2s
∏

p|d, p∤f
p∈R(I)

1

1− p−s
∏

p|d, p∤f
p∈R(A)

1

1 + p−s

×
∏

p∈R(I)
p∤d

1

(1− p−s)2
∏

p∈R(A)
p∤d

1

(1 + p−s)2
,

where I, A and the conditions for p ∈ R(I) and p ∈ R(A) are given
in [SW, Table 9.1].
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(ii) If d = −60, then I = [1, 0, 15], A = [3, 0, 5] and

L(A, s)

=
1 + 21−s + 21−2s

(1 + 2−s)2
· 1

1 + 3−s
· 1

1 + 5−s

∏

p≡7,11,13,14 (mod 15)

1

1− p−2s

×
∏

p≡1,4 (mod 15)

1

(1− p−s)2
∏

p≡2,8 (mod 15)
p 6=2

1

(1 + p−s)2
.

Proof. If d 6= −60 and p is a prime such that p | f , by [SW, Tables 9.1,
9.2 and (9.3)] we see that h(d/p2) = 1. Hence hp = h(d/p2αp) = 1 for
αp = ordp f by [SW, Theorem 8.3(ii)]. Now applying Theorem 6.1 and [SW,
Table 9.1] we obtain (i).

Now suppose d = −60. Then f = 2 and d0 = d/f2 = −15. Let p be
an odd prime. By [SW, Table 9.1] we have H(−60) = {[1, 0, 15], [3, 0, 5]},
H(−15) = {[1, 1, 4], [2, 1, 2]}, p ∈ R([1, 0, 15]) ⇔ p ≡ 1, 4 (mod 15) ⇔ p ∈
R([1, 1, 4]), and p ∈ R([3, 0, 5]) ⇔ p ∈ R([2, 1, 2]) ⇔ p = 3, 5 or p ≡ 2, 8
(mod 15). If p is a prime such that p | f , we must have p = 2, αp = 1,
hp = 2 and

(

d0
p

)

=
(−15
2

)

= 1. Thus applying Theorem 6.1 and the above

we obtain (ii). The proof is now complete.

Theorem 6.3. Let s ∈ C with Re(s) > 1. Then

∞
∑

n=1

ψ2(n)

ns
=

1

1 + 3−s

∏

p≡5 (mod 6)

1

1− p−2s
∏

p≡1 (mod 12)

1

(1− p−s)2

×
∏

p≡7 (mod 12)

1

(1 + p−s)2

and

∞
∑

n=1

ψ4(n)

ns

=
∏

p≡3 (mod 4)

1

1− p−2s
∏

p≡1 (mod 8)

1

(1− p−s)2
∏

p≡5 (mod 8)

1

(1 + p−s)2
.

Proof. From [SW, Table 9.1] we see that H(−48) = {[1, 0, 12], [3, 0, 4]}
and H(−64) = {[1, 0, 16], [4, 4, 5]}. Thus ψ2(n) = F ([3, 0, 4], n) and ψ4(n) =
F ([4, 4, 5], n) by Theorem 2.1. Now applying Theorem 6.2(i) and [SW, Table
9.1] we obtain the result.
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Theorem 6.4. For n ∈ N we have

f4(1, 4;n) + f4(3, 4;n) =











(−1)(n−1)/2
∑

m|n

(

m

7

)

if 2 ∤n,

0 if 2 |n.
For s ∈ C with Re(s) > 1 we have

∞
∑

n=1

f4(1, 4;n) + f4(3, 4;n)

ns

=
1

1 + 7−s

∏

p≡3,5,6 (mod 7)

1

1− p−2s
∏

p≡1,9,25 (mod 28)

1

(1− p−s)2

×
∏

p≡11,15,23 (mod 28)

1

(1 + p−s)2
.

Proof. From Theorem 2.3 and [SW, Table 9.1] we see that

f4(1, 4;n) + f4(3, 4;n) =
1
2 (R(1, 0, 28;n)−R(4, 0, 7;n)) = F ([4, 0, 7], n).

But according to [SW, Theorem 9.2] and Lemma 3.1,

F ([4, 0, 7], n) =











(−1)(n−1)/2
∑

m|n

(−7
m

)

= (−1)(n−1)/2
∑

m|n

(

m

7

)

if 2 ∤n,

0 if 2 |n.
Thus the result follows from Theorem 6.2 and [SW, Table 9.1].

Remark 6.1. Comparing Theorems 4.1 and 6.4 we conclude that
f4(1, 4;n) + f4(3, 4;n) = (−1)(n−1)/2ψ1(n) for odd n.

7. The Euler product for L(A, s) when H(d) = {I, A,A2}. Let d
be a discriminant with h(d) = 3. Suppose I is the principal class and A is a
generator of H(d). We recall that

F (A, n) =
1

w(d)
(R(I, n)−R(A, n)) =

{

R(I, n)−R(A, n) if d > 0,
1
2 (R(I, n)−R(A, n)) if d < 0

and

L(A, s) =

∞
∑

n=1

F (A, n)

ns
(Re(s) > 1).

Theorem 7.1. Let d < 0 be a discriminant with h(d) = 3. (The values
of such d are given for example in [WH, Proposition] or [SW, Lemma 10.1].)
Let f be the conductor of d and H(d) = {I, A,A2} with A3 = I. Let s ∈ C
with Re(s) > 1.
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(i) If d 6= −92,−124, then

L(A, s) =
∏

p|d
p∤f

1

1− p−s
∏

( dp )=−1

1

1− p−2s

×
∏

p∈R(I)
p∤d

1

(1− p−s)2
∏

p∈R(A)

1

1 + p−s + p−2s
.

(ii) If d = −92, then I = [1, 0, 23], A = [3, 2, 8] and

L(A, s) =
1 + 2−s + 21−2s

1 + 2−s + 2−2s
· 1

1− 23−s
∏

( p23 )=−1

1

1− p−2s

×
∏

p=x2+23y2 6=23

1

(1− p−s)2
∏

p=3x2+2xy+8y2

1

1 + p−s + p−2s
.

(iii) If d = −124, then I = [1, 0, 31], A = [5, 4, 7] and

L(A, s) =
1 + 2−s + 21−2s

1 + 2−s + 2−2s
· 1

1− 31−s
∏

( p31 )=−1

1

1− p−2s

×
∏

p=x2+31y2 6=31

1

(1− p−s)2
∏

p=5x2+4xy+7y2

1

1 + p−s + p−2s
.

Proof. We first suppose d 6= −92,−124. Let p be a prime dividing the
conductor f and pαp ‖ f . From [SW, (9.3)] and [SW, Lemma 10.1] we know
that h(d/p2) = 1 and therefore h(d/p2j) = 1 for j = 1, . . . , αp by [SW,
Remark 2.2]. Thus putting h = 3 and k = 1 in Corollary 5.2 yields the
result in this case.

If d = −92,−124 and p is a prime such that p | f , then p = f = 2,
(d/4
p

)

= 1 and h(d/p2) = 3. We note that H(−92) = {[1, 0, 23], [3, 2, 8],
[3,−2, 8]}, H(−124) = {[1, 0, 31], [5, 4, 7], [5,−4, 7]}, H(−23) = {[1, 1, 6],
[2, 1, 3], [2,−1, 3]}, H(−31) = {[1, 1, 8], [2, 1, 4], [2,−1, 4]}. Thus putting
h = 3, k = 1 and d = −92,−124 in Corollary 5.2 we obtain (ii) and (iii).
The proof is now complete.

Theorem 7.2. Let s ∈ C with Re(s) > 1. Then

∞
∑

n=1

φ1(n)

ns
=

1

1− 23−s
∏

( p23 )=−1

1

1− p−2s
∏

p=2x2+xy+3y2

1

1 + p−s + p−2s

×
∏

p=x2+xy+6y2 6=23

1

(1− p−s)2 ,
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∞
∑

n=1

φ2(n)

ns
=

1

1− 11−s
∏

p≡2,6,7,8,10 (mod 11)
p 6=2

1

1− p−2s

×
∏

p=3x2+2xy+4y2

1

1 + p−s + p−2s

×
∏

p=x2+11y2 6=11

1

(1− p−s)2

and

∞
∑

n=1

φ6(n)

ns
=

∏

p≡5 (mod 6)

1

1− p−2s
∏

p=x2+27y2

1

(1− p−s)2

×
∏

p=4x2+2xy+7y2

1

1 + p−s + p−2s
.

Proof. The result follows from the fact that h(−23) = h(−44) = h(−108)
= 3, (4.1) and Theorem 7.1.

Remark 7.1. Note that an odd prime p is represented by x2+xy+6y2 if
and only if p is represented by x2+23y2. The formula for φ1(n) in Theorem
7.2 was essentially conjectured by Ramanujan ([R1]). In [Ra], Rangachari
outlined a proof of this result using class field theory and modular forms.
The formula for φ2(n) in Theorem 7.2 corrects the incorrect formula of
Ramanujan and Rangachari (see [Ra]).

Theorem 7.3. For s ∈ C with Re(s) > 1 we have

∞
∑

n=1

f2(1, 5;n) + f2(3, 5;n)

ns

=
1

1− 19−s
∏

( p19 )=−1
p 6=2

1

1− p−2s
∏

p=x2+19y2 6=19

1

(1− p−s)2

×
∏

p=4x2+2xy+5y2

1

1 + p−s + p−2s
.

Proof. From Theorem 2.4 we see that

f2(1, 5;n) + f2(3, 5;n) =
1
2 (R(1, 0, 19;n)−R(4, 2, 5;n))

= F ([4, 2, 5], n).

Since h(−76) = 3, applying Theorem 7.1(i) we deduce the result.
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8. Euler products for L(A, s) and L(A2, s) when H(d) = {I, A,A2,
A3}. Let d be a discriminant such that H(d) = {I, A,A2, A3} with A4 = I.
From [SW, Theorem 7.4] we know that for n ∈ N,

F (A, n) = (R(I, n)−R(A2, n))/w(d)
and

F (A2, n) = (R(I, n)− 2R(A, n) +R(A2, n))/w(d).
Thus for s ∈ C with Re(s) > 1 we have

L(A, s) =

∞
∑

n=1

F (A, n)

ns
=

∞
∑

n=1

(R(I, n)−R(A2, n))/w(d)
ns

and

L(A2, s) =
∞
∑

n=1

F (A2, n)

ns
=
∞
∑

n=1

(R(I, n)− 2R(A, n) +R(A2, n))/w(d)
ns

.

Let d be a discriminant with conductor f . If p is a prime such that p | d
and p ∤ f , then p is represented by a unique classM in H(d) andM =M−1.
Thus, if H(d) = {I, A,A2, A3} with A4 = I, then either p ∈ R(I) or p ∈
R(A2).

Theorem 8.1. Let d < 0 be a discriminant such that H(d) = {I, A,A2,
A3} with A4 = I, which is given in [SW, Proposition 11.1(i)]. Let f be the
conductor of d and s ∈ C with Re(s) > 1.

(i) If d 6= −220,−252, then

L(A, s) =
∏

( dp )=−1

1

1− p−2s
∏

p|d, p∤f
p∈R(I)

1

1− p−s
∏

p|d, p∤f
p∈R(A2)

1

1 + p−s

×
∏

p∤d
p∈R(I)

1

(1− p−s)2
∏

p∤d
p∈R(A2)

1

(1 + p−s)2

∏

p∈R(A)

1

1 + p−2s
.

(ii) If d = −220 and so F (A, n) = 12 (R(1, 0, 55;n)−R(5, 0, 11;n)), then

L(A, s) =
1 + 21−2s

1 + 2−2s
· 1

(1 + 5−s)(1 + 11−s)

∏

( p11 )=−(
p
5 )

1

1− p−2s

×
∏

( p11 )=(
p
5 )=−1

1

1 + p−2s

×
∏

p=x2+55y2

1

(1− p−s)2
∏

p=5x2+11y2

p 6=5,11

1

(1 + p−s)2
.
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(iii) If d = −252 and so F (A, n) = 12 (R(1, 0, 63;n)−R(7, 0, 9;n)), then

L(A, s) =
1 + 21−2s

1 + 2−2s
· 1

1 + 7−s

∏

p≡3,5,6 (mod 7)
p 6=3

1

1− p−2s

×
∏

p≡2,8,11 (mod 21)
p 6=2

1

1 + p−2s

×
∏

p=x2+63y2

1

(1− p−s)2
∏

p=7x2+9y2

p 6=7

1

(1 + p−s)2
.

Proof. Let p be a prime such that p | f and pαp ‖ f . If d 6= −220,−252,
by [SW, Proposition 11.1(i) and Remark 2.2] we have h(d/p2) = 1, 2 and
so h(d/p2αp) = 1, 2. Thus putting h = 4, k = 1 and βk,p = 0 (if p | f) in
Theorem 5.3 we obtain (i).

If d = −220, then f = 2, d0 = d/f2 = −55,
(

d0
2

)

= 1 and h(d/22) =
h(d0) = h(−55) = 4. Note that

H(−220) = {[1, 0, 55], [7, 2, 8], [5, 0, 11], [7,−2, 8]},

H(−55) = {[1, 1, 14], [2, 1, 7], [4, 3, 4], [2,−1, 7]},

and for any prime p, p ∈ R(A) ⇔ p ∈ R([7, 2, 8]) ⇔
(

p
11

)

=
(

p
5

)

= −1.
Now putting d = −220, h = 4, k = 1, a2 = 1 and a5 = a11 = 2 in Theorem
5.3 and then applying the above we see that (ii) holds.

If d = −252, then f = 6, d0 = d/f2 = −7, I = [1, 0, 63], A = [8, 6, 9],
A2 = [7, 0, 9], and for any prime p, p ∈ R(A) ⇔ p > 2 and p ≡ 2, 8, 11
(mod 21). Let p be a prime dividing f , then p = 2 or 3. Note that H(−63) =
{[1, 1, 16], [2, 1, 8], [4, 1, 4], [2,−1, 8]},

(

d0
2

)

=
(−7
2

)

= 1 and h(d/32) =
h(−28) = 2. Putting d = −252, h = 4, k = 1, a2 = 1, a7 = 2 and β1,3 = 0
in Theorem 5.3 and then applying the above we obtain the result.

By the above, the theorem is proved.

Theorem 8.2. Let s ∈ C with Re(s) > 1. Then

(i)

∞
∑

n=1

φ3(n)

ns
=

1

1 + 7−s

∏

p≡3,5,6 (mod 7)
p 6=3

1

1− p−2s
∏

p≡2,8,11 (mod 21)

1

1 + p−2s

×
∏

p=x2+xy+16y2

1

(1− p−s)2
∏

p=4x2+xy+4y2 6=7

1

(1 + p−s)2
,
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(ii)
∞
∑

n=1

φ4(n)

ns
=

1

1 + 5−s

∏

p≡11,13,17,19 (mod 20)

1

1− p−2s

×
∏

p≡3,7 (mod 20)

1

1 + p−2s

∏

p=x2+20y2

1

(1− p−s)2

×
∏

p=4x2+5y2 6=5

1

(1 + p−s)2
,

(iii)
∞
∑

n=1

φ8(n)

ns
=

∏

p≡5,7 (mod 8)

1

1− p−2s
∏

p≡3 (mod 8)

1

1 + p−2s

×
∏

p=x2+32y2

1

(1− p−s)2
∏

p=4x2+4xy+9y2

1

(1 + p−s)2
,

(iv)
∞
∑

n=1

φ12(n)

ns
=

∏

p≡3 (mod 4)
p 6=3

1

1− p−2s
∏

p≡5 (mod 12)

1

1 + p−2s

×
∏

p=x2+36y2

1

(1− p−s)2
∏

p=4x2+9y2

1

(1 + p−s)2
.

Proof. By Theorem 8.1(i) and the proof of Theorem 4.5 we obtain the
result.

Remark 8.1. In his lost notebook (see [R2]), Ramanujan conjectured
the Euler product for

∑∞
n=1 φ3(n)n

−s. But his formula is erroneous. So
Rangachari’s proof of this result is also somewhat wrong. In [R1] Ramanujan
conjectured Theorem 8.2(iv). We have established these results in a unified
and natural way.

Theorem 8.3. Let s ∈ C with Re(s) > 1. Then

(i)
∞
∑

n=1

f1(1, 5;n) + f1(3, 5;n)

ns

=
1

1 + 3−s
· 1

1 + 13−s

∏

( p13 )=−(
p
3 )

1

1− p−2s
∏

( p13 )=(
p
3 )=−1

1

1 + p−2s

×
∏

p=x2+xy+10y2

1

(1− p−s)2
∏

p=3x2+3xy+4y2 6=3,13

1

(1 + p−s)2
,
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(ii)
∞
∑

n=1

f8(1, 5;n) + f8(3, 5;n)

ns

=
∏

p≡3 (mod 4)

1

1− p−2s
∏

p≡5 (mod 8)

1

1 + p−2s

∏

p=x2+64y2

1

(1− p−s)2

×
∏

p=4x2+4xy+17y2

1

(1 + p−s)2
,

(iii)

∞
∑

n=1

f20(1, 5;n) + f20(3, 5;n)

ns

=
∏

p≡3 (mod 4)

1

1− p−2s
∏

p≡13,17 (mod 20)

1

1 + p−2s

∏

p=x2+100y2

1

(1− p−s)2

×
∏

p=4x2+25y2

1

(1 + p−s)2
.

Proof. From [SW, Proposition 11.1(i)] we know that H(d) is a cyclic
group of order 4 for d ∈ {−39,−256,−400}. Actually,

H(−39) = {[1, 1, 10], [2, 1, 5], [3, 3, 4], [2,−1, 5]},
H(−256) = {[1, 0, 64], [5, 2, 13], [4, 4, 17], [5,−2, 13]},
H(−400) = {[1, 0, 100], [8, 4, 13], [4, 0, 25], [8,−4, 13]}.

Thus, by Theorem 2.4 we have

f1(1, 5;n) + f1(3, 5;n) = (R(1, 1, 10;n)−R(4, 3, 3;n))/2 = F ([2, 1, 5], n),
f8(1, 5;n) + f8(3, 5;n) = (R(1, 0, 64;n)−R(4,−4, 17;n))/2

= F ([5, 2, 13], n)

and

f20(1, 5;n) + f20(3, 5;n) = (R(1, 0, 100;n)−R(4,−16, 41;n))/2
= F ([8, 4, 13], n).

For a prime p it is clear that

p ∈ R([2, 1, 5]) ⇔
(

p

13

)

=

(

p

3

)

= −1,

p ∈ R([5, 2, 13]) ⇔ p ≡ 5 (mod 8),
p ∈ R([8, 4, 13]) ⇔ p ≡ 13, 17 (mod 20).

Now combining all the above with Theorem 8.1(i) in the cases d =
−39,−256,−400 yields the result.
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Remark 8.2. By [SW, Theorems 10.2 and 11.1] and the proofs of Theo-
rems 7.3 and 8.3, we may obtain explicit formulas for fk(1, 5;n)+fk(3, 5;n)
in the cases k = 1, 2, 8, 20.

Theorem 8.4. Let d<0 be a discriminant such thatH(d)={I, A,A2, A3}
with A4 = I. (The values of such d are given in [SW, Proposition 11.1(i)].)
Let f be the conductor of d and s ∈ C with Re(s) > 1. Then

L(A2, s) = c(d, s)
∏

p|d, p∤f

1

1− p−s
∏

( dp )=−1

1

1− p−2s

×
∏

p∈R(I)∪R(A2)
p∤d

1

(1− p−s)2
∏

p∈R(A)

1

(1 + p−s)2
,

where

c(d, s) =































1 + 21−2s if d = −128,−256,
1 + 21−s + 21−2s

(1 + 2−s)2
if d = −220,−252,

1 + 2−s + 21−2s

1 + 2−s
if d = −80,−144,−208,−400,−592,

1 otherwise.

Proof. By Theorem 5.3, the result is true when f = 1. Now suppose
f > 1 and d0 = d/f

2. Let p be a prime such that p | f . Suppose pαp ‖ f , hp =
h(d/p2αp) and β2,p is the maximum j ∈ {0, 1, . . . , αp} such that 2 |h(d/p2j).
From [SW, Proposition 11.1(i)] we know that all possible (d, f) with f > 1
are given below:

(d, f) = (−63, 3), (−80, 2), (−128, 22), (−144, 2 · 3), (−171, 3),
(−196, 7), (−208, 2), (−220, 2), (−252, 2 · 3), (−256, 23),
(−275, 5), (−363, 11), (−387, 3), (−400, 2 · 5), (−475, 5),
(−507, 13), (−592, 2), (−603, 3), (−1467, 3).

From [SW, Proposition 11.1, Lemma 9.2 and (9.3)] we also have

hp = h

(

d

p2α

)

=



















1 if d 6∈ {−80,−144,−208,−220,−252,−400,−592}
or p > 2,

2 if d ∈ {−80,−144,−208,−400,−592} and p = 2,
4 if d ∈ {−220,−252} and p = 2.

If p > 2, then hp = h(d/p2) = 1. Thus 4 ∤ 2hp, β2,p = 0 and hence
(1 − p(1−2s)(1+β2,p))/(1 − p1−2s) = 1. Thus applying Theorem 5.3 we see
that the result is true in the cases d = −63,−171,−196,−275,−363,−387,
−475,−507,−603,−1467.
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If d = −128,−256, then p = 2, p | d0, hp = 1, 4 ∤ 2hp and β2,p = 1, thus
putting d = −128,−256 and k = 2 in Theorem 5.3 we obtain the result.
If d = −220, then p = f = 2, hp = h(−55) = 4, 4 | 2hp,

(

d0
p

)

=
(−55
2

)

= 1,
thus putting d = −220, k = 2 and a2 = 1 in Theorem 5.3 yields the result.
If d = −252, then f = 6, d0 = −63 and so p = 2, 3. Observe that

h2 = h(−63) = 4, 4 | 2h2 and
(

d0
2

)

=
(−63
2

)

= 1. Putting d = −252 and
k = 2 in Theorem 5.3 gives the result.
If d = −80,−144,−208,−400,−592, then 2 | f . Let p = 2. Then αp = 1,

hp = 2, 4 | 2hp, p | d0 and p is represented by the generator of H(d/p2) by
[SW, Table 9.1]. Thus applying Theorem 5.3 and the above we obtain the
result.
Combining the above we prove the theorem.
We remark that the conditions for p ∈ R(I) ∪ R(A2) or p ∈ R(A) in

Theorem 8.4 can be described by certain congruence conditions.
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