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On the number of representations of n by az? + bxy + cy?
by

Zu1-HoNG SUN (Huaian) and KENNETH S. WiILLIAMS (Ottawa)

1. Introduction. Let N and Z denote the sets of natural numbers and
integers respectively. A nonsquare integer d with d = 0,1 (mod4) is called a
discriminant. Let d be a discriminant, n € N and a, b, ¢ € Z with b>—4ac = d.
If there exist integers x and y with n = ax? + bxy + cy?, we say that the
pair {z,y} is a representation of n by ax? + bxy + cy?. When d < 0, every
representation {z,y} is called primary. When d > 0, the representation
{z,y} is called primary if it satisfies

2
20z + (b—Vd)y >0, 1< az + (b+ Vdy

" |2ax + (b— \/8)?; (@

which is equivalent to

1 <2ax+(b—x/8)y
e(d) 2y/nal

<1

)

where e(d) = (21 +y1V/d)/2 and (1, ;) is the solution in positive integers
to the equation X2 — dY? = 4 for which z; + y1V/d is least (see [D], [H, p.
282]). For a,b,c € Z we denote the binary quadratic form az? + bry + cy?
by (a, b, c), and the equivalence class containing the form (a, b, ¢) by [a, b, c].
Since (a,b,c) is a form, we use ged(a, b, ) to denote the greatest common
divisor of a, b, c. If ged(a, b, ¢) = 1, the form (a, b, ¢) is said to be primitive. It
is proved in Section 3 that whichever form (a1, b1, c1) is chosen from [a, b, ]
the number of primary representations of n by (a1, b1, ¢1) is the same. Based
on this fact we can define the number of representations of n by the class
[a, b, c] to be
R([a,b,c],n) = {{z,y} | n = az® + bxy + cy?, {z,y} is primary}|.
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For a discriminant d the conductor of d is the largest positive integer
f = f(d) such that d/f? = 0,1 (mod4). If f(d) = 1, we say that d is a
fundamental discriminant. Let H(d) be the form class group consisting of
classes of primitive, integral binary quadratic forms of discriminant d. In
this paper, inspired by the work in [D], [H], [HKW], [KW1], [KW2], [KW3],
[MW1] and [MW2], we consider the problem of giving explicit formulae for
R(K,n) (K € H(d)). Let (n1,n2) denote the greatest common divisor of 74
and ng. In Section 2, we introduce and study the mapping

Orm : [a, bkm, ckm?] — [ak, bk, ]

from H(d) to H(d/m?), where k,m € N with k:|fi27 41k, m|f and
(k,f/m)=1.Forn € Nand S C H(d) we let

(1.1)  R(S,n)= > R(K,n), N(nd)=R(H(d),n)= > R(K,n).

Kes KeH(d)

Suppose K € H(d) and that H is a subgroup of H(d). On the basis of the
properties of the mapping ¢, in Section 3 we give reduction formulas
for R(K,n) and R(KH,n), which reduce the evaluation of R(K,n) and
R(KH,n) to the case (n,d) = 1.

In Section 4 we obtain a complete formula for N(n,d). When d < 0,
the formula improves the result given by Huard, Kaplan and Williams in
[HKW]. As usual we set

1 ifd>0,
2 ifd< —4

1.2 d) — :

(1.2) WD =3y ra— s
6 ifd=—3.

In Section 4 we also show that N(n,d)/w(d) is a multiplicative function

of n and give the Euler product for the Dirichlet series Y -, Nugzld’f)n_s

(Re(s) > 1).

Let d be a discriminant and K € H(d). In Section 5 we give explicit
formulas for R(K, pt), where p is a prime and ¢ € N. Let G(d) = H(d)/H?(d)
denote the group of genera, and let w(d) denote the number of distinct prime
divisors of d. It is well known that (see [Cox, pp. 52-54], [D] and [HKW])
|G(d)| = 249, where

w(d) if d =0 (mod 32),
(1.3) t(d) =4 w(d)—2 ifd=4 (mod16),
w(d) —1 otherwise.

In Section 6, we give formulas for R(G,n) when G € G(d). In particular, we
show that R(G,n) =0 or N(n, d)/2t(d)*t(d/(n,f2)).
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Suppose H(d) = {A¥ ... Ak < ...,0 <k, < h,}, where
hi---hy, =h(d). Forn € Nand M = A" --- A" € H(d) we define

1 kim k.m
F(M,n)= w(d) Z cos27r< lhl Ly 4 ’}lrr) R(AR AR ).

0<ki <ht

0<kr<hy
In Section 7 we show that F(M,n) is a multiplicative function of n (see
Theorem 7.2). For example, if A(d) = 2, 3,4 and H(d) is cyclic with identity
I and generator A, then

(R(I,n) — R(A,n))/w(d) if h(d) =2,3,
F(A,n)= :
{ (R(I,n) — R(A%,n))/w(d) if h(d) =

is a multiplicative function of n. In Section 8, using the Chebyshev poly-
nomial of the second kind we establish a reduction theorem for F(M,n)
(see Theorem 8.2), and determine F(M,p'), where p is a prime, ¢t € N and
M € H(d) (see Theorems 8.1 and 8.4).

As applications of the multiplicative property of F'(M,n), in Sections 9,
10, 11 we obtain formulas for F(M,n) and R(K,n) (K € H(d)) in the cases
h(d) = 2,3, 4.

In addition to the above notation, we also use throughout this pa-
per the following notation: (%)—the Kronecker symbol, [z]—the great-
est integer not exceeding x, ord, n—the nonnegative integer o such that
p®|n but p®Tin (that is p®||n), u(n)—the Mébius function, (a,b,c) ~
(a’, 0, ") —the form (a b, ¢) is equivalent to (a’, V', '), [—the principal class
[1,12C0° 1(A=CD _ 9)] in H(d), H"(d)—the set {K" | K € H(d)},
Z2?—the set of all palrs {z,y} (x,y € Z), Ker p—the kernel of ¢, R(K)—the
set of integers represented by the class K € H(d).

2. The mapping ¢y, . Let d be a discriminant. Assume
(2.1)  f=f(d), do=d/f% k,meN, k|dy, 41k, m|f, (k, f/m)=1.

In this section we introduce a useful map @i, from H(d) to H(d/m?),
which will be crucial in the study of R(K,n) (K € H(d)). For use later we
investigate many properties of ¢y, ,,,. Some special cases of ¢, have been
considered in [HKW], [KW1] and [KW2].

LEMMA 2.1. Let d be a discriminant with conductor f, do = d/f? and
K € H(d).

(i) For M € N there exist integers a,b,c such that K = [a,b,c| with
(a, M) =1.

(ii) If k,m,n € N, k|dy, 4tk and m| f, then there exist integers a,b,c
such that K = [a,bkm,ckm?| with (a,kmn) = 1. Moreover, if
(k, f/m) = 1, the integer ¢ can be chosen so that (c, k) = 1.
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Proof. (i) is a known result. See Lemmas 2.25, 2.3 of [Cox] or [S, Lem-
ma 3.1]. Now we consider (ii). Clearly km|d. By (i), K = [a,V, ] with
a,b',¢ € 7Z and (a,kmn) = 1. Since b'? — 4ac’ = d = 0 (mod km) we see
that (2, km)|b’ and so (2a,km)|b'. Thus, there are integers x,b such that
2ax + b = bkm. If 21km, clearly b = b = d (mod 2). If 2| km, then a is odd
and 2a(x 4+ km/2) + b = (a + b)km. Thus, as b #Z b+ a (mod 2), we can
always choose integers x and b such that 2ax + ' = bkm and b is even or
odd as we require. For such integers x and b we have

K =[a,b,c] = [a,2az + b, azx® + bz + ] = [a, bkm, ckm?

and ckm? € Z, where

Pk gl Pk ()

= 4a - 4a
Since (a, km?) = 1 we see that 4| (bk — d/(km?)) implies ¢ € Z.
If 21k, by the above we may assume b = d/m? (mod 2). Since b? = 0,1
(mod4) and d/m? = do(f/m)? = 0,1 (mod4) we see that v* = d/m?
(mod4) and so 4| (b*k— +%5). Thus ¢ € Z. If 2| k and k = d/(km?) (mod 4),

we choose b so that b is odd, then 4| (b?k — £45) and so ¢ € Z. If 2|k and

km?2

k # d/(km?) (mod4), since 41k we see that d/(km?) # 2 (mod 4). But, 2| k
implies 2 | dy and so 4| dy. Thus 45 = @(if = 0 (mod 2). Hence 4| &

km?2 k \m km?2 "

Now we choose b so that b is even. Then 4 | (b2k: — kiQ) and so c € Z.

Now assume (k, f/m)=1. Let ko =k/(2, k). Clearly 21 ko and (ko, do/ko)
= 1. Thus

(4ac, ko) = <b2k:— %(%)2,1@()) = (% <%)2k0) =1

and hence (¢, ko) = 1. If k is even, we need to show that c¢ is odd. Since
(a,km) =1 and (k, f/m) = 1 we see that a and f/m are odd. Thus noting
that dy/4 = 2,3 (mod4) we then obtain

b2k —d/(km?)  b%ky — d/(4kom?)
4 - 2
b2 —d/(4m?) B> —dy/4

= = =1 2).
5 5 (mod 2)

Thus (¢, k) = 1. This completes the proof.

cC=ac=

REMARK 2.1. We note that k is squarefree when k|dy and 41k. The
special case k = n = 1 of Lemma 2.1(ii) was stated by Kaplan and Williams
in [KW2, p. 355], and the case m = n = 1, k = prime was proved by Kaplan
and Williams in [KW1, p. 154].
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LEMMA 2.2. Let a,b,c € Z and k,m,n € N with (a,km) = 1 and
km?|n. If k is squarefree and n = ax® + bkmay + ckm?y? for x,y € Z,
then km | x.

Proof. As (2az + bkmy)? = 4an + (b*k — dac)km?y? we see that m | 2ax

2 =n — bkmay — ckm®y* = 0 (mod (2’”—m)) and so

m|z. Set zg = x/m. By n/m? = az + bkxoy + cky? we have k |z and so
k| zo. This proves the lemma.

and so =2~ | z. Hence az
(2,m)

LEMMA 2.3. Let a,b,c,ad’, b, ¢ € Z, and let k,m € N with (a,km) =
(a',km) = 1. If k is squarefree and (a,bkm,ckm?) ~ (a’,b'km,c km?),
then (ak,bk,c) ~ (a'k,b'k,c).

Proof. Since (a, bkm,ckm?) ~ (a’,b'km, c’km?) there exist r,s,t,u € Z
such that ru — st =1 and
a(rz + sy)? + bkm(rz + sy)(tx + uy) + ckm?(tz + uy)?
= a'z? 4+ b kmay + km?y?.
This implies
ak(rz 4 soy)? + bk(rz 4 soy) (tox + uy) + c(tox + uy)?
= d'ka® + Vkay + 'y,
2,2

where sg = s/(km) and tq = kmt. Since ¢'km? = as? + bkmsu + ckm?u? we
have sg € Z by Lemma 2.2. Thus the result follows.

In view of Lemmas 2.1 and 2.3 we introduce

DEFINITION 2.1. Let d be a discriminant. Assume (2.1) holds. Then for
any K € H(d) there exist a,b,c € Z such that K = [a,bkm, ckm?] with
(a,km) =1 and (c, k) = 1. Define i, (K) = [ak, bk, c|. Note that any form
equivalent to a primitive form is itself primitive. We see that ¢y, ,, is a well
defined mapping from H(d) to H(d/m?).

By the definition, for any [a, bm, cm?| € H(d) and [a, bk, ck] € H(d) with
(c,k) =1 we have

©1,m([a, bm,cm2]) =[a,b,c], vr1(la,bk,ck]) = [ak, bk, c]
and
rm(K) = pr1(p1m(K))  for K € H(d).

LEMMA 2.4 ([C, p. 246]). Let (ai,bi,c1) and (ag,be,c2) be two pri-
mitive integral binary quadratic forms of the same discriminant d, t =
ged(aq, ag, (b1 + b2)/2), and let w,v,w be integers such that

b1 + b2

a1u + agv + w =1.
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If a3 = a1az/t?, by = by + 2a2 (1520 — cow) /t and ¢35 = (b3 — d)/(4as),
then
[a1, b1, c1][ag, ba, ca] = [as, bs, c3].
THEOREM 2.1. Let d be a discriminant with conductor f. Let m € N

and m| f. Then @1 ., is a surjective homomorphism from H(d) to H(d/m?).
Thus Ker 1, is a subgroup of H(d) and H(d/m?) = H(d)/Ker p1 1.

Proof. For A € H(d/m?), by Lemma 2.1(i) we may assume A = [a, b, |
with a,b,c € Z and (a,m) = 1. Clearly [a,bm,cm?] € H(d) and ¢1 ., ([a,
bm, em?]) = A. So ¢1 4, is onto.

Let [a1,bim,c1m?], [az,bam,cam?| € H(d), (a1,m) = (az,m) = 1 and
t = gcd(al,ag, @m) = gcd(al,ag, %). Let u,v,w € Z be such that

a1t + azv + 1322 (mw) = t. By Lemma 2.4 we have
[a1, bym, cym?][ag, bam, com?] = [ag, bsm, czm?],
where
a5 = aigg’ by = by + 29 v(by — bg)/t2 — CQ(m’LU)’ o = b3 —453/7712‘
From this we see that [a1, b1, c1][az, ba, c2] = [as, b3, c3] by Lemma 2.4. Since
(a1, m) = (az,m) = 1 we have (a3, m) = 1. Hence
©1.m([a1, bym, cym?][az, bam, com?])
= ¢1.m([az, bsm, cam?]) = [as, b3, c3] = [a1, b1, c1][az, bz, 2]

= ¢1,m([a1, bim, Clm2])801,m([a2, bam, 02m2])-
This shows that (1, is a homomorphism. Hence ¢ ,, is a surjective ho-
momorphism from H(d) to H(d/m?). Thus Ker ¢1 ,, is a subgroup of H(d)
and H(d/m?) = H(d)/Ker ¢1 ,,,. This proves the theorem.

REMARK 2.2. Theorem 2.1 was stated by Kaplan and Williams in [KW2,
p. 355] as a consequence of known results on ideal classes. The above is a
straightforward self-contained proof of this result. By Theorem 2.1 we have

h(d/m?) = h(d)/|Ker 1 ,,,| and so h(d/m?)| h(d) for m| f.
LEMMA 2.5. Let d be a discriminant with conductor f and dy = d/f?.
Suppose k € N, k|do, 41k and (k, f) = 1. For Ky, Ky € H(d) we have
o1 (K1) pr,1(K2) = K1 K.

Proof. By Lemma 2.1(ii), for i = 1,2 we may assume K; = [a;, bk, ¢;k]
with (a;, k) = 1. Clearly (b;k)? — 4a;c;k = d. If 21k, then b; = bk =
(bik)? = d (mod?2). If 2|k, then k = 2 (mod4), 2|dy and so 4|dy. Thus
b; bf(gf — a;cik = ¢ (mod 2). Hence we always have by = d/(2,k)? = by
(

4
mod 2) and so (by = b2)/2 € Z.
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Let t = ged(aq,az, (b1 + b2)k/2), and let w,v,w be integers such that
a1u~+ asv + %kw =t. Set a = ajay/t?, b= bgk+2a2(b1;b2 kv — Cka)/t
and ¢ = (b*> — d)/(4a). By Lemma 2.4 we have

K1K2 = [al, blk‘, Clki] [ag, bgk‘, 62]{;] == [CL, b, C].
Let ' = ged(ark, azk, (b1k + bok)/2). Then clearly ¢ = kt. Since

blk‘ + b2k a1an (Ilk‘ . azk
ak - utaph-vd T k=t a = Sm = T

—b by —b
2 kv—czk:w> /t = b2k+2a2k< LI k:v—cﬂk:w))/t',
by Lemma 2.4 we also have

g0k71(K1)(pk71(K2) [alk‘ blk‘ Cl][agk‘ bzk‘ 62] [(1 b C]
Thus the result follows.

b= b2k+2a2<b1

THEOREM 2.2. Let d be a discriminant with conductor f and do = d/ f?.
Suppose k € N, k|dy, 41k and (k, f) = 1. For K € H(d) we have

[ }K if 4k|d,
or1(K) =

[, , }K if Aktd.

Proof. For a,b,c € Z with (ac,k) = 1 and [a, bk, ck] € H(d) it is clear
that
or.1([a, bk, ck]™) = pi1([a, —bk, ck]) = [ak, —bk, c]

= [ak, bk, ]~ = pra([a, bk, ck]) ™!
Thus, by Lemma 2. 1( i), for K € H(d) we have ¢y 1(K)™! = g1 (K1)

and hence oy 1(I)™1 = ¢y 1(I), where I is the principal class in H(d). Now
applying Lemma 2.5 we have

er1(K)pp1(I) = KI =K andso ¢ 1(K)=pr1(I)K.

So we need only show that

k0, —2 if 4k | d,
Ak
r1(l) =
Sl T
Ak )

Since k | dg, 41k and (k, f) = 1 we know that k is a squarefree integer and
so (k/(2,k),d/k) = (k/(2,k),dof?/k) = 1. If 2| k, we must have 4 |dy, 21 f
and dp/4 = 2,3 (mod4). Now we prove the above assertion by considering
the following four cases.
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CaSE 1: 4|d and 2{k. In this case, 4k|d and I = [1,0,—d/4]
(1,0, k(—d)/(4k)]. Since (k,—d/(4k)) = (k,d/k) = 1 we see that ¢ 1(]) =
[k, 0, —d/(4k)].

CASE 2: 8|d and 2|k. In this case, 4k |d and 8|dy. But 8|dy implies
23 || do. Hence 2% || d and so —d/(4k) is odd. As (k, —d/(4k)) = (k/2,d/k) = 1
we see that

CASE 3: 22||d and 2|k. In this case, 4k{d, 2% dy and so do/4 = 3
(mod4). Thus

k‘2

K2 —d  (k\? d —~
:<—> ~2f2=1-3.1=2(mod4) and so =1 (mod 2).

4 2 4 4k
Hence (k, (k% — d)/(4k)) = (k/2,(k* —d)/k) = (k/2,d/k) = 1 and so
o1 (I) = o1 (1,0, —d/4]) = (1, k, k(k* - d)/(4k)))
= [k, k, (k* — d)/(4k)].
CASE 4: d = 1 (mod 4). In this case, 21k, 4ktd and (k, (k* —d)/(4k)) =
(k,(k* —d)/k) = (k,d/k) = 1. Thus
pra(l) = era([L 1, (1 - d)/4]) = (L k, k(K — d)/(4k)])
= [k, k, (k* — d)/(4k)].

This completes the proof of the assertion and hence the theorem is
proved.

REMARK 2.3. From Theorem 2.2 we deduce that ¢y 1 is a bijection from
H(d) to H(d). When k is a prime, this was stated and proved by Kaplan
and Williams in [KW1].

THEOREM 2.3. Let d be a discriminant. Assume (2.1) holds. Then @k m
is a surjective map from H(d) to H(d/m?). Moreover, for K,L € H(d) we
have

Or,m(KL) = @rm(K)@1,m(L).

Proof. We have already observed that ¢y (K) = g 1(¢1,m(K)). Since
©1,m is a surjective homomorphism and ¢y, 1 is a bijection, we see that ¢y,
is a surjective map from H(d) to H(d/m?). Let

_ 2
[k:,o, d/m ] if4k;|i2,
m

(2.2) I A
. km —
’ K2 —d/m?] . d
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From Theorem 2.2 we know that ¢, 1(A) = I A for A € H(d/m?). Recall
that o1, is a homomorphism. Then we have

Prm(KL) = 0k1(p1,m(KL)) = Tk m@1,m(KL) = Irm@1,m(K)@1m(L)
= k1 (e1m(K))e1,m(L) = @rm(K)p1m(L).
This proves the theorem.

Now we are in a position to give

THEOREM 2.4. Let d be a discriminant with conductor f and do = d/ f?.
Let K € H(d), n € N and
do if 41dp,
di =< do/2 if 22| do,
do/4 if 22| do.
(i) There exist integers a, b, c such that K = [a,bd; f, cdy f2] with (a,dn)
=1 and (c,dy) = 1.
(ii) If k € N and k| (dcll—}f), then there exist a,b,c € Z such that K =
[ak, bk f, cf?] with (a,kfn) = (c,k) = 1.

Proof. Putting k = dy and m = f in Lemma 2.1 gives (i). Now con-
sider (ii). Suppose k£ € N and k|(dcll—jf). Then k|d; and (k, f) = 1. Since
dm? = do(fm)? for m € N, by Lemma 2.1 every class in H(dm?) is of the
form [a, bk fm, ck(fm)?] with a,b,c € Z and (a,kfmn) = (¢,k) = 1. Since
Ok.m is a surjective map and @y ., ([a, bk fm,ckf?m?]) = [ak,bkf,cf?] €
H(d) we see that (ii) is true.

REMARK 2.4. Let d be a discriminant. Suppose that (2.1) holds. For
[a,bdy f, cdy f?] € H(d) with (a,d) =1 and (c,dp) = 1 we have

Or.m([a,bdy f,cdy f2]) = [ak,bdy f /m, cdy f2 ] (km?)].

THEOREM 2.5. Let d be a discriminant. Assume (2.1) holds. For
S C H(d) set ¢pm(S) ={vr,m(A) | Ae S}. Let H be a subgroup of H(d).
Then

(i) p1.m(H) is a subgroup of H(d/m?).

(ii) For K € H(d) we have v m(KH) = @ m(K)p1,m(H).

(iii) Suppose M € H(d/m?). Then there are exactly h(d)|¢1m(H)|/
(h(d/m?)|H|) distinct cosets KH € H(d)/H such that ¢ m(KH)
= My1,m(H). Moreover, if Ky € H(d), ¢rm(Ko) = M, Hy =
H nKer ey, and Ker 1, /Ho = {A1Hy, ..., AsHo}, then all the
distinct cosets KH € H(d)/H such that g ,m\(KH) = My (H)
are AlKoH, ey ASK()H.

Proof. Since @1, is a surjective homomorphism, using group theory we
see that (i) is true.
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Now we consider (ii). Suppose K € H(d). From Theorem 2.3 we see that

@k,m(KH) = {ka,m(KL) |Le H} = {QOk,m(K)Sol,m(L) | L€ H}
= Sok,m(K)cpl,m(H)'

This proves (ii).

Finally we consider (iii). Suppose M € H(d/m?). From Theorem 2.3
we know that ¢y, is a surjective map from H(d) to H(d/m?). Thus there
exists a class Ky € H(d) such that ¢y (Ko) = M. Let K € H(d), H =
v1.m(H), Hy = H NKer ¢y ,,, and Ker ¢y ,,/Ho = {A1Hop,...,AsHp}, and
let Iy € H(d/m?) be given by (2.2). Applying Theorems 2.1-2.3 and (ii)
we see that

opm(KH) = MH'

& orm(K)H = MH' < ¢ (K)M~ e H

& okm(K)prm(Ko) ™ € H'

& Ten@1,m () (Inme1,m(Ko)) ™' € H'
& orm(EEG ") = o1m(K)p1m(Ko) ™t € H'
& o1m(KKyY) = p1m(L)  forsome L € H
& KKy'L™' €Keryp,, forsome L € H
& KKy'e HKerpy,, & K€ KoHKerp,,
& K e AKgH  for some A € Ker ¢ 1,
< KH = AKyH for some A € Ker ¢,
< KH=A,KyHyH = A;KoH for some i€ {1,...,s}.
For i,5 € {1,...,s} it is clear that

AiKoH = AjKoH & (AiKo)(AjKo) ' e H & AA e H
& AAT e Hy & AiHy=AjHy & i=j.

Thus

(2.3) {KH|KH € H(d)/H, ppm(KH) = MH'}
= (A1 KoH, ..., A,KoH}.
Since 1., is a surjective homomorphism from H(d) to H(d/m?), v1.m

induces a surjective homomorphism from H to ¢1,,(H). Thus, by group
theory we have

H(d)/Ker ¢ m = H(d/mQ) and H/(H NKeryi m) = p1,m(H).
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(That is H/Hy = H'.) Thus
|Ker o1,m| = h(d)/h(d/m?),  |Ho| = |H|/|H'|

and so
_ |Kerpim|  h(d)|H'|

— [Ker oy /Ho| = = .
s = [Keroum/ Hol = =5 = 2 ]

This completes the proof.
Taking H = I in Theorem 2.5 we have

COROLLARY 2.1. Let d be a discriminant. Assume (2.1) holds. For any
given M € H(d/m?), there are exactly h(d)/h(d/m?) classes K in H(d)
such that g ., (K) = M. Moreover, if K,Ky € H(d) and @pm(Ko) = M,
then i m(K) = M if and only if K = KA for some A € Ker 1 p,.

COROLLARY 2.2. Let d be a discriminant. Assume (2.1) holds. Let H
be a subgroup of H(d), K € H(d), Hy = H NKer g ,, and Ker ¢y ,,,/Hy =
{HU, AQHQ, ey ASH()}. Then

Orm(AsKH) =+ = @pm(AsKH) = o m (KH).
For a discriminant d and r € N recall that H"(d) = {L" | L € H(d)}.

LEMMA 2.6. Let d be a discriminant with conductor f and dy = d/f?.
Let r be a nonnegative integer and m € N with m| f. Then

(i) 1,m(H"(d)) = H"(d/m?).
(ii) Suppose k € N, k|dy, 41k and (k, f/m) = 1. Then for K € H(d)
we have
Prm(KH"(d)) = p,m(K)H" (d/m?).

Proof. Recall that ¢; ,,, is a surjective homomorphism from H(d) to
H(d/m?). Let K € H(d) and M € H(d/m?) be such that (1 ,,(K) = M.
Then clearly ¢1 ., (K") = ¢1,m(K)" = M". Since K" € H"(d) and M" €
H"(d/m?) we obtain (i). Combining (i) with Theorem 2.5(ii) yields (ii). So
the lemma is proved.

From Theorem 2.5 and Lemma 2.6 we have

THEOREM 2.6. Let d be a discriminant. Assume (2.1) holds. Let
r be a nonnegative integer and M € H(d/m?). Then there are ezactly
|H(d)/H"(d)|/|H(d/m?)/H"(d/m?)| distinct cosets KH"(d) € H(d)/H"(d)
such that pgm(KH"(d))=MH"(d/m?). Moreover, if Ko€ H(d), pk.m(Ko)
= M, Hy = H"(d) N Ker i, and Keryi,,/Hy = {A1Ho,...,AsHp},
then all the distinct cosets KH"(d) € H(d)/H"(d) such that @ m(KH"(d))
= MHT(d/mQ) are AlKoHT(d), ooy ASKoHT(d)
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Taking r = 2 in Lemma 2.6 and Theorem 2.6 and noting that |H(d)/
H?(d)| = |G(d)] = 2Y and |H(d/m?)/H?(d/m?)| = |G(d/m?)| = 2(4/™")

we obtain

COROLLARY 2.3. Let d be a discriminant. Assume (2.1) holds. Then
for any genus G of H(d), orm(G) is a genus of H(d/m?). For given
G' € G(d/m?) there are ezactly 2{D=1A/m*) generq G € G(d) such that
okm(G) = G'. Moreover, if vim(Ko) € G' for Ko € H(d), Hy =
H?(d) NKer @1 1, and Ker p1,m/Ho = {A1Hy, ..., AsHo}, then all the gen-
era G of H(d) such that ¢ ,m,(G) = G' are AiKoH?(d),. .., AsKoH?(d).

3. Reduction theorems for R(K,n) and R(KH,n). Let d be a dis-
criminant and n € N. Suppose K € H(d) and H is a subgroup of H(d).
Based on the results in Section 2, in this section we establish reduction the-
orems for R(K,n) and R(K H,n), which reduce the evaluation of R(K,n)
and R(KH,n) to the case (n,d) = 1.

Let n € N and a,b,c € Z. Suppose n = az? + bxy + cy? with z,y € Z
and (z,y) = 1. As usual we say that {z,y} is a proper representation of
n = ax? + bxy + cy?. It is well known that the general integral solution to
xs —yr =11is s = so + ty, r = ro + tx, where (sg, 7o) is a fixed solution to
xs —yr =1 and t € Z. Clearly

(2ax 4 by)r + (bx + 2cy)s = (2ax + by)ro + (bx + 2¢cy)so + 2nt.

Thus there exists a unique ¢ € Z such that 0 < (2az+by)r+(bz+2cy)s < 2n.

Hence there are two unique integers r,s € Z such that xs — yr = 1 and

0 < (2ax + by)r + (bx 4+ 2cy)s < 2n (see [H, Theorem 4.1, p. 279]). For such

r and s we let

(3.1) Mz, y;n) = (2azx + by)r + (bx + 2cy)s.

Then A(z,y;n) depends only on a, b, c,z,y,n and 0 < A(z,y;n) < 2n.
LEMMA 3.1. Let d be a discriminant and let a,b, c € Z with b*>—4ac = d.

Suppose n € Ny, m € Z and 0 < m < 2n. Then there exists a proper

representation {x,y} of n = ax?®+bxy+cy? such that \(z,y;n) = m if and
only if m? =d (mod4n) and (n,m,(m? —d)/(4n)) ~ (a,b,c).

Proof. If there exists a proper representation {z, y} of n = ax?+bry-+cy?
such that A\(z,y;n) = m, then there are two unique integers r, s such that
xs —yr =1 and m = (2az + by)r + (bx + 2cy)s. Thus

m? = ((2az + by)r + (bx + 2cy)s)* = 4n(ar? + brs + cs?) + d(xs — yr)?
= 4n(ar? + brs + cs?) + d = d (mod 4n).

Since
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(32)  a@X +rY)?+b(xX +7Y)(yX +sY) + c(yX + sY)?
= (az® + bry + cy®) X? + (2arz + bsz + bry + 2csy) XY
+ (ar? + brs + cs?)Y?
m? —d
n
we see that (n,m, (m? —d)/(4n)) ~ (a,b,c).

Conversely, if m? = d (mod4n) and (n,m,(m? — d)/(4n)) ~ (a,b,c),
then there exist x,y,r,s € Z with s — yr = 1 such that (3.2) holds. So
(z,y) = 1, n = ax? + bxy + cy? and m = 2arx + bsx + bry + 2csy =
(2ax + by)r + (bx + 2cy)s. Thus {z,y} is a proper representation of n =
ax?® + bry + cy? with A(z,y;n) = m. So the lemma is proved.

=nX?2+mXY + &

LEMMA 3.2. Let d be a discriminant and a,b,c € Z with b*> — 4ac = d.
Supposen € N,m € Z,0 < m < 2n, m? = d (mod 4n), (n,m, (m?—d)/(4n))
~ (a,b,c). Then there are exactly w(d) proper primary representations {xz,y}
of n = ax? + bxy + cy? such that \(x,y;n) = m.

Proof. By [H, Theorem 4.6, p. 282], if there is a proper primary represen-
tation {z1,y1} of n = ax?® +bwy+ cy? such that A(x1,yi;n) = m, then there
are exactly w(d) proper primary representations {z,y} of n = ax?+bry+cy?
such that A(x,y;n) = m (Checking the proof of [H, Theorem 4.6], we do
not need to assume that (a, b, ¢) is primitive.). Thus we need only show that
there is a proper primary representation {z,y} of n = az? + bxy + cy? such
that A(x,y;n) = m. By Lemma 3.1, there is a proper representation {z’, 3’}
of n = az? + bxy + cy? such that A(z’,y’;n) = m. For d < 0, every proper
representation is a proper primary representation. So the result is true.

Now we assume d > 0. From the proof of Lemma 3.1 there exist x,y,r, s
€ 7Z such that xs — yr = 1, n = az? + bzy + cy? and m = (2az + by)r +
(b + 2cy)s = Az, y;n). Note that (2ax + (b + Vd)y)(2azx + (b — Vd)y) =
(2ax + by)? — dy? = 4an # 0. Replacing (z,y,r,s) by (—x, —y, —r, —s) if
necessary we may suppose that 2az + (b — v/d)y > 0. Since e(d) > 1 there
is a unique integer k such that

2 b—+d
2y/nlal
Let e(d)* = (t + u\/d)/2. Tt is well known that t> — du?® = 4 (see [H, The-
orem 4.4, pp. 281-282]). Now let
, x(t —bu)
T
It is easily seen that /.y’ € Z and

2az’ + (b £ Vd)y' = (2az + (b+ Vd)y)e(d) ™"

e(d)*1

y(t+ bu)'

—cuy and Yy =azu-+ 5
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By [H, Theorem 4.2, p. 279], {2/,y'} is a proper representation of n =
ax?® + bry + cy? with A\(z/,y';n) = Az, y;n) = m. We also have

20z’ + (b— Vd)y'  2az+ (b—Vd)y
n|al 2y/n|al

e(d)~ ! < e(d)™* <1,

Hence {z’,y'} is a proper primary representation of n = ax? + bxy + cy?
such that A(z’,3’;n) = m. This finishes the proof.

LEMMA 3.3 (Generalization of Mobius inversion formula). Let f(n) and
g(n) be defined for n € N. For r € N we have the following inversion for-
mula:

= 3 g(n’;) (n>1) & gy= 3 u(m)f<%> (n>1),

meN, m”|n

where p(n) is the Mébius function.

Proof. 1t is well known that

T

min ifn>1.
Thus, if £(1) = 30 9(72) (n > 1), then
mznu(mﬁ(%) = 3wl Zm;g( ) - %dgkum)g(g)
=2 9(%) (D= utm)) = g(n).
kr|n m|k

Similarly, if g(n) =3, , p(m) f (%) (n > 1), then

S o) = X 3 wi () = 5 5w ()

mr|n mTn dr| 2 k7 |n dm=k
-y f<k—> (3 nia)) = £
kT |n dlk

So the lemma is proved.
Following [NZM] and [MW?2] we introduce Hi, (1) as below.

DEFINITION 3.1. Let d be a discriminant and a, b, ¢ € Z with b? —4ac =d.
For n € N define H{q (1) to be the number of integers m satisfying 0 <
m < 2n, m? = d (mod4n) and (n,m, (m? —d)/(4n)) € [a,b, c].
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By this definition, Hj, s q(n) is the number of integers z satisfying
0 <z < 2n, 22 =d (moddn) and (n,z, (2% — d)/(4n)) € [a, —b,c]. Since
(n,z, (22 —d)/(4n)) € [a, —b, c] if and only if (n, —x, (22 —d)/(4n)) € [a, b, ],
using the fact that (A, B,C) ~ (A,2A + B, A+ B + C) we see that
Hi, pq(n)=[{z €Z|0 <z <2n, 2* =d (mod4n),
(TL, ) (1“2 - d)/(4n)) € [CL, b7 C]}|
=|{meZ|—-2n<m<0,m?=d (modin),
(n,m, (m? — d)/(4n)) € [a,b,c]}|
=H{m|m+2ne{l,2,...,2n}, (m+2n)? = d (mod 4n),
(n,m +2n, ((m +2n)? —d)/(4n)) € [a, b, c]}]
=z |z e{1,2,...,2n}, 2? = d (mod 4n),

n,xz, (22 — d)/(4n a,b,c
= Hyp (). (n, , ( )/(4n)) € [a,b, ]}

Thus for K € H(d) we have Hg(n) = Hg-1(n).

DEFINITION 3.2. Suppose a,b,c € Z and b?® — 4ac is not a square. For
n € N we define R/([a, b, ¢|,n) to be the number of proper primary represen-
tations of n = ax? + bxy + cy?, and define R([a, b, c|,n) to be the number of
primary representations of n = ax? + bxy + cy?.

By Lemmas 3.1 and 3.2, R'([a,b,c|,n) is well defined and R’'([a, b, c],n)
= w(b® —4ac)H, 4, (n). Now we show that R([a,b,c],n) is well defined and
reveal the connections among R([a, b, c|,n), R'([a,b,c],n) and H, (1)

THEOREM 3.1. Let d be a discriminant, n € N and a,b,c € Z with
b?> — dac = d. Then

R'([a,b,c],n) = w(d)H[aybvc](n),
n n
Rapdn = ¥ #(bd )=o) ¥ Hona()
meN, m2|n meN, m2|n

and

R(labdn)= > M(@R(p,b,@,%).

meN, m?|n
Proof. From Lemmas 3.1, 3.2 and Definition 3.2 we see that
R'([a,b,c],n) = w(d)H[aybvc](n).
Now we prove that

R([a,b,cl,n) = > R'([a,b,c],n/m?).

m2|n
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Clearly {x,y} is a primary representation of n = awz? + bxy + cy? with
(z,y) = m if and only if {x/m,y/m} is a proper primary representation of
n/m? = aX? +bXY + cY?. Thus

R([a,b,c],n) = Z {{z,y} | {x,y} is a primary representation

m2|n

of n = az? + bry + cy?® with (x,y) = m}|

= Z {{X,Y} | {X,Y} is a proper primary representation
m2|n
| of n/m? = aX? + bXY + cY?}|

=Y R([a,b,c],n/m?) = w(d) > Higpe(n/m?).

m2|n m?|n

This also shows that R([a,b,c],n) is well defined by Definition 3.2. Now
applying Lemma 3.3 in the case r = 2 we deduce the remaining result. The
proof is now complete.

REMARK 3.1. Let d be a discriminant, n € N and a,b,c € Z with
b? — 4ac = d. By the proof of Theorem 3.1, R([a,b,c|,n) is well defined.
From Definition 3.1 and Theorem 3.1 we know that H,; (n) < 2n and
so R(la,b,c],n) < w(d) 2, 2n/m?. Thus R([a,b,c],n) is finite. Since
Higpq(n) = Hig—pq(n) we see that R([a,b,c],n) = R([a,—b,c],n) and
R'(la,b,c],n) = R'(Ja, —b, ¢],n) by Theorem 3.1. By Definition 3.1, it is eas-
ily seen that Higp pk,ck](n) = Hiap,¢(n/k), where k € N and k|n. From
this and Theorem 3.1 we deduce R'([ak,bk,ck],n) = R'(]a,b,c|,n/k) and
R([ak, bk, ck],n) = R([a,b,c],n/k). If n = ax?® + by + cy?® with z,y € Z
and (z,y) = m, then n/m? = ax? + bxy; + cy? with z1,1 € Z and
(x1,y1) = 1. Using Lemma 3.1, Definition 3.1 and Theorem 3.1 we see
that H[a,b’c](n/m2) > 0 and so R([a,b,c],n) > 0. Thus n is represented by
ax?+bry+cy? if and only if n = ax?+bxry+cy? has a primary representation.
When d < 0 and K € H(d), the formula R(K,n) = w(d) > Hpy(n/m?)
has been given in [NZM, p. 174].

m?|n

THEOREM 3.2 (First Reduction Theorem for R(K,n)). Let d be a dis-
criminant with conductor f. Let n € N and K € H(d). Then

0 if (n, f?) is not a square,
R(p1,m(K),n/m?) if d<0 and (n, f2) =m2,

log e(d)
loge(d/m?)

R(K,n) =
R(p1.m(K),n/m?) if d>0 and (n, f2) = m?,

where m € N.
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Proof. By Lemma 2.1 we may assume K = [a,b,c| with (a, f) = 1. If
R(K,n) > 0, then n = ax? + bxy + cy? for some x,y € Z. Thus 4an =
(2az + by)? — dy?. Since (a,f) = 1 and f?|d we must have (4n, f?) =
(4an, f?) = ((2az + by)?, f?) = u? for some u € Z. Hence (n, f?) is a square
when ordsn # ords f2 — 1. Now assume ordsn = ords f2 — 1. Then 2| f,
4|d,2|band 21a. Set dg = d/f?, f =2%fy (21 fo) and n = 2227 Ing (24ng).
Note that an = (az + (b/2)y)? — (f?/4)doy?. Since dy = 0,1 (mod 4) we see
that 2 |do implies 4|dy. Thus, if 2| doy, then 4|doy? and so

(n, f?) = (an, f?) = ((az + by/2)* — f2doy?/4, f*)
= ((az +by/2), f?) = v*
for some v € Z. If 2¢dyy, then dopy? =1 (mod 4) and so

2 2
<ax2—|;j)1y/2> = 2;:12 + QfW doy?® = 2ang + do fiy> =2+ 1 =3 (mod 4).
This is impossible. Thus (n, f?) is always a square. Therefore, R(K,n) = 0
when (n, f2) is not a square.

Now suppose (n, f2) = m? for some m € N. Then m| f and m?|n. By
Lemma 2.1 we may suppose K = [a, bm, cm?] with a,b, ¢ € Z and (a,m) = 1.
If R(K,n) > 0, then n = ax? + bmaxy + cm?y? for some z,y € Z. By
Lemma 2.2, we have m | . Thus n/m? = aX? +bXy+cy® for X = z/m € Z
and y € Z. Conversely, if n/m? = aX? + bXy + cy? for some X,y € Z, then
{mX,y} is a solution to n = ax? + bmay + cm?y?. Thus for d < 0 we have

R(K,n) = R(la,bm,cm®],n) = R([a, b, c],n/m?) = R(p1,m(K),n/m?).
Now we assume d > 0. By the above,

{z,y} is a primary representation of n = ax? + bmaxy + cm?y?

1 2 —

- az + (bm — Vd)y <1
e(d) 2y/n|a|
e L X2 1 bXyteyt, X =2 eZ, yez,
m

m2
1 - 2aX—|—(b—\/d/m2)y<1
e(d) 2v/nlal/m? -

& n=az®+bmzy + em*y?, z,y € Z,

Suppose £(d) = (z1 +y1Vd)/2 and D = d/m?. Then z? — D(my;)? = 4.
Thus from [H, Theorem 4.4, p. 281] we know that £(d) = (z1+my1vVD)/2 =
+e(D)" for some r € Z. As £(d),e(D) > 1 we must have £(d) = e(D)" for
some 1 € N. Clearly

r =loge(d)/loge(D) and e(d)~!=¢e(D)™".



118 7Z. H. Sun and K. S. Williams

Thus, applying the above we obtain

L — aX? 4 bXY + Y2,
m

R(K,n) = H{X, Y}ez?

(D) < 20X + (b—VD)Y - 1}‘
2¢/nlal/m?
r—1
=Y {{X,Y} € 7? % =aX?+bXY +cY?,
(D) < 2aX + (b—VD)Y - g(D)S} '
2y/nlal/m?

For s € {0,1,...,7 —1} let ¢(D)® = (t; +usV/D)/2. Then t2 — Du? = 4 and
ts = Dug = bu, (mod 2). Recall that b — 4ac = D. Set

0= (20 0 ) ()

We then see that

()= (" o) ()

and
2ax + (b+VD)y = w (2aX + (b+ VD)Y).
Thus
da(az® + by + cy?) = (2ax + (b + VD)y)(2ax + (b — VD)y)
t2 — Du?

(20X + (b + VD)Y)(2aX + (b— VD)Y)
= 4a(aX? +bXY + cY?).
Since b? — 4ac = D is not a square we see that a # 0 and hence
az?® 4+ bry + cy? = aX? + bXY + Y2

Now from all the above we derive that
r—1

R(K,n) =) {{X, Y} e 72

L= aX? 4 DXY + Y,
m

s=0
2a X b—vD)Y t, sVD
(D) < 2EE f’-”fgﬂ
2+/nla|/m? 2
r—1
= {{x,y}eZZ %:amQ—i-bxy—i-cyQ,
m

I
o

S

(D) < 2az + (b — /D)y < 1}‘

2y/nla|/m?
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=r|{{z,y} | {z,y} is a primary representation
of n/m? = ax® + bxy + cy*}|
n loge(d) n
= _— = m K — .
rR([a, b, ], m2> log=(D) R{ o1,m(K) 3

This finishes the proof.

REMARK 3.2. Let d be a discriminant with conductor f. If (n, f?) = p?
for some prime p, the reduction formula in Theorem 3.2 has been given in
[HKW, p. 286] (d < 0) and [MW1, p. 35] (d > 0).

From Theorems 2.1 and 3.2 we have

COROLLARY 3.1. Let d be a discriminant with conductor f and n € N.
If (n,f?)=m? formeN, K,L € H(d) and L € Ker ¢y ,,, then

R(K,n) = R(KL,n).

LEMMA 3.4. Let d be a discriminant. Let k € N be squarefree. Let
a,b,c € Z with (a,k) = 1 and (bk)?> — dack = d. Suppose n € N with
k|n. Then

R([a, bk, ck],n) = R([ak,bk,c],n/k).
Furthermore, if (c,k) =1 and k*|n, then
R([a, bk, ck],n) = R([a, bk, ck],n/k?).

Proof. If n = ax? + bkxy + cky? for some z,y € Z, then k|z by
Lemma 2.2. Set z = kX. We then have n = ak?X? + bk?Xy + cky? and so
n/k = akX? + bkXy + cy?. Conversely, if n/k = akX? + bkXy + cy? for
some X,y € Z, then n = az? + bkxy + cky? for integers z = kX and y. Thus
R([a, bk, ck],n) = R([ak,bk,c],n/k) ford < 0.1fd > 0, n = ax®+bkxy+cky?
(x,y € Z) and = = kX, from the above we see that

{z,y} is a primary representation of n = ax? + bkxy + cky?
2az + (bk — Vd)y <

e eld)t < 1

2¢/nlal

2akX + (bk — Vd)y _ )
2+/|ak|n/k N
< {X,y} is a primary representation of n/k = akX? + bkXy + cY?2.

Thus we also have R([a, bk, ck],n) = R([ak, bk, c],n/k).
If (¢, k) = 1 and k? | n, applying the above we see that

R(la, bk, ck],n) = R([ak,bk,c|,n/k) = R([c, —bk,ak],n/k)
= R([ck, —bk,a],n/k*) = R([a, bk, ck],n/k?).
This completes the proof.

s gd) <



120 7Z. H. Sun and K. S. Williams

REMARK 3.3. When k is a prime and gcd(a, bk, ck) = (¢, k) = 1, the
first formula in Lemma 3.4 is known. See [HKW, Lemma 7.2] (d < 0) and
[MW1, Lemma 10] (d > 0).

THEOREM 3.3 (Second Reduction Theorem for R(K,n)). Let d be a
discriminant with conductor f. Let dy = d/f* and n € N. Let k be the
product of distinct prime divisors p of n such that p|dy, ptf and 21 ord, n,
and let ng be the product of all prime divisors p of n such that ptdy orp]| f.
Then for K € H(d) we have

R(K,n) = R(vr1(K),no).

Proof. Let m € N and K € H(d). If p is a prime such that p|do, pff
and p?|m, by Lemma 2.1 we may assume K = [a, bp, cp] with a,b,c € Z
and ptac. Thus applying Lemma 3.4 we see that

dg
2[or 1 'm}

R(K,m) = R(K,m/p*)=---= R(K,m/p

n = ng H pordpn = kng H pz[&‘gﬂ}’
pldo, ptf pldo, ptf
by the above we obtain R(K,n) = R(K, kng). Since k|dy, (k,f) =
and 41k, by appealing to Lemmas 2.1 and 3.4 again we find R(K, kng)
R(pr,1(K),ng). Thus the result follows.

1

Combining Theorems 3.2 and 3.3 we obtain

THEOREM 3.4 (Third Reduction Theorem for R(K,n)). Let d be a dis-
criminant with conductor f and do = d/f%. Let n € N and K € H(d).
If (n, f?) is not a square, then R(K,n) = 0. If (n,f?) =m? for m € N,

setting
I ord, (n/m?)
k= | | p and n = | | porer ,

pldo, 2ford, n pido

where p runs over all distinct prime divisors of n/m?, we then have

R(‘Pk,m(K)’n,) Zf d< 07
R(K,n) = log e(d)
— m(K),n") if d :
logs(d/mz) R((,Ok, ( )7”) if d>0
Proof. By Theorem 3.2 we need only consider the case (n, f2) = m? for
m € N. Let p be a prime dividing n/m?. Then p{% since (27, 7{1—22) = 1.

Note that d/m? = do(f/m)?. By Theorem 3.3 we have R(¢1 ., (K),n/m?) =
R(pr1(v1,m(K)),n'). This together with Theorem 3.2 and the fact that
Ok,m (K) = pr1(p1,m(K)) yields the result.
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REMARK 3.4. Since @i m(K) € H(d/m?) and (n',d/m?) = (n',dof?/m?)
= 1, using the reduction theorems we need only study R(K,n) on the con-
dition that (n,d) =

LEMMA 3.5. Let d be a discriminant with conductor f. If m € N and
m| f, then

Wdwl/m?)

mH (1 — 1(%)) _ ) h(d/m*)w(d) f d <0,
plm p p h(d)loge(d) a0
h(d/m2)10g6(d/m2) )

where p runs over all distinct prime divisors of m.

Proof. Set dy = d/f?. Then clearly d/m? = do(f/m)? is a discrimi-
nant with conductor f/m. From Dirichlet’s class number formula (see
[H, Theorem 10.1]) we know that

% K(d) ifd<0,

h(d) = m
Vd :
Toge(d) K(d) itd>0,
where K(d) =Yo7, 2(2). By [H, Theorem 11.2] we also have
do
K(d)=K(do)[[(1-=(=) )
1(-5(5))

where p runs over all distinct prime divisors of f. Thus

1(d)) _ fK(@)
fg<1 p<p>> K (dy)
2r fh(d)/(w(d)v—d)  h(d)w(do

_ ) .
| 2ot} o)) hldould)
fh(d)loge(d)/vd _ h(d)loge(d) P
h(do)loge(dy)/vdo  h(do)loge(do)

Applying this formula to the discriminant d/m? = dqo(f/m)? we obtain

h(d/m?)u(do) i
/ H( (1)) - £ty _f Hbyofd/n) st
mK (do) h(d/m?)loge(d/m?)

(

if d > 0.
h(do) loge(dp)




122 7Z. H. Sun and K. S. Williams

Comparing the two formulas we deduce that

SO e

)

plf.ptL 7))
h(d)w(d/m?) .
Wity MO0
Pd)loge(d) .
hdjm?) oge(djm?) 14> 0

To see the result, we note that

M(-5(%57) - I (=5(3) - 1 (-5(5)

plm, pt-L plf, ptL

REMARK 3.5. Lemma 3.5 is equivalent to a result given in [Coh, p. 217].
When d < 0 and m = f, the formula can be found in [C, p. 233].

THEOREM 3.5 (Reduction Theorem for R(KH,n)). Let d be a discrim-
inant with conductor f and dy = d/f%. Let H be a subgroup of H(d),
K € H(d) and n € N. If (n, f?) is not a square, then R(KH,n) = 0. If
(n, f2) =m? form €N, and if k and n’ are given by

k= H p and n = H porde(n/m?)
pldo, 2ford, n ptdo
where p runs over all distinct prime divisors of n/m?, then

RUCH. ) wr( L(d/m?\\ |H@/m®)/H'|  R(pwn(K)H, )
w(d) H(l p< P )) [ (d)/H] w(djm?)

plm

where H = o1, (H) = {p1.m(L) | L € H} and p runs over all distinct
prime divisors of m.

Proof. 1f (n, f?) is not a square, then R(L,n) = 0 for any L € H(d)
and thus R(KH,n) = 0. Now assume (n, f2) = m? for m € N. Let Hy =
HnNKeryy,, and H/Hy = {L1Hy,...,L.Hy}. Since ¢1 ,, is a homomor-
phism, it is easy to see that @1, (H) = {¢©1,m(L1),...,¥1,m(Ly)} and thus

(3.3) [p1,m(H)| =r = |H/Hol|.
Set

1 if d <0,
(3.4) o(d,m) =4 _loge(d) ..

loge(d/m?)
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Using Theorems 2.3, 3.4 and (3.3) we see that

R(KH,n) =Y R(KL,n)=c(d,m) Y R(prm(KL),n)

= c(d,m) Z R(@r,m(K)p1,m(L),n")

:c(d,m)z Z R(@k,m (K)p1,m(L),n")

T

= c(d,m) Y [Ho|R(prm(K)p1m(Li),n)

i=1
= c(d, m)|Ho| R(@km (K)@1.m (H), n')

_ c(d,m)|H|

[P1,m (H)]|

As H' = ¢1,,(H) is a subgroup of H(d/m?), applying Lemma 3.5 we have

c(d,m)|H| _ c(d,m)h(d) |H(d/m?)/H']

R(on,m (K)Sol,m(H)7 n,)‘

@ Ra/m®) (AW H]
T (1 L (Y ) @)/
- %(1 50)) s i

Now putting all the above together we get the assertion.

COROLLARY 3.2. Let d be a discriminant with conductor f. Suppose
n€N and (n, f?)=m? form €N. Let H be a subgroup of H(d), K € H(d),
Hy = HNKer gy, and Ker ¢y, /Hy = {A1Hy,...,AsHo}. Then

R(A\KH,n) =---=R(A,KH,n).

Proof. Let k and n’ be as given in Theorem 3.5. From Corollary 2.2
we see that opm(A1KH) = -+ = @pm(AsKH). Since ppm(AKH) =
Ok,m(AiK)p1,m(H) by Theorem 2.5(ii), we see that ¢g m(A1K)p1,m(H) =
<o = Qrm(AsK)p1,m(H). Now the result follows immediately from Theo-
rem 3.5.

From Theorem 3.5 and Lemma 2.6 we have

THEOREM 3.6 (Reduction formula for R(KH"(d),n)). Let d be a dis-
criminant with conductor f and do = d/f*. Let K € H(d), n € N and r be
a nonnegative integer. If (n, f?) is not a square, then R(KH"(d),n) = 0. If
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(n, f2) =m? form €N, and if k and n’ are given as in Theorem 3.5, then

14

plm
|H(d/m?)/H"(d/m?)| R(er,m(K)H"(d/m?),n')
[H(d)/H"(d)| w(d/m?) ’

where p runs over all distinct prime divisors of m.

Taking r = 0 in Theorem 3.6 we obtain

COROLLARY 3.3 (Reduction formula for R(K,n)). Let d be a discrim-
inant with conductor f and do = d/f?, and let K € H(d) and n € N. If
(n, f?) is not a square, then R(K,n) = 0. If (n, f?) = m? for m € N, and
if k and n' are given as in Theorem 3.5, then

RUEm) oo (L dfm?\Y h(d/m?) | Rlpgn(K).n)
w(d) H(l p< p )) W@ wd/m?)

plm
where p runs over all distinct prime divisors of m.

For K € H(d) clearly R(KH(d),n) = N(n,d). Thus putting r = 1 in
Theorem 3.6 we obtain

COROLLARY 3.4 (Reduction formula for N(n,d)). Let d be a discrimi-
nant with conductor f and do = d/f?. Let n € N. If (n, f?) is not a square,
then N(n,d) = 0. If (n, f?) =m? form € N, and if n’ is given by

n = ITpordp(n/7n2)7
ptdo
where p runs over all distinct prime divisors of n/m?, then

T

plm

where p runs over all distinct prime divisors of m.

Recall that |G(d)| = |H(d)/H?(d)| = 24¥. Taking r = 2 in Theorem 3.6
we have

COROLLARY 3.5 (Reduction formula for R(G,n)). Let d be a discrimi-
nant with conductor f and do = d/f?. Let K € H(d) nd n € N. If (n, f?)
is not a square, then R(KH?(d),n) =0. If (n, f?) = form € N, and if
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k and n' are as given in Theorem 3.5, then

A1 (1 (42))

plm
R(pm(K)H?(d/m?),n')
w(d/m?2) ’

where p runs over all distinct prime divisors of m.

REMARK 3.6. Corollary 3.5 unifies and improves the reduction formulas
for R(G,n) (G € G(d)) proved in [HKW] and [MW1].

4. Formulas for N(n,d). Let d be a discriminant and n € N. In this sec-
tion we give an explicit formula for N (n, d). We also show that N (n,d)/w(d)
is a multiplicative function of n and determine the Euler product for the
Dirichlet series >~ ; Nug?é?)n_s (Re(s) > 1).

LEMMA 4.1. Let d be a discriminant and n € N. Then §(n,d) = > ()

m
is a multiplicative function of n and min

é(n,d)
I[I XI+ord,n) if (g) = 0,1 for every prime q with 2{ ordyn,
=< (H=1
0 otherwise,

where in the product p runs over all distinct primes such that p|n and

(é) = 1. Moreover, for any complex number s with Re(s) > 1 we have

> d(n,d) 1
Z ns _g(l_p—s)(l_(d)p—s)’

n=1

where p runs over all primes.
Proof. Since ( d ) = (i)(i) for all mq,my € N we deduce that

mi1mso ma mo
d(n,d) is a multiplicative function of n. If p is a prime and ¢ € N, then

. d ‘L /d L(d\*
o wha-2(5)-25) -5 6)
t+1 if (4) =1,
=4 A+ (=DH/2 if (%) = -1,
1 if p|d.

Write n = Hp‘npordpn, where p runs over all distinct prime divisors of n.
Then 6(n,d) =[], §(p°*% ", d). This together with (4.1) gives the formula
for d(n, d).

pln
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Let d(n) denote the number of positive divisors of n. Clearly 0 < §(n, d)
< d(n). By [HKW, (9.1)], for any € > 0 there exists a constant C(g) > 0
such that d(n) < C(e)n°. Hence, if Re(s) > 1 and 0 < ¢ < Re(s) — 1
we have |6(n,d)n™%| < C(g)|n~(Re(*)=9)|. Thus > °7 | §(n,d)n~* converges
absolutely since Re(s) —e > 1. Clearly

S (S (S )

n=1 n=1 n=1 p

where p runs over all primes. This completes the proof.

Let d be a discriminant with conductor f. Let dy = d/f? and n € N.
When (n,d) = 1, Dirichlet (cf. [D], [H, pp. 307-308]) proved the following
formula for N(n,d):

(4.2) N, d) = w(d) S <%>

k|n
In 1997 Kaplan and Williams [KW1] showed that this is also true under the
weaker condition (n, f) = 1. Taking n =1 in (4.2) we find N(1,d) = w(d).
We now give the complete formula for N(n,d). For d < 0, the result
improves the Huard—Kaplan—-Williams formula (see [HKW, Theorem 9.1]).

THEOREM 4.1. Let d be a discriminant with conductor f. Let dy = d/ f?
and n € N. If (n, f?) is not a square, then N(n,d) = 0. If (n, f?) =m? for
m € N, then

oI5 (50) 2 (8)

plm m
-1 1+<—1>°fdp".mH(1_1<d/m2>>
2
(Lo)=—1 plm PAP
n
X H <1+0rdpm>,
(2)=1

where in the products p runs over all distinct primes.

Proof. If (n, f?) is not a square, by Corollary 3.4 we have N(n,d) = 0.
We now assume that (n, f?) = m? for m € N. Then m|f. Let n’ =
H;D)(do porde(n/ m2), where p runs over all distinct primes such that ptdy and
p| . By Corollary 3.4 we also have

e o4 it

plm
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Since d/m? = dof?/m?, (n',dy) = 1 and (n/, f2/m?) = 1 we see that
(n’,d/m?) = 1. Thus using Dirichlet’s formula (4.2) we obtain

A (4)- 5 (3)

Hence combining the above we obtain

(-5 ()

plm k|l vz

where p runs over all distinct prime divisors of m. Now applying Lemma 4.1
yields the remaining result. So the theorem is proved.

From Theorem 4.1 and (4.1) we have

COROLLARY 4.1. Let d be a discriminant with conductor f and dy =
d/f?. Let p be a prime and let t be a nonnegative integer.

(i) If ptf, then

0 if 24t and (%0) =-1,
N’ d) =S wld)(t+1) if (&) =1,
w(d) otherwise.
(ii) If p| f, say that p* || f, then
N(p',d)
(0 if 24t and (%0) =-1,
0 if 21t, t <2a and (%) =0,1,
w(d)p'’? if 2|t and t < 2,
") w @@~ p (1 20) if > 20 and (%) =1,
w(d)p® if t> 20 and p|do,
w(d)(p® +p*~ 1) if t>2a, 2|t and (%0) = 1.

The following result follows immediately from Corollary 4.1.

COROLLARY 4.2. Let d be a discriminant with conductor f and
do = d/f%. Let p be a prime and let t be a nonnegative integer. Then p' is
represented by at least one class in H(d) if and only if 2|t or (%0) =0,1
and pt{ f2.

THEOREM 4.2. Let d be a discriminant. Then N(n,d)/w(d) is a multi-
plicative function of n € N.

Proof. Let f be the conductor of d and dy = d/f2. Suppose that n;
and ny are relatively prime positive integers. Then clearly (nins, f?) =
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(n1, £2)(na, f2). Thus, if (ning, f?) is not a square, then either (n, f2) or
(n2, f?) is not a square. Hence by Theorem 4.1 we have

N(’I’Llng, d) N(?’Ll, d) N(TLQ, d)
VTR = . )
w(d) w(d) w(d)
Now suppose that (nins, f2) is a square. Since (ni,nm2) = 1 and so

(ning, f2) = (n1, f?)(n2, f?) we see that (n1, f?) = m{ and (ng, f?) = m3
for some mi,my € N and (my,mg) = 1. By Theorem 4.1 and Lemma 4.1
we have

et 11 (-4

plmima 172
ST IT (15 (%50 ()
_ N(ny,d) ‘ N(ng,d)
w(d) w(d) ’

where in the products p runs over all distinct primes. This finishes the
proof.

From Theorem 4.2 we have

COROLLARY 4.3. Let d be a discriminant such that h(d) = 1. Let 64 = 0
or 1 according as 2|d or 2td. Then R([1,04,(—d + 04)/4],n)/w(d) is a
multiplicative function of n € N.

REMARK 4.1. When h(d) = 1, R([1,0q, (—d + 04)/4],n) = N(n,d) is
given by Theorem 4.1. The values of d < 0 for which h(d) = 1 are known, see
for example [Cox, p. 149]. We have h(d) =1 < d=—-3,—4,-7,—-8, 11, —12,
—16,—-19,—27,—28, —43, —67, —163. For d > 0, we know that h(d) = 1 for
d=5,8,13,17,20,29,37,41,52,53,61,68,73,89,97, .. ..

THEOREM 4.3. Let d be a discriminant with conductor f and do=d/f?.

Let s be a complexr number with Re(s) > 1. Then the Dirichlet series
Zoo N(n,d)/w(d)

el converges absolutely and

~ N(n,d)/w(d 1 —pew(i=25)  por(=29) (1 — 1 (doy)
3 N, d)jw(d) _ 11 ( p , )

_l’_
= oy N LT (=) (1= ()

1
8 )

where p runs over all primes and o, = ord, f.
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Proof. From Theorem 4.2 we know that N(n,d)/w(d) is a multiplicative
function of n € N. By Theorem 4.1 and the same argument as in the proof of
[HKW, Corollary 9.1], for any € > 0 there exists a constant C(¢) such that

N(n,d) < C(e)n°. Letting ¢ € (0,Re(s) — 1) we see that > -, Nug?(ﬁ)n_s
converges absolutely. Thus

S 11501450 )

n=1 plf ptf
From Theorem 4.2, (4.2) and Lemma 4.1 we have
N o N(n.d) /w -
(1+ X0 e) = 3 z
otf t=1 n=1 n=1
(n,f)=1 n,f)=1

-
where p runs over all primes not dividing f.

If p is a prime such that p| f, letting p®» || f and using Corollary 4.1 we
see that

1+ Z ( o

1<t<2ay (1-25)
3 B 1 _pap —2s
_ Z pt/2 p st _ Z pr(l 2s) _ W
and 0§t2<‘t2% 0<r<ap
3 N@p'd)
t>2a ’U)(d)
( op(1—2s)
o —s p .
Dot = if p | do,
t>2a, p
« ap—1y, —st « ap—1 p72$ocp . d
S 0T = ) (%) = -1,
= t>2a, p
2|t )
QL oy — —S (e oy — pi Sap
Z (pr —p*r 1) (t+1—2a,)p~ " = (p —p l)m
t>2ap pd
\ if (70) =1

In the last case we use the fact that

(4.3) i(H )a' = %(i"’“m) = d%:(lfQC)

t=0 1t:0
== (kl<D.
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From the above we obtain

12

plf t=1

N(pt,d) _ N(pt,d) _,
N 5 e 5 2

plf 1<t<2ap t>2ap
ap(l 2s) pap(l_QS) 1— 1(do
_H( 1 2s +(1_ 5)(5_(];_0()]0))5))7
plf p p /P

where p runs over all distinct prime divisors of f.
Now putting all the above together we get the assertion.

From Remark 4.1 and Theorem 4.3 we deduce

COROLLARY 4.4. For k € Z let §;, = 0 or 1 according as 2|k or 2{k.
Let s be a complex number with Re(s) > 1.

(i) Let d € {—3,—4,—7,—8,—11,-19, —43, —67,—163}. Then

([1,04, (—d +64)/4],n)/w(d) 1
. At i@y

where p runs over all primes.
(ii) We have
o0

$R([1,0,3],n)
X

1+21 2s 1

1 1
:1_2—25'1_3—5 H m H 1_7’

—2s
p=1 (mod 6) p=>5 (mod 6) p
552 ([1,0,4],n)

1—275 42172 1 1
I 11 1—p)2 11 1—p2s

p=1 (mod 4) (1 P p=3 (mod 4) p
>~ 1p
25 S

1-37°437% 1 1
B 1—-3-3 H *3)2 H 1 —p2s

p=1 (mod 3) (1 -bp p=2 (mod 3) p
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and
i 5R([1,0,7],n)
n=1 n?
_ 1— 2175 + 21725 1 H 1
o (1—279)2 1—7-s (1—p—)2

p=1,9,11 (mod 14)
1
X H 1— p723 )
p=3,5,13 (mod 14)

where p runs over all primes.

5. Formulas for R(K,p') and R'(K,p"). Let d be a discriminant and
K € H(d). In the section we completely determine R(K,p') and R'(K,p'),
where p is a prime and ¢ is a nonnegative integer.

For n € Nlet Hi, q(n) and R'([a,b, c],n) be defined by Definitions 3.1
and 3.2 respectively. From Theorem 3.1 we have

LEMMA 5.1. Let d be a discriminant and a,b,c € Z with b*> — 4ac = d.
Suppose that p is a prime and t is a nonnegative integer. Then
[t/2] [t/2]
R([a,b,c],p R'([a,b,c],p"™%") = w( ZHu,b,C] =2y
r=0
and
R/([a7 b, c]apt) = w(d)H[a,b,c] (pt)

o {R([avb’c]7pt) Zf t=0,1,
- LR(la,b.d.p") = R(la,b,c].p™?) if t>2.
n [MW2], Muzaffar and Williams discussed Hg(n) (K € H(d)) for
d < 0. After checking their proofs, we note that Lemmas 5.1-5.5 of [MW2]
are also true for d > 0. Thus it follows from [MW2, Lemma 5.2] that
Hg (1) = 1 or 0 according as K is the principal class I or not. Hence by
Lemma 5.1 we have
w(d) itK=1I
5.1 R(K,1) = R/(K,1) = w(d)H (1) = ’
) R = RO = w@xm = {
Let p be a prime. Let f be the conductor of d. Clearly Hg (p) € {0, 1,2}
by Definition 3.1. By Corollary 4.2, p is represented by some class in H(d)
if and only if (%) = 0,1 and p{f. If p is represented by the class A in
H(d), then p is also represented by A~! since R(A4,p) = R(A™!,p). By
Lemma 5.1 we have R(K,p) = R'(K,p) = w(d)Hk (p). From this and [MW2,
Lemma 5.3] we deduce

LEMMA 5.2. Let d be a discriminant with conductor f. Let p be a prime
and K € H(d).
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(i) p is represented by some class in H(d) if and only if (%) =0,1 and

p1f.
(ii) Suppose p|d and ptf. Then p is represented by exactly one class

A € H(d), and A = A~'. Moreover, R(A,p) = R'(A,p) = w(d).
Thus, if h(d) is odd, then R(I,p) = R'(I,p) = w(d) and R(K,p) =
R'(K,p) =0 for K #I.
(iii) Suppose (%) = 1. Then p is represented by some class A € H(d),
and
0 if K#A AL
R(K,p) = R'(K,p) =4 w(d) if A#A and K € {A, A7},
2w(d) if K=A=A"

Let ¢ be a nonnegative integer and K € H(d). From now on we set

1 if2|tand K =1,
(5:2) URE S
0 otherwise.
From (5.1) and Lemma 5.1 we find that if p is a prime, then
(5.3) R(K,p") = w(d) (S (D) + Y Hi(™™)).
0<r<t/2

From [MW2, Lemma 5.4] we also know that if p is a prime and s € {2,3,...},
then

> Hy(p) ifptd,
S\ — LeH(d
(54) Hic(p*) = { L
0 if p|d and p1 f.
We now determine R(K, p') when pf f.

THEOREM 5.1. Let d be a discriminant with conductor f, and let p be a
prime such that pt f. Let t be a nonnegative integer and K € H(d).

(i) If (%) = —1, then

R(K,p!) = {w(d) if 2|t and K =1,
0 otherwise.
(ii) If p|d, then
R(K,p")
_{w(d) if 2|t and K =1, or if 21t and p is represented by K,
o otherwise.

(iii) Suppose (%) =1 so that p is only represented by some class A and
the inverse A~ in H(d). Let m be the order of A in H(d). If K
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is not a power of A, then R(K,p') =0. If k,to € {0,1,...,m — 1}
with tg =t (modm), then

0 if 2|m and 24k —t,
t
)| |———— | +1 f to € Skm,
R(A*,p') = ul )([m/(lm)} ) ¥t € Sk
t .
w(d) [W] otherwise,
where
{rlk<r<m,2|k—r}Uu{r|m—-k<r<m,2tk—r}
if 2¢m,
Skm:

’ {r | min{k,m —k} <r<m/2,2|k—r}
U{r| max{k,m —k} <r<m,2|k—r} if 2|m.

Proof. Let dx(t) be given by (5.2). We first assume (%) =-1.Iftt=0,
the result follows from (5.1). If t > 1, then the congruence 22 = d (mod 4p")
is insolvable. Hence Hk (p') = 0 for every K € H(d). Using (5.3) we see
that R(K,p') = w(d)dk(t). This proves (i).

Next we consider (ii). If ¢ = 0, the result follows from (5.1). For ¢t =1
the result follows from Lemma 5.2(ii). When ¢ > 2, by [MW2, Lemma 5.4]
we have Hg (p') = 0. Hence applying (5.3) and Lemma 5.2(ii) we obtain the
result.

Finally we consider (iii). By [MW2, Lemma 5.3], Hp(p) = 0 for
L # A A7 and Ha(p) = 2 or 1 according as A = A~! or not. Thus
applying (5.3) and (5.4) we deduce

K t
A b+ ¥ X m)

0<r<t/2 LeH(d)
Lt—2r=K

=ok(t)+ Y, Hr(p) >, 1

LeH(d) 0<r<t/2
Lt—2r=K

=okt)+ > 1+ Y 1

0<r<t/2 0<r<t/2
At=2r=[ A-(t=2r) =K

= > 1+ ) L

0<r<t/2 0<r<t/2
At—2r—K A-(t—-2r) =K

Hence, if K is not a power of A, then R(K,p') = 0. Now assume k €
{0,1,...,m — 1}. From the above we have
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koot
(5.5) % — Z 1+ Z 1

0<r<t/2 0<r<t/2
t—2r=k (mod m) t—2r=—k (modm)
0 i (2,m) 1k —t,
_ > 1+ > 1 if (2,m)|k—t.
0<r<t/2 0<r<t/2
rz% (mod ﬁ) rz# (mod (Twrln))

Ifa,neN,a—ngt/2<aanda:n[%]+ag, then ag € {0,1,...,n— 1}
and therefore
Y 1=|{se€Z[0<ag+sn<t/2}]

0<r<t/2
r=a (mod n)

a
=|{s|s€{0,1,...,[a/n] -1} = [ﬂ
Using this we see that
( Z 1= (t+m—k)/2] [t+m—k
- m/2 B m
0<r<t/2
TE—H'T;_k (mod )

if 2|m and 2|k —t,

Z 1= N m N 2m
0<r<t/2
0<r<t/2 =212k (nodm)
rz% (mod ﬁ)

if 2tm and 2|k —t,

0<r<t/2 m 2m
rz—t"'";_k (mod m)

if 2tm(k—t).
Similarly, if a,n € N are such that a —n < t/2 < a then

0<r<t/2
r=a (mod n)

Using this we obtain

' (Hk)/Q]:[Hk} i£2|m and 2| k1,

m/2 m
[(t+k)/2 t+k
> G )/]:[ + } if 2¢m and 2| k—t,
m 2m
0<r<t/2 -

m 2m

TEM mo B [ 2
5% (mod %) (t+m+k)/ } _ [Hm*k] if 24 m(k — t).
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Hence
(0 if 2|m and 2tk —t,
[t —k t+k
L}L{L] if 2|m and 2|k —t,

Rk b M "

5.6 : [ 2m —

66 =@ ft2m k’}+[t+k] if 24m and 2|k —t,
| 2m 2m
[t+m —k t+m+k| .
_T:| + {T} 1f2)(m and QTk‘—t.

Set s = [t/m]. Then t = sm + to. We first assume 2tm. Clearly k — ¢ =
k—sm—ty=k—ty— s (mod2). Thus 2|k —tp if and only if k —t = s
(mod 2). If 2| k — to, by (5.6) we have

2 _
[H o k]+[t+k} if 2|5 and 2|k — ,

R(Ak pt) 2m 2m
d o _
w(d) [t+m k]+[t+m+k] if 2¢s and 2tk — ¢
2m 2m
to—k to+ k to—k
:s+1+[° ]+[O+]:s+1+[0 ]
2m 2m 2m
_{S—l—l iftoZk‘,
s if to < k.
If 21k — to, by (5.6) we get
t+2m—k t+k
if 2 d2|k—t
natgy ||| remazies
d B _
w(d) [M%[W] 25 and 24k — t
2m 2m

[m—i—tg—k} [m—l—to%-k} [m+to+k]
=5+ + =5+ | —
2m 2m 2m
B {s+1 ifto+k>m,
s if tg +k <m.
Thus R(A*, p') = (s + 1)w(d) or sw(d) according as tg € Sk, or not.
Now suppose 2|m and 2|k —t. So 2|k — tg. By (5.6) we obtain
R(A* ph) t+m—k t+k
+
w(d) m m

m

[sm—l—m—i—tg—k] N [sm—i—to—i-k]
m
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=2+ 1+ [M] + [t°+k]
m

m

2s+2 if tg > max{k,m — k},
=4q 2s+1 if min{k,m —k} <ty < max{k,m — k},

2s if to < min{k,m — k}.
Note that
[ t } {sm—i—to} [to ] 25+ 1 iftg > m/2,
= = 23—|— —_— =
m/2 m/2 /2 2s if tg < m/2.
Applying the above we see that
S
25 +2= B +1 if tp > max{k,m — k},
T
25+ 1=|——|+1 ifmin{k,m—k} <to<m/2,
R(A* pt) L m/2]
wid) 23+1—_L_ if m/2 <ty < max{k,m — k}
- _m/2_ >~ {0 X\ R, 9
2s = o if to < min{k,m — k}
- m/2 0 ’ ’

Therefore, R(AF,pt)/w(d) = [mL/Q] +1or [mL/Z] according as ty € Sk, oOr
to & Sk,m. So (iii) is true and hence the theorem is proved.

THEOREM 5.2. Let d be a discriminant with conductor f, and let p be a
prime such that p{ f. Let t e N, t > 2 and K € H(d).
() If (g) =0,—1, then R'(K,p') = 0.
(ii) Suppose (%) = 1 so that p is represented by some A € H(d). Let m be
the order of A in H(d). If K is not a power of A, then R'(K,p") = 0.

If k€ Z, then
0 if t# +k (modm),
R(A* p) =< w(d) if t =4k (modm) and m12k,
2w(d) if t=k=—k (modm).

Proof. Ast>2, by Lemma 5.1 we have R’ (K, p') = R(K, p*)—R(K,p'~2).
Thus (i) follows from Theorem 5.1. Now we consider (ii). From the above
and (5.5) we see that
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R'(A*,p') _ R(A%p")  R(A*,p'2)

wd)  w(d) w(d)
S0 SR SR
0<r<t/2 0<r<t/2

t—2r=k (mod m) t—2r=—k (mod m)

SR DN D DR
0<s<(t—2)/2 0<s<(t—2)/2
t—2—2s=k (modm) t—2—2s=—k (mod m)

S >IN T S
0<r<t/2 0<r<t/2

t—2r=k (mod m) t—2r=—k (mod m)

aED IR ED DI
1<r<t/2 1<r<t/2
t—2r=k (mod m) t—2r=—k (mod m)

= x(m [t =k)+x(m|t+Fk),
where x(a|b) =1 or 0 according as a|b or not. This yields (ii) and hence
the theorem is proved.

THEOREM 5.3. Let d be a discriminant with conductor f and do = d/ f?.
Let p be a prime dividing f and p® || f. Let K € H(d), t € N and K, =
©1.p0 (K) € H(d/p*™). In view of Lemma 3.5, for s € {1,...,a} set

W, = po! (p B (d/p28)> hd/p*uw(d) _ w(i{gpjéé) if d<0,

h(d ——=— gf d>0.
v “ ogetafm) 117
(i) If t < 2, then
R(K,p")
:{Wpt/Q if 2|t and @y /2 (K) is the principal class in H(d/p"),
0 otherwise.
(ii) If t > 2« then
R(K,, p'—2° i d <0,
R
W R(K,p, p'=2%) if d > 0.
(iii) If t > 2a and (%0) = —1, then
R(K,p")
_ {Wpa if 2|t and K, is the principal class in H(d/p*®),
0 otherwise.

(iv) If t > 2a and p|do, then
Wye if 21t and p is represented by K,, or if 2|t
R(K,p") = and K, is the principal class in H(d/p**),
0 otherwise.
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(v) Suppose t > 2a, (d?) = 1 and p is represented by the class A €
H(d/p**) of order m. If K, is not a power of A, then R(K,p') = 0.
If k,to €{0,1,...,m—1} with K, = A¥ and to =t — 2a (modm),
then
0 if 2|m and 21k —1t,
t— 2«

e (=221 1) e s

R(K,p') = m/(2,m)

t— 2«
} otherwise,

We [m

where the set Sy ., is defined as in Theorem 5.1.

Proof. Clearly (p', 2) = (pt,p*®) = pmin{t’%‘}. If t <2a, then (p, f?)
= pt. Thus using Theorem 3.2 we see that
0 if 24,

R(pq pe/2(K),1) if 2|t and d <0,
loge(d)
loge(d/pt)

Now applying (5.1) we obtain (i).
If t > 2a, then (pt, f?) = p?>*. Applying Theorem 3.2 we see that (ii) is
true.

Since K, € H(d/p*®), d/p** = do(f/p*)? and (p'—2%, f/p~) = 1, by (ii)
and Theorem 5.1 we obtain (iii), (iv) and (v).

R(K,p') =
R((pl,pt/Q (K), ].) if 2 ’t and d > 0.

THEOREM 5.4. Suppose all the assumptions in Theorem 5.3 hold.

(i) Fort < 2a we have

R'(K,p")
Wpir2 if 2|t and K € Ker g /2 — Ker ¢y 121,
Wpt/2 — Wpt/2—1 if 2’t and K € KeI'QD17pt/2—1,
0 otherwise.

(ii) For t = 2a+ 1 we have
R/(K,p***)
Wpa o if (%‘J) =1, p is represented by K, and K, # Kp_l,
orif p|do and p is represented by Kp,
2Whe if (%0) =1, p is represented by K, and K, = Kljl,
0 if p is not represented by K.
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(iii) Fort > 2+ 2 we have

ep(t,m)Wpa if (%0) =1, p is represented by
R'(K,p') = A€ H(d/p*) and K, = AF,
0 otherwise,

where m is the order of A in H(d/p**) and ey (t,m) is the number
of elements in {k, —k} which are congruent to t — 2ac (modm).

Proof. Fort =1, by Lemma 5.2(i) we know that R'(K,p) = 0 since p| f.
Thus (i) holds for t = 1. Now assume ¢ > 2. From Lemma 5.1 we have

R'(K.p') = R(K,p") — R(K,p"?).

If t < 2a and 2tt, then R(K,p') = R(K,p'~2) = 0 by Theorem 5.3(i).
Thus R'(K,p') = 0. If t < 2« and 2| ¢, observing that R'(K,p') > 0 and
then applying Theorem 5.3(i) and (5.1) we obtain (i).

For t = 2a + 1, by the above and Theorem 5.3 we obtain

R'(K,p***) = R(K,p***) — R(K,p**~") = R(K,p***")
R(K,,p) if d <0,
:{W%Rﬁ%m if d > 0.
Since K, € H(d/p**) and f(d/p**) = f/p* # 0 (mod p), applying the above
and Lemma 5.2 we see that (ii) holds.
As for t > 2a 4 2, from Lemma 5.1 and Theorem 5.3(ii) we have

R'(K,p") = R(K,p") — R(K,p"?)
R(K,,p'™2%) — R(K,,p!™27%%) = R'(K,,p"™2*) ifd <0,
= 4 Wya (R(Kp,p' %) — R(Kp,p'>72%)) = Wpa R (Kp, p' %)
if d > 0.

Now recalling that pt L and applying Theorem 5.2 we obtain (iii).

pa
Summarizing the above we prove the theorem.

THEOREM 5.5. Let d be a discriminant with conductor f. Let p be a
prime such that (%) = 0,1 and ptf. Then p is represented by some class
A€ H(d). Fort € N and K € H(d) we have

R(K,p"™™) + R(K,p'™") = R(AK,p") + R(A™'K, p").

Proof. We first assume p|d. By Lemma 5.2, p is represented by exactly
one class A in H(d) and A = A~L. If A = I, by Theorem 5.1(ii) we have
R(I,p") = w(d) and R(K,p') = 0 for K # I, thus the result is true. If
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A # I, by Theorem 5.1(ii) we have

w(d) if 2|¢, 0 if 2|t,
. (A,p") = { .
0 if 2tt, w(d) if 21¢,
and R(K,p') =0 for K # I, A. Using this we can easily check the result.
Now suppose (g) = 1. Let m be the order of A in H(d). If K is not a

power of A, then clearly AK and A~'K are not powers of A. From The-
orem 5.1(iii) we see that R(K,p'™) = R(K,p!™!) = 0 and R(AK,p') =
R(A7'K,p') = 0. So the result is true in this case.

Now suppose K = A* for some k € Z. From (5.5) we see that

1

R(I,p') = {

1

R(IK t+1 R(IK t—1 — RAk t+1 RAk t—1
—w(d)( (K, p"™") + R(K,p"")) —w<d)(( p7) + R(AT,p)
D S
0<r<(t+1)/2 0<r<(t4+1)/2
t—2r=k—1 (mod m) t—2r=—k—1 (modm)
+ > 1+ > 1
0<r<(t—1)/2 0<r<(t—1)/2
t—2r=k+1 (mod m) t—2r=1—k (mod m)
T
0<r<t/2 0<r<t/2
t—2r=k—1 (mod m) t—2r=—k—1 (mod m)
+ > 1+ > 1
0<r<t/2 0<r<t/2

t—2r=k+1 (mod m) t—2r=1—k (mod m)

= > 1+ > 1

0<r<t/2 0<r<t/2
t—2r=k+1 (mod m) t—2r=—k—1 (modm)
+ > 1+ > 1
0<r<t/2 0<r<t/2
t—2r=k—1 (mod m) t—2r=1—k (mod m)
1
= w(d) (R(AM,p!) + R(A®1, p"))
= L (R(AK,p") + R(A'K,p)
w(d) ) ) .

This completes the proof.

COROLLARY 5.1. Suppose all the assumptions in Theorem 5.5 hold. Let
H be a subgroup of H(d). Then

R(KH,p"t") + R(KH,p'""') = R(AKH,p") + R(A"'KH,p").
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6. The formula for R(G,n) (G € G(d)). Let d be a discriminant. The
purpose of this section is to determine R(G,n) when G € G(d) and n € N.

THEOREM 6.1. Let d be a discriminant with conductor f, dy = d/f?
and n € N. If (n, f?) is not a square, or there exists a prime p such that
2ford,n and (%‘J) = —1, then R(G,n) = 0 for any G € G(d). Suppose
(n, f2) = m? form € N and (%0) = 0,1 for every prime p with 21 ord, n.
Then there are exactly 9t(d)—t(d/m*) genera G repgresentmg n, and for such
a genus G we have R(G,n) = N(n,d)/24D=1d/m") " Moreover, if k and n'
are given by

k= H p and n = H pordp(n/mz)’

pldo, 2tordy n pldo

where p runs over all distinct prime divisors of n/m?, then n' is represented
by some class [ak,bk,c] € H(d/m?) with a,b,c€Z and (a,km)=(c,k)=1.
Set Hy = H?*(d)NKer 1 ,,, and Ker @1, /Ho={A1Ho,...,AsHo}. Then all
the distinct genera of H(d) representing n are AyKH?(d), ..., AsKH?(d),
where K = [a, bkm, ckm?].

Proof. If (n, f?) is not a square, or there exists a prime such that
21 ord, n and (%0) = —1, by Theorem 4.1 we have N(n,d) = 0 and so
R(G,n) = 0 for any G € G(d). Now suppose (n, f?) = m? for m € N and

(%‘J) = 0,1 for every prime p with 2{ ord, n. It follows from Theorem 4.1

that N(n,d) > 0. Applying Corollary 3.4 we see that N(n',d/m?) > 0.
Thus using the fact that (k, f/m) = 1 and Theorem 2.4(ii) we see that
n’ is represented by some class [ak,bk,c] € H(d/m?) with a,b,c € Z and
(a,km) = (c,k) = 1. Suppose [ak,bk,c] € G’ for G’ € G(d/m?). Then
R(G',n') > 0. Since (n/,d/m?) = 1, from genus theory we know that G’ is
the unique genus of H(d/m?) representing n’ (see e.g. [KW2, Lemma 1]).
For K = [a,bkm,ckm?] we have ok ., (K) = [ak,bk,c]. By Corollary 3.5,
Lemma 2.6 and the above we see that for G € G(d), R(G,n) > 0 if and only
if pr.m(G) = G'. Now the result follows from Corollaries 2.3 and 3.5.

REMARK 6.1. This theorem extends a result of Kaplan and Williams
[KW2], who showed that there are exactly 9t(d)—t(d/M?) genera G represent-
ing n provided (n/M?, f/M) =1 and N(n,d) > 0, where M is the largest
integer such that M?|n and M | f.

If |G(d)] = 2 and G € G(d), it follows from Theorem 6.1 that R(G,n)
=0,N(n,d) or N(n,d)/2. Thus we have

COROLLARY 6.1. Let d be a discriminant such that |G(d)| = 2, say
G(d) ={G,G'}. Then for n € N we have

R(G,n)R(G',n)(R(G,n) — R(G',n)) = 0.
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7. Multiplicative functions involving R(K,n). For a discriminant
dlet K € H(d). For n € N let R(K,n) and R'(K,n) be defined by Def-
inition 3.2. The purpose of this section is to give multiplicative functions
involving R(K,n).

THEOREM 7.1. Let d be a discriminant. If ny,...,n, (r > 2) are pair-
wise prime positive integers and K € H(d), then
1
R(K,ny---n,) = @1 > R(Ki,m)-- R(Kp,n,),
Ky K,.=K
1
R(K,ny---n,) = W Zi R'(Ky,m1) - R(K,,n,),
where the summations are taken over all Ki,...,K, € H(d) such that
KK, =K.

Proof. For K € H(d) and n € N let Hx(n) be defined by Definition 3.1.
Recently Muzaffar and Williams ([MW2, Lemma 5.5]) showed that for d < 0,
if ny1,mo € N and (nq,n2) = 1, then

(7.1) Hy(mng) = Y Hg, (m)Hg,(n2),

where the summation is taken over all K1, Ky € H(d) such that K1 Ky = K.
For B € Z with 0 < B < 2n1ny and B% = d (mod 4nins), in the proof of
(7.1) Muzaffar and Williams used the fact that

[nin2, B, (B® —d)/(4n1n2)] = [n1, B, (B® = d)/(4n1)][n2, B, (B* —d) /(4n2)].

This fact is easily deduced from Lemma 2.4. Checking their proof of (7.1)
we find (7.1) is also valid when d > 0. Using Theorem 3.1 and (7.1) we see
that

s x ()= X 2wl )

m?2|ning m2|n1 mZ|no

TE s ()

m32|n1 mi|ne K1,K2€H(d) 1

KiKo=K
n

- Y () X ()
K1, K2€H(d) m3|ny m3|ns ma
KiKo=K

_ Z R(Ky,m1) . R(K3,n2)
Ki,K>€H(d) 'lU(d) UJ(d)
K1 Ko=K

Thus the first result is true for r = 2.
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Now we prove the first result by induction. Suppose r > 2 and that the
result holds for » — 1 pairwise prime positive integers. From the above and
the inductive hypothesis we see that

1
R(K,ny-ny)=—= > R(Ani--n._1)R(EK,n,)
w( ) A,K,.€H(d)

AK,.=K
1 R(K,,n,)
- AR ) R(Ky1,m1) - R(Kp_1,n,_
() w(d)—? > (K1,m1) (Kr—1,np1)
AK€ (d) Kiq,..., Kr_leH(d)
AK,=K Ky Ky 1=
1

= @ > R(Ky,n1) - R(K,,n,)

The result for R(K,n; - --n,) now follows by induction.
Observe that R'(K,n) = w(d)Hgk(n) by Theorem 3.1. Using (7.1) and
induction one can similarly prove the remaining result for R'(K,nqy - --n,).

DEFINITION 7.1. Let d be a discriminant and n € N. Let H(d) =
{AM . Ak |0 < Ky < hy,...,0 < k. < Ry} with hy---h, = h(d). For
K = Abvoooake € H(d) and M = AP ... A™ ¢ H(d) with kj,m; €

{0,1,... h—l}(z—l ,7) we define
k1m1 krmr
K, M) = ot
K M) = = .
and
1
F(M,n)=—= > cos2r[K,M]- R(K,n)
wld)  Eita)
1 <k‘1m1 kTmT> k k
= — Z cos 2T + 4 “R(A* - A¥r m).
w(d) 0<ki<hy fn hr
0<kr<h,

REMARK 7.1. Let d be a discriminant and K, M € H(d). By
have R(K, 1) =w(d) or 0 according as K =1 or K # I. Thus F'(M,
Definition 7.1. From Definition 7.1 we also know that F/(M,n) = F(M
for n € N and

(5.1) w
HE
F(I,n) = L > R(K,n)

w
KeH(d)

(d) N(n,d).

(d)
By Theorem 4.1, if (n, f2) is not a square or there is a prime p such that
(L) = —1 and 21 ord, n, then we have N(n,d) = 0, R(X,n) = 0 and hence

p

F(M,n) =0.
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THEOREM 7.2. Let d be a discriminant and n € N.
(i) If M € H(d), then F(M,n) is a multiplicative function of n.
(ii) If K € H(d), then
d
R(K,n) = % Z cos 2w [K, M| - F(M,n).
MeH(d)

Proof. Since R(K,n) = R(K~!,n) we see that

1
F(Mn) = o5 D cos2m[K, M]- R(K,n)
w(d) KeH(d)
1 i 2
_ Z (BQWZ[K,M] + 6727”[K’M])R(K, n)
2w(d) S
_ ﬁ Z (eQﬂi[K’M]R(K, n) + eQﬂi[K—l,M]R(Kfl’n))
w( )KGH(d)

1 2mil K, M]
=—— Y MIEMRE ).
w(d) KecH(d)

Similarly, as F(M,n) = F(M~!,n) we have

> cos2m[K,M]-F(Mn)= Y ™ EMEpP,n).
MecH(d) MeH(d)

Let n1,ne € N and (n1,n2) = 1. For K, L, M € H(d) it is easily seen

that e2miKL.M] _ ,2milK,M] | ,2mi[L,M] 414

Z 2l KL, M] _ { h(d) if L=K",
0 if L# K1

MeH(d)
From Theorem 7.1 and the above we have

F(M,niny)

1 .
= Z eZTr'L[I(,M}I%(}'(7 n1n2)

w(d) KeH(d)

1 .
= 2 Z e2mHEM] Z R(K1,n1)R(K3, n2)

w
() KeH(d) Ki1,K2€H(d)
K1 Ko=K

1 . )
— Z Z 627T’L[K1,M} . 627”[K2’M]R(K]_,n]_)R(K2,n2)

w(d)?
KeH(d) K1,K2€H(d)
K1 Ky=K
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— Z Z 27rz [K1,M (Klgnl) 27ri[K2’M]R(K2,n2)

K1€H(d) Ko€H(d)

:;< Z eQﬂ[KI’M}R(Kl,nl)>< Z eQm[Kz’M]R(Kz,nz))

2
w(d)®\ S KzcH(d)

= F(M,nl)F(M, ng).

Thus (i) is true.
Now we consider (ii). By the above, it is clear that

M COS 2T . n
D) MEZH:@ on[K, M]- F(M,n)
_ w(d) J2milK, M) "
o,
w(d)

) 1 )
— d Z 6271'1[[(,M] . Z esz[L,M]R(L’ n)

(d MeH(d) w( )LGH(d)

1 Z ( Z 2m‘[KL,M]>R<L7n)

LEH(d) MeH(d)

>
N

:‘ ‘

= R(K',n) = R(K,n).
So the theorem is proved.

REMARK 7.2. Let d be a discriminant and n € N. If we define

F'(M,n) = 1 Z cos2m[K,M]- R'(K,n) for M € H(d),
w( )KEH(d)

in a similar way we can show that F’(M,n) is a multiplicative function of
n and

R(K,n)=—7= Y cos2r[K,M]-F'(M,n) for K € H(d).

From Theorem 7.2 we have

THEOREM 7.3. Let d be a discriminant such that H(d) is cyclic and
h(d) = h. Let I be the principal class in H(d), and let A be a generator of
H(d). Set Ay, =1 or 0 according as 2| h or 2¢h. Then for any m € Z,

F(A™,n)

- Ld < > 2cos 2”:7” R(A* n) + R(I,n) + (-1)™A,R(A"?, n)>
WA\ 5
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1s a multiplicative function of n. Moreover, for k € Z we have
R(A* n)

_ M( S 2cos 2”:m F(A™ n) + F(I,n) + (—1)kAhF(Ah/2,n)>.
1<m<h/2

Proof. For K € H(d), by Remark 3.1 we have R(K,n) = R(K~! n).
Thus R(A*,n) = R(A"* n) for 1 < k < h/2. Hence, from Definition 7.1
and Theorem 7.2(i) we see that

1 2rkm
F(A™ = —— AF
(A" = oy 3 s R )

1 21k
= — < Z 2 cos Whm R(A* n) + R(I,n) + (—1)™ALR(A"?, n)>
WD\ 4T

is a multiplicative function of n. Similarly, from the fact that F(A™,n) =
F(A"™ n) and Theorem 7.2(ii) we obtain the remaining result.

THEOREM 7.4. Let d be a discriminant such that H(d) is cyclic and
2 < h(d) < 6 (h(d) € {2,3,5,6} implies H(d) is cyclic). Let I be the
principal class in H(d). Let A be a generator of H(d) and n € N. Recall
that w(d) =1 or 2 according as d > 0 or d < 0.
(i) If h(d) =2,3, then F(A,n) = (R(I,n) — R(A,n))/w(d) is a multi-
plicative function of n.
(ii) If h(d) =4, then
F(A,n) = (R(I,n) — R(A%n))/w(d),
F(A%n) = (R(I,n) + R(A*,n) — 2R(A, n)) /w(d)
are multiplicative functions of n.
(iii) If h(d) =5, then

F(A,n)= (R(I, n) + ‘/52_ ! R(A,n)— ‘/52“ R(A?, n)> Jw(d),
F(A%,n)= (R(I, n)— \/5;_1 R(A,n)+ \/52_ 1 R(A2, n)) /w(d)

are multiplicative functions of n.
(iv) If h(d) =6, then
F(A,n) = (R(I,n) + R(A,n) — R(A%,n) — R(A* n))/w(d),
F(A%,n) = (R(I,n) — R(A,n) — R(A% n) + R(A% n))/w(d),
F(A?,n) = (R(I,n) — 2R(A,n) + 2R(A* n) — R(A* n))/w(d)

are multiplicative functions of n.
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Proof. Observe that

277_ 1 277_0 271'_1 47r_ 1
cos 5 = g cos 7 -0 cos 5 =3 cos Y
2 LT V5 —1 4 T V541
COoS — =sin — = , CO0S— = —COS— = — .
5 10 4 5 5 4

Putting h = 2,3,4,5,6 in Theorem 7.3 we obtain the result.

REMARK 7.3. Putting h = 8,10,12 in Theorem 7.3 one can obtain the
results similar to Theorem 7.4. For example, if H(d) = {I, A, ..., A"} with
A8 =1, then F(A% n) = (R(I,n) — 2R(A% n) + R(A*, n))/w(d) is a multi-
plicative function of n € N.

8. Formulas for F(M,p"). Let d be a discriminant and M € H(d).
The purpose of this section is to determine F(M,p'), where p is a prime
and t € N. From now on we let R(M) denote the set of integers represented
by M € H(d).

Let {U,(x)} be the Chebyshev polynomials of the second kind given by

(8.1)  Up(z)=1, Ui(z)=2x, Upsi(x)=22U,(x)—Up_1(x) (n>1).
It is well known that (see [MOS))

(8.2) Us(D)=n+1, Uy(=1)=(=1)"(n+1),
(8.3) Us (cos ) = W (0 40, 47,427, ..)
and

[n/2] -
(8.4) Un(x) = (-1)?( . >(2x)”—2r

r=0

[n/2]

— Z <28+ > nEs (g — )5,

THEOREM 8.1. Let d be a discriminant with conductor f. Let H(d) =
(AP Ak 0 < By < hy,...,0 < k. < hy} with hy---h,. = h(d). Let
M = AT --- A € H(d). Let p be a prime not dividing f and let t be a
nonnegative integer.

(i) If (%) = —1, then

F(M,pt):{l if 21t,

0 if 24t
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(ii) If p|d, then p is represented by exactly one class A € H(d) and
A= Ailhlp . -Afth/Q with €1,...,&e. € {0,1}, and
F(M,pt) — (_1)(51m1+--~+57\mr)t'

(iii) If (%) =1 so that p is represented by some class A = AJ* - A%
€ H(d), then

F(M,p") = Ui(cos 2m(aymy /hy + - - - + a,m,./h..))
( (_1)2t(a1m1/h1+---+armT/hT)(t + 1)
if 2(azmy/h1+---+a,m,/h,) € Z,

=9 sin27(aimi /b1 + -+ apmy /by ) (E+ 1)
sin2m(aymy /b1 + -+ - + apmy. /)

\ Zf 2(a1m1/h1+-~+aTmr/hT) ¢Z
Proof. If (%) = —1, by Theorem 5.1(i) we have for K € H(d),

w(d) if K =1 and 2|t,
0 otherwise.

R(K,p") = {

Thus, by Definition 7.1 we have

1 14 (—1)¢
F(M,p") = —— R(I,p") = ————.
This proves (i).
Now suppose p|d. From [MW2, Lemma 5.3] we know that p is repre-
sented by exactly one class A € H(d) and A = A~!. Thus

A=A Ae 2 ithey, .. e, € {0,1).

Suppose K € H(d). If A = I, by Theorem 5.1(ii) we have R(I,p") = w(d)
and R(K,p') =0 for K # I, thus F(M, p') = 1 by Definition 7.1. If A # I,
by Theorem 5.1(ii) we have

14+ (=1)¢ 1—(=1)¢
) = ), R =
and R(K,p') =0 for K # I, A. Thus
F(M,p")
1+ (-1 1-(-1)* myerhy /2 myerhy /2
pr— 2 _— DY _—
5 + 9 Cos 27 I + + h
_ (D 1—(—1)t(_1)51m1+...+&mr (< 1)Er e m)t

2 2
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Finally, consider (iii). By Definition 7.1 and Theorem 5.5 we have for
teN,
F(M,p"™") + F(

1

= o
(

=

)

cos 27 [K, M] - (R(K, p™") + R(K, p'™ 1))
d)

cos 2K, M] - (R(AK, p') + R(A™'K,p"))
d)

S

=[]

m

~—

S

K
K

m
=

=— (cos2n[A™'L, M] - R(L,p") + cos 2n[AL, M] - R(L,p"))
( LeH(d)
= 2 cos 2m[A, M| cos 2n[L, M] - R(L, p")
@), (d)
= 2cos 27[A, M] - F(M,p").
Set © = cos2w[A, M]. Then
(8.5) F(M,p'™") = 22F(M,p') = F(M,p'™").
From Remark 7.1 we have F'(M,1) = 1. Using Definition 7.1 and Lem-
ma 5.2(iii) we see that F'(M,p) = 2z. Therefore

F(M,p") = Uy(z) fort=0,1,2,....
Now applying (8.2) and (8.3) yields the result. So the theorem is proved.

~—

S
m
T

1
1
1

~—

S
m
T

From Theorem 8.1 we have

COROLLARY 8.1. Let d be a discriminant with conductor f. Suppose that
H(d) is cyclic with order h and generator A. Let p be a prime such that pt f.
Let t be a nonnegative integer and s € Z.

(i) If (%) = —1, then
1 if 2|t

s ot
FAsy) = {0 if 21t
(ii) If p|d, then p is represented by A"/ for unique e € {0,1} and
F(A%, ') = (<D=,
(iii) If (%) =1 so that p is represented by some class A* € H(d), then
(=1)%est/h(t +1)  if 2as/h € Z,

F(A®,p') = Uy(cos 2mas/h) = sin2was(t +1)/h
sin 2mas/h

if 2as/h & 7.

From Corollary 8.1 we deduce
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COROLLARY 8.2. Let d be a discriminant such that H(d) is a cyclic
group of order h. Let p be a prime such that (%) =1 and p is represented
by A € H(d). Let m be the order of A in H(d). Let t1 and ta be nonnegative
integers such that t; = ty (modm). Then F(M,p') = F(M,p*) for any
M € H(d) with M= # 1.

THEOREM 8.2 (Reduction Theorem for F(M,n)). Let d be a discrim-
inant with conductor f, and H(d) = {AM ... A¥ | 0 < ky < hy,...,0 <
k. < hy} with hy---h, = h(d). Let M = A" --- A" € H(d) and n € N.

(i) If (n, f?) is not a square, then F(M,n) = 0.

(i) If (n,f?) = m? for m € N and Kerpy,,, = {AP" ... A% |

0<a; <hi/ny,...,0<a,<h./n.} with ny|hy,...,n.|h., then

F(M,n)
1 d/m2>> ( ming mpngy n>
m 1—- F mA h1 ... mAT he | ——
(-5 (st "
if hj|mjn; forall j=1,...,r,
0 otherwise,

where in the product p runs over all distinct prime divisors of m.
Proof. If (n, f?) is not a square, from Theorem 3.2 we have R(K,n) =0
for any K in H(d). Thus F(M,n) = 0 by Definition 7.1. This proves (i).
Now consider (ii). Suppose (n, f?) = m? for m € N and Ker ¢, =
{A7*"™ A8 0 < ap < hi/ng,...,0 < ap < hy/n.} with ng|h,. ..,
ny | hy. Let ¢(d, m) be given by (3.4). Applying Theorems 3.2 and 2.1 we see
that if l1,...,0.,a1,...,a, are integers, then
R(Alll+a1n1 . Air-i-a,,.n,.’ n) _ C(d, m)R(Spl,m(Al11+a1nl L Ai,.+a,.n,,.)’ n/m2)
= c(d, m)R(p1,m(A --- Alr), n/m?)

= c(d, m)R(p1,m(A1)" - p1,m(Ar)"", n/m?).

Hence
F(M,n)
1
= Z cos 2m(kymy Jhy + - - - + kpmy/hy) - R(AR - AR n)
’U)( ) 0<k1<hs
0<k,<h,
1
= m Z Z cos 27 ((ly +ainy)my/hy +- - -+ (I + arny)m,. /hy.)

0<li<ni 0<ai<hi/ni

0<l,<n, 0<a,<h,/n,

% R(Al11+a1n1 .. _A’l,:r‘“l’a'rnr,n)
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c(d,m
= g Z R(Sol,m(Al)ll . @l,m(Ar)lr, n/m2)
0L, <n,

X Z cos 2r((ly + arny)my/hy + - - + (L + arne)my [ hy).
0§a1<h1/n1

0<ar<h,/n,
Since

2 Z cos2m((ly + ayny)ma/hy + -+ - + (L + apny)my. /hy)
0§a1<h1/n1

0<a,<h,/n,
_ Z (627ri Y= (lgtagng)my/hy o =2mi35 (lj+ajnj)mj/hj)
0<ai;<hi/ni
Ogar;.hr/nr
— 2mi Yy lym/h; Z 2T =1 agngm;/h;
0<ai<hi/ni
Ogar;'hr/nr
4o 2mi oy by /hy Z e 2mi =y ajngm;/hy
0<ai<hi/ny
Ofar;hr/nr

T hj/nj—l

— 6271"&‘2;:1 ljmj/hj H ( E 627Tiajnjmj/hj)

j=1 a;=0

T hj/nj—l

+ 67271”&‘2;:1 ljmj/hj H ( E 6—27Tiajn]'m]‘/h]'>

j=1 a;=0

( -
h]_ h’r (627”;2;:1 ljmj/hj +e—2ﬁiZ;:1 ljmj/hj)
o nl .. -nr
= if hy |mang, ..., e | men,,
0 otherwise
hy---h,
" 2cos 2w (lymy hy 4 - - + Lpomy /By
ng - Ny
= if hy|ming, ..., hy | men,,
L 0 otherwise,

we see that if h;{m;n; for some j € {1,...,r}, then F(M,n) = 0; if
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hj|mjn; for all j =1,...,7, then
c(d,m
FL) = S5 S R (40" (4 )
0<li1<nq
0<l <n,
hy---h,
x T cos 2r(lymy/hy + -+ - + L,my/hy).
nl “ e nT

As ¢1 4, is surjective from H(d) to H(d/m?) and by the assumption Ker 1 ,
={A*"™ .. A |0 < a; < hi/ni,...,0 <a, < h./n.}, we see that

H(d/m?) = {p1m(A)" - o1m(A) |0< 1y <ny,...,0< 1, <0y b

Therefore, if m;n;/h; € Z for all j = 1,...,r, by the above and Defini-
tion 7.1 we have

F(M,n)
c(d,m)hy - - hpw(d/m?) 1 < Ny m]-nj)
= . cos| 2w e —
ny - npw(d) w(d/m?2) OSZIZ<'”1 = h;
0<l, <n,

X R(Sol,m(Al)ll T Sol,m(AT)lran/mQ)

c(d,m)hy - -- hTw(d/mQ) N
— ) Ja - A mini/hy || m Ar mpn,./h, 2 '
ny - nyw(d) (1,m (A1) ©1,m(Ar) ,n/m?)
Since H(d/m?) = H(d)/Ker 1, by Theorem 2.1, we see that

b o H@]_ hid)

mone P S TG )] Ry

Thus applying Lemma 3.5 we obtain

c(d,m)hy - - hpw(d/m?)  e(d, m)h(d)w(d/m?) m 1 d/m?
e = e~ (-5(5))

plm
where p runs over all distinct prime divisors of m. Hence
F(M,n)

1/d/m?
=m H <1 — _( /m >)F(cp1,m(f41)mlm/h1 . ‘Spl,m(Ar)mrnr/hr, n/m2)

b b
plm

This proves (ii) and hence the proof is complete.
From Theorem 8.2 we have

THEOREM 8.3. Let d be a discriminant with conductor f. Suppose H(d)
is cyclic with generator A and order h. Let s € Z and n € N.

(i) If (n, f?) is not a square, then F(A% n) = 0.
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(i) If (n, f?) = m? form € N and h' = h(d/m?), then b’ | h and
F(A% n)

I (1= 2 (L)) Flum ™ o) i ol

p p
plm
0 if 31s,
where p runs over all distinct prime divisors of m.

Proof. If (n, f?) is not a square, by Theorem 8.2 we have F(A* n) = 0.
If (n, f2) = m? for m € N and b’ = h(d/m?), from Theorem 2.1 we know
that Ker ¢y, is a subgroup of H(d) and |Ker ¢1,,| = h/h'. Since H(d) is
cyclic with generator A, Ker ¢1 ,, must be generated by A7 for some j € N.
Let (A%) be the subgroup generated by A; clearly |(A?)| = h/(i, h). Thus

h/(j:h) = [(A)| = [Ker gum| = h/B' = |(A")].

Hence (j,h) = b/ and so ' | j. Therefore (A7) C (A") and so (A7) = (AM).
Thus Ker @1, = (A7) = (A""). Now the result follows from Theorem 8.2.

THEOREM 8.4. Let d be a discriminant with conductor f and do = d/ f?.
Suppose H(d) is cyclic with order h and generator A. Let p be a prime such
that p| f and p® || f. Let s € Z and t € N.

(i) If t <2« and 21t, then F(A%, p') = 0.
(i) If t < 2a and 2|t, then
Y2 if h|sh(d/pt),
Pty =4 P if h|sh(d/p")
0 if hish(d/p").
(iii) Suppose t > 2a and htsh(d/p**). Then F(A%, p') = 0.
(iv) Suppose t > 2«, h|sh(d/p**) and (%0) = —1. Then

a=l(p+1) if 2t
pt - (PO B2

(v) Suppose t > 2a, h|sh(d/p**) and p|dy. Let I, be the principal class
in H(d/p**). Then

F(Asvpt) = {

(vi) Suppose t > 2a, h|sh(d/p*®) and (%0) = 1. Then p is represented
by p1,po(A)" for some r € Z, and

(=1)2st/h(t —2a + 1)p*~Y(p—1) if 2rs/h € Z,

F(A°p) = sin27rs(t —2a+ 1) /h
sin27rs/h

(0%

P if p is represented by I,

(=1)t/WRE/P* ) g if p s not represented by I,.

p* Yp—1) if 2rs/h ¢ Z.
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Proof. If t < 2a and 2tt, then (pt, f2) = p' is not a square and so
F(A* pt) = 0 by Theorem 8.3(i). This proves (i).

Now consider (ii). If ¢ < 2« and 2|t, then (p', f?) = (pt/?)2. Thus
applying Theorem 8.3(ii) and Remark 7.1 we see that
PRE(py 2 (A) AP/ 1) = pt/2 it | sh(d/p'),

F(As’pt) = { .
0 if hish(d/p").

Thus (ii) holds.

Now suppose t > 2« and h, = h(d/p**). Then (p', f?) = p**. If h{sh,,
by Theorem 8.3(ii) we have F(A*,p') = 0. Thus (iii) is true. From now on
we assume h | shy,. Set A, = @1 pa(A). Then A, is a generator of H(d/p**)
by Theorem 2.1. From the above and Theorem 8.3(ii) we have

(8.6) F(A°,p) =p® <1 — %(%))F(A,ihf’/h,pt‘m)-

If (%) = —1, applying Corollary 8.1(i) we obtain
p*Hp+1) if2]t,
0 if 2¢t.
This proves (iv). If p|dp, by the above and Corollary 8.1(ii) we have
F(As,pt) _ paF(A;h"/h,pt_Qa)
pe if p is represented by I,
(—1)(he/P)(E=20) e if 4 is not represented by I,,.

P(A*, 1) = p}(p & 1) F(A/ pt=20) = {

So (v) holds.
Finally consider the case t > 2, h|sh, and (%0) = 1. Since 4, is a

generator of H(d/p**) and (#) = (%0) = 1, p must be represented by

Aj, for some integer r. By Corollary 8.1(iii) we get

(_1)2(t—2a)7“8/h(t —2a+1) if2rs/heZ,
F(A;hp/hvptfm) = sin2xrs(t —2a+1)/h
sin27rs/h

if 2rs/h ¢ Z.

This together with (8.6) proves (vi). So the theorem is proved.
Putting ~A(d) = 2 and s = 1 in Corollary 8.1 and Theorem 8.4 we deduce

THEOREM 8.5. Let d be a discriminant with conductor f and dy =
d/f?. Suppose h(d) = 2 and H(d) = {I,A} with A2 = I. Forn € N
let F(A,n) = (R(I,n) — R(A,n))/w(d). Let p be a prime and let t be a
nonnegative integer.
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(i) If p1f, then

3L+ (=11

1
F(Ap) = q (-1)*

(=Dt +1)

7 (%) =1

if pldo and p € R(I),
if pldo and p € R(A),
if ptdo and p € R(I),
if ptdo and p € R(A).

(ii) If p|f, say p™| f, setting h, = h(d/p**) we then have

\ 0

t/

p'l? if t <20, 2|t and h(d/p') =2,
p* Yp+1) if t>2a,2]t, hy=2 and (%) — 1,
p

0‘ if t>2a, hy =2, p|ldy and p € R(1p),

~1)

(—1)tp> if t>2a, hy =2, p|ldy and p ¢ R(I,),
(t—2a+1)(p~—p*1)

if t>2a, hy =2, ptdy and p € R(I,),

(=)t — 2+ 1)(p*

—p*t)

if t>2a, hy =2, pfdy and p € R(Ap),

otherwise,

where I, is the principal class in H(d/p**) and A, is a generator of

H(d/p*®).

Suppose h(d) = 3. If p is a prime such that p|d and pt f(d), from Corol-
lary 8.1(ii) we know that p is represented by the principal class I in H(d).
Thus applying Corollary 8.1 and Theorem 8.4 we have

THEOREM 8.6. Let d be a discriminant with conductor f and do=d/f?.
Suppose h(d) = 3 and H(d) = {I,A, A%} with A3 = I. For n € N et
F(A,n) = (R(I,n) — R(A,n))/w(d). Let p be a prime and let t be a non-

negative integer.

(i) If ptf, then

(1 if p|do,
s+ (DY i (%) =1,
t+1 if ptdo and p € R(I),
-1 if p€ R(A) and t =1 (mod 3),
0 if p€ R(A) and t =2 (mod 3),
if p€ R(A) and t =0 (mod 3).
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(ii) If p|f, say p™| f, setting h, = h(d/p**) we then have

p'? if t <20, 2|t and h(d/pt) = 3,
p*Yp+1) if t>2a, 2|t, hy=3 and (%o) — 1,
p® if t>2a, hy, =3 and p|do,

(t—2a+1)p*~t(p-1)
if t>2a, hy,=3, ptdy and p€ R(I,),
p*L(p—1) if t>2a, hy,=3,pe R(Ap)
and t —2a = 0 (mod 3),
—p*~tp—1) if t>2a, h,=3,p€ R(A)
and t —2a =1 (mod 3),

0 otherwise,

where I, is the principal class in H(d/p*®) and A, is a generator of
H(d/p™).

Suppose h(d) = 4. From Corollary 8.1 we have

THEOREM 8.7. Let d be a discriminant with conductor f and do = d/ f?.
Suppose h(d) = 4 and H(d) = {I, A, A%, A3} with A* = 1. Let
1

F(A,n) = —— (R(I,n) — R(A?,n)),
(R(I,n) + R(A?%,n) —2R(A,n))

for n € N. Let p be a prime such that pt f and let t be a nonnegative integer.
Then

L+ (=1)"/2 if (P)=-1,

if pldo and p € R(I

(1),
if ptdy and p € R(I)
(

+1 ,
)t if p|do and p € R(A?),

1)t +1) if ptdo and p € R(A?),

—1)t/? if p€ R(A) and 2|t,

if p€ R(A) and 21t

and

L+ (=D9/2 if (9)=-1,

1 if pldo,

t+1 if ptdo and p € R(I) U R(A?),
(=Dt +1) if pe R(A).
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9. Formulas for R(K,n) (K € H(d)) when h(d) = 2. Throughout this
section p denotes a prime and products (sums) over p run through all distinct
primes p satisfying any restrictions given under the product (summation)
symbol.

LEMMA 9.1. Let d be a discriminant such that H(d) is cyclic and
h(d)=2,4. If m € N and m| f(d), then h(d/m?) = 1 if and only if
t(d/m?) =0, and h(d/m?) > 1 if and only if t(d/m?) = 1.

Proof. Since h(d/m?)|h(d) by Remark 2.2, we see that

() =1 o o) 2 =1 e o)

m m m

h<%>>1<§'G(ig':?@W%:2¢¢t(%):
m m m

This proves the lemma.

and

THEOREM 9.1. Let d be a discriminant with conductor f and do = d/ f>.
Suppose h(d) =2 and H(d) = {I, A} with A> =1. Letn € N and F(A,n) =
(R(I,n) — R(A,n))/w(d). Let N(n,d) be as in Theorem 4.1.

(i) If (n, f?) is not a square, then R(I,n) = R(A,n) =0 and F(A,n)=0.

(ii) If (n, f%) = m? for m € N and h(d/m?) =1 (i.e. t(d/m ) = 0),
then R(I,n) = R(A n) = N(n,d)/2 and F(A,n) =
(iii) I{l (n, f?) = m? for m € N and h(d/m?) = 2 (i.e. t(d/m ) =1),
then
R(m) = N(n.d) ~ RAm) = = v,
and
F(4,n) = (~1)*N(n,d)/w(d),
where s =3 p(a,) 0rdpn, Ag is the generator of H(d/m?) and p

runs over all distinct primes satisfying p € R(Ap).

Proof. From Theorems 8.3, 3.4 and Lemma 9.1 we know that (i) and (ii)
hold. Now consider (iii). Suppose (n, f2) = m? for m € N and h(d/m?) = 2.
Set ng = n/m? and H(d/m?) = {Iy, Ao} with AZ = Iy. By Theorem 2.1 we
have ¢1,m(A) = Ag. Thus using Theorem 8.3 we have

1/d/m?
F(A,n)= m}l:ln <1 - ;( /p >>F(Ao,no).
Clearly d/m? = do(f/m)?, (no,(f/m)?) = 1 and f(d/m?) = f/m. Thus,
if p is a prime dividing ng, then p{ f/m and so pf f(d/m?). Now applying
Theorems 7.4(i) and 8.5(i) we obtain
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F(Ag,n0) = [ [ F(Ao,p™ ™)

p

__1)ord, ng
— H (_1)ordpn0 H 1+( 1)

2
pldo, pER(Ao) (doy=—1
P

< JI (+ordyne)  JT - (=1 (1+ ordyno)
ptdo, pER(Io) pfdo, pER(Ao)

1 -1 ord, n
| % T 0+ ord,no).
(P)=-1 (=1

where p runs over all distinct prime divisors of ng. Now combining the above
with Lemma 9.1 and Theorem 4.1 yields F(A,n) = (—=1)°*N(n,d)/w(d).
Note that R(I,n) = (N(n,d) + w(d)F(A,n))/2 and R(A,n) = (N(n,d) —
w(d)F(A,n))/2. We then obtain the remaining result for R(I,n) and
R(A,n). The proof is now complete.

Let d be a discriminant such that h(d) = 2. For d > 0, from [B, p. 31] we
know that h(d) = 2 for d = 12,21,24,28,32,33,40,44,45,48, . ... It seems
that there are infinitely many positive discriminants d such that h(d) = 2.

Now we illustrate that there are exactly 29 negative discriminants d with
h(d) = 2. We first recall that if D < 0 is a fundamental discriminant, then

(9.1) h(D)=1 < D=-3,—-4,—-7,-8,—11,—19, —43, —67, —163

and

(9.2) h(D)=2 < D= —15,-20,—24,-35,—-40, —51, —52,
—88,—-91,-115,—123, —148, —187,
—232,-235, 267, —403, —427,

see for example [C, p. 234]. From [Cox, p. 149] we also know that if d < 0
is a discriminant, then

(9.3) h(d)=1 & d=-3,—-4,-7,—-8,—-11,-12,-16,—19,
—27,-28, —43, —67, —163.
We now determine those discriminants d < 0 such that h(d) = 2. Suppose
d < 0 is a discriminant with conductor f and dy = d/f?. By (9.2), it suffices

to determine those discriminants d < 0 with h(d) = 2 and f > 1. Since
h(d) = 2 we have d < —4 and so w(d) = 2. By Lemma 3.5 we obtain

if dg = —3,
9.4 1-=(=2)) = =
it h(dy) = 2.

= N e O
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From this we see that dg=—3 implies f=4,5,7 and so d=—48, —75, —147,
and dyg=—4 implies f=3,4,5 and so d = —36,—64,—100. If dy < —4 and
h(do) =1, then f=2,3,4 and d, satisfies 2| dy, dy =1 (mod 3), dp =1 (mod 8)
according as f = 2,3,4. Since dy < —4 and h(dy) =1 if and only if dy =
—7,—-8,—11,-19, -43, —67, —163 we must have d = —32,—-72, —-99, —112.
Now suppose h(dp)=2. Then dy is given by (9.2). If h(dy) =2 and f > 1, we
must have f=2 and dy = 1 (mod 8). This yields dy = —15 and so d=—60.
Thus there are exactly 29 values of d < 0 such that h(d)=2.

Table 9.1

d I Conditions for p € R(I) A Conditions for p € R(A)
—15 [1,1,4] p=1,4 (mod 15) 2,1,2] p=3,5 p=2,8 (mod15)
-20 [1,0,5] p=5, p=1,9 (mod 20) (2,2,3] p=2, p=3,7 (mod 20)
—24 [1,0,6] p=1,7 (mod 24) [2,0,3] p=2,3, p=5,11 (mod 24)
—32 [1,0,8] p =1 (mod38) [3,2,3] p =3 (mod 8)
35 LLY (B =(®)=1 313 p=57 () =(&)=-1
—36 [1,0,9] p =1 (mod 12) [2,2,5] p=2, p=5 (mod12)
—40 [1,0,10]  (32)=(B)=1 2,05 p=25 (=2)=(8)=-1
—48 [1,0,12] p =1 (mod 12) [3,0,4] p=3, p=7 (mod12)
—51 [1,1,13] (%):(%):1 [3,3,5] p=3,17, (%):(%)__1
—52  [1,0,13] p=13, (F)=(F)=1 (22,7 »p=2 (F)=(f) =-1
—60  [1,0,15] p=1,19 (mod 30) [3,0,5] p=3,5, p=17,23 (mod 30)
64 [1,0,16] p=1 (mod8) (4,4, 5] p=5 (mod 8)
—72 [1,0,18] p=1,19 (mod 24) [2,0,9] p=2, p=11,17 (mod 24)
~75  [1,1,19] p=1,4 (mod 15) 3,3,7 p=3, p=7,13 (mod 15)
s (1,022 (B)=(f)=1 2,0,11] p=2,11, (2) = (§) = -1
o1 L2 (B)=(f) - 53,5 p=7.13, (B) = (&) = -1
—99 [1,1,25] =) =1 [5,1,5] p=11, (§)=—(F)=-1
~100  [1,0,25] p=1,9 (mod 20) (2,2,13] p=2, p=13,17 (mod 20)
S12 [L0,28) (Sl =(B)=1 4,07 p=7, ()= —(B) = -1
-115  [1,1,29] (&) =(&H) =1 [5,5,71 p=5,23, (&)=(&H)=-1
—123  [1,1,31] By =(&)=1 3,3,11] p=3,41, (B) = (&) =—1
—147 [1,1,37] E)=%)=1 (3,3,13] p=3 (§)=—(%) =1
—148  [1,0,37] p=37, (FH)=(H)=1 [2,219 p=2 (F)=(&)=-1
—187  [1,1,47] (&)= (&)=1 (7,3,7 p=11,17, (&) = (&) = -1
—232  [1,0,58] (F)=(&) =1 2,0,29] p=2,29, (%) =(4p) =1
—235  [1,1,59] (&) =(&)=1 5,5,13] p=5,47, (&) = (&) =—1
267 [1,1,67] &) =(&)=1 3,3,23] p=3,89, (§) =(&)=—1
—403  [1,1,101] (&)=(&) =1 [11,9,11] p=13,31, (&) = (&) =1
—427  [1,1,107] (B)=(&) =1 (7,7,17)  p=T7,61, (B) = (&) =—1

LEMMA 9.2. Let d < 0 be a discriminant. Then h(d) = 2 if and only
if d is one of the 29 numbers listed in Table 9.1. If h(d) =2 and H(d) =
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{I, A} with A2 =1, then I and A are given by Table 9.1, and a prime p is
represented by I or A depending on the corresponding congruence conditions
in Table 9.1.

THEOREM 9.2. Let d < 0 be a discriminant with conductor f and do =
d/f?. Suppose h(d) = 2, H(d) = {I,A}, n € N and F(A,n) = (R(I,n) —
R(A,n))/2.

(i) If there is a prime p with 24 ord, n and (%0) =—1, then F(A,n)=0.

(ii) Suppose d = —60 and (7715) = 0,1 for every prime p with 21 ord, n.

Assume n = 3%ng (31ng). Then

F(A,n) = F([3,0,5],n)

(-1~ %) H (1+ordp > if 4|n,
(52)=1
0 if 2| n.
(iii) Suppose d # —60 and (%0) = 0,1 for every prime p with 2{ ord, n.
Then
x(n,d) H (14+ordy,n) if (n,f)=1,
F(An)= (40)=1
0 if (n,f)>1,
where x(n,d) is given by Table 9.2.
Table 9.2
d f X(nvd) ((n7f) =1) d f X(nvd) ((n, f) = )

-15 1 (=1)*(%) (n=3%ng,3{no) 91 1  (=1)*(®) (n="T%0,7{ng)
-20 1 (%) (n=5%np,51ng) -99 3 (%)
—24 1 (=1)%() (n=3%ng,3tng) | ~100 5 (2)
-32 2 (=4 —112 4 (=4
=35 1 (-1)*(%) (n=15%n0,5{np) | —115 1 —-1)*(%2) (n =5%no,5{no)
36 3 (2 —123 1 (=1)*(%) (n = 3%ng,3{n0)
40 1 (=1)%(Z2) (n = 5%n0,5fng) | —147 7 (2)
—48 4 (=) S48 1 (—1)*H™ (n = 2%, 21n0)
—51 1 (—1)™(™) (n=13%0,3tno) | =187 1 (=1)*() (n = 11%ng, 11{ng)
—-52 1 (18) (n=13%ng, 13{ng) -232 1 (71)0‘(;—2) (n =2%ng,2{ng)
—64 4 (%) =235 1 (=1)%(%) (n=5%n0,5{no)
—-72 3 (%) —267 1 (=1)Y(5) (n=3%np,31no)
~75 5 (%) —403 1 (=1)*(48) (n = 13%ng, 13t ng)
88 1 (=1)*(Z) (n=2%n0,21ng) | —427 1  (=1)*(%) (n = 7%no, 7{no)
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Proof. From Remark 7.1 we see that (i) holds. From now on suppose
(%0) = 0,1 for every prime p with 24 ord, n. Let us consider (ii). Assume
d = —60 and n = 3%ng (31ng). Clearly dy = —15, f = 2, I = [1,0,15],
A = [3,0,5] and (n, f?) = (n,4) = 1,2,4. If 2||n, then (n, f?) = 2 and

so F(A, n) = 0 by Theorem 9.1. If 2{n, then (n, f2) = 1. Putting m = 1,
d = —15and A = [3,0,5] in Theorem 9.1(iii) we obtain

F(A,n) = (—1)Xrerasos) ordpn I +ord,n).
(=22)=1
For any odd prime p, clearly p € R([3,0,5]) if and only if p = 3,5 or
p = 2,8 (mod 15) (see Table 9.1). Since (71315) = —1 implies 2| ord, n and
(7715) = 0,1 if and only if p = 3,5 or p=1,2,4,8 (mod 15), we see that

ne = N2 H pordp n H pordp n7

p=1,4 (mod 15) p=2,5,8 (mod 15)

where N is an integer coprime to 15. So

nop =1 (mod3) & Z ord,n =0 (mod2).
p=2,5,8 (mod 15)

Hence
(_1)04 (%) — (_1)2;752,3,5,8(1’110(1 15) ordp n — (_l)szR([S,O,S]) Ordp".
Therefore,
F(A,n)= (-1~ (%) H (14 ord,n).
(8)=1

If 4|n, then (n, f?) = 4. Since H(—15) = {[1,1,4],[2,1,2]} and p €
R([2,1,2]) if and only if p = 3,5 or p = 2,8 (mod 15) by Table 9.1, putting
m = 2 in Theorem 9.1(iii) and applying the above we find

ord. 1 15 n
F(An)= (—1)ZpeRq2 1,2)) °rdp 2(1 — 5( 5 )) H <1 + ord,, Z)

(=5)=1
— (—1)2r=2.3,5,8 (mod 15) Ordp 7 1 d n
(~)% 11 ( Tor u)

(52)=1

= (—1)® (%) 71('[ <1+0rdp %)

(=2)=1

This proves (ii).
Now we consider (iii). Assume d # —60. If (n, f?) is not a square, then
F(A,n) = 0 by Theorem 9.1(i). If (n, f?) = m? for m € {2,3,4,...}, from
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Table 9.2 and (9.3) we see that h(d/m?) = 1 and thus F(A4,n) = 0 by
Theorem 9.1(ii). Hence, if (n, f) > 1 (i.e. (n, f?) > 1), then F(A4,n) = 0.
Now suppose (n, f) = 1. By Theorem 9.1(iii) we have
F(A,n) = (—1)=veren ™ TT (14 ord,n).
(%)=1
Thus it suffices to show that
(9.5) x(n,d) = (—1)=rercy oo,

For a prime p, p|(d,n) implies pt f since (n,f) = 1. So p € R(I) or
p € R(A) by Corollary 4.2. As (n, f) =1 and 2|ord, n when (%) =—1 we
see that

(96) n = N2 H pord,,n H pordpn7
peR(I) pER(A)
where N = H(g)zflp(ordf’ ")/2 is an integer coprime to d.

For d € {-15,—20,—24,—-35, —36, —40, —51, —52, —64, =72, =75, —91,
—99,-100, —115, 123, —147, —187, —235, —267, —403, —427}, by Table 9.1
we can select a prime divisor g of d such that for any prime p # q,

peRA) = <§>=—1 and pe R(I) = (§>:1.

Assume n = ¢*ng (q{ng). Since

ne = N2 H pordp n H pordp n’

PER(I) PER(A)
PF#q P#q
we see that
<@> _ <N_2> H <]_?>Ordpn H <B>ordpn
9 17 e N1 per(a) N
PF#q DP#q
— H (_1)ord,,n — (_1)ZPGR(A),p¢qordpn.
pER(A)

PF#q
Thus

(0 (™) itge rea)
<@) if ¢ ¢ R(A).

(_1)E;DGR(A) ordpn __

q
This together with Tables 9.1 and 9.2 shows that (9.5) holds.
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If d € {—32,—48,—112}, then f = 2 or 4 and so 2{n. From Table 9.1
and (9.6) we see that

n = N2 H pordp n H pordp n

pER(I) pER(A)
p=1 (mod 4) p=3 (mod 4)

Therefore, (n —1)/2=3" p(a)ordy n (mod2). This yields (9.5).
If d € {—88,—148,—-232} and n = 2%ng (21ng), by Table 9.1 and (9.6)
we have 2 € R(A) and
( 2
D — if d=—88
Coe(2) ,

(_1)Zp€R(A) ordpn _ (_1)a+2p€R(A) ordpno _ (_1)04 <__1> if d = —148,

(-1)&(_—2) if d — —232.

no

By the above, (9.5) holds and so (iii) is proved. Hence the proof is now
complete.

THEOREM 9.3. Let d < 0 be a discriminant with conductor f and dy =
d/f?. Suppose h(d) =2, H(d) = {I, A} and n € N.
(i) If there is a prime p such that 21 ord,n and (%0) = —1, then
R(I,n) = R(A,n)=0.
(ii) Suppose d = —60 and (7715) = 0,1 for every prime p with 21 ord, n.
Assume n = 3%ng (3tng). Then

<1+(—1)a<%>> [ +ordyn)  if 24n,

(52)=1

R([1,0,15],n)= (H(_l)a(%)) 11 <1+ordp%> if 4|n,

(=2)=1
0 if 2||n

and

1-(-1)&(%)) [T a+ordyn)  if 2tn,

(52)=1

(
R([3,0,5],n)= (1_(_1)a(%>> I1 <1+ord,pg) if 4|n,
0

(52)=1

if 2| n.



164 7Z. H. Sun and K. S. Williams

(iii) Suppose d # —60 and (70) = 0,1 for every prime p with 2{ ord, n.

Then
(L4 x(m.d) ] Q+ordyn) if (n.f)=1,
(P)=1
d n
R(I,n) = w<m> H 1+ ord, W)
(=1
if (n, f?)=m? form € {2,3,4,...},
0 if (n, f?) is not a square
and
(1 —x(n,d)) ] +ordyn) if (n,f)=1,
(=1
d
R(A,n) = w<m> H 1+ord )
(=1
if (n, f?) =m? form € {2,3,4,...},
0 if (n, f?) is not a square,

where x(n,d) is given by Table 9.2.

Proof. As N(n,d)=R(I,n)+R(A,n) and F(A,n) =1(R(I,n)—R(A, ))
we have R(I,n) = 1N(n d)+F(A,n) and R(A, n):%N(n d)—F(A,n). By
Lemma 3.5, Table 9.2 and (9.3) we see that if m € N and m | f, then

( A5))

d/m ) {2w(d/m2) if d # —60 and m > 1,
(d/m2) ~ \w(d/m?) =2 ifd=—60o0rm=1.
Now combining the above with Theorems 4.1 and 9.2 yields the result.

plm

10. Formulas for R(K,n) (K € H(d)) when h(d) =3

THEOREM 10.1. Let d be a discriminant with conductor f and dy =
d/f?. Suppose h(d) = 3 and H(d) = {I, A, A%} with A®> = 1. Let n € N and
F(A,n)=(R(I,n) — R(A,n))/w(d). Let N(n,d) be as in Theorem 4.1.

(i) If (n, f?) is not a square, then R(I,n) = R(A,n) = R(A%n) =
F(A,n)=

(i) If (n,f?) = m? for m € N and h(d/m?) = 1, then R(I,n) =
R(A,n) = R(A%,n) = N(n,d)/3 and F(A,n) = 0.
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(iii) Suppose (n, f?) = m? for m € N and h(d/m?) = 3. If there is a
prime p such that (%0) = —1 and 21 ord, n, then

R(I,n) = R(A,n) = R(A%,n) = F(A,n) =0

(70) = 0,1 for every prime p with 2t ord, n, setting ng = n/m?
and H(d/m?) = {Iy, Ao, A%} with A3 = Iy we then have

(—1)u.mH<1—];<d/;1 )) [T (+ord,no)

plm PER(Io)
F(A,n)= ptdo

if q¢ R(Ayp) for every prime q with 3| (ord, no+1),

0 otherwise,

where p runs over all distinct primes and

w= Z 1.

pER(Ao)
ordy ng=1 (mod 3)

Moreover, we have
R(I,n) = (N(n,d) +2w(d)F(A,n))/3

and
R(A,n) = (N(n,d) —w(d)F(A,n))/3.

Proof. From Remark 3.1 we know that R(A%,n) = R(A~!,n) = R(A,n)
and so N(n,d) = R(I,n)+2R(A,n). As F(A,n) = (R(I,n)—R(A n))/w(d)
we then obtain R(I,n) = (N(n,d)+2w(d)F(A,n))/3 and R(A,n)= (N(n,d)
—w(d)F(A,n))/3.

From Theorems 4.1, 8.3 and the above we know that (i) and (ii) hold.
Now consider (iii). Suppose (n, f2) = m? for m € N and h(d/m?) = 3. If
there is a prime p such that (%) = —1 and 21 ord, n, then N(n,d) = 0 and
so R(I,n) = R(A,n) = R(A% n) = F(A,n) = 0. Now suppose (%0) =0,1
for every prime p with 24 ord, n. Set ng = n/m?. Note that (1 ,,(A4) = A
or Ay ! By Theorem 8.3 and Remark 7.1 we have

F(An) =m]] (1 - ]13 (d/;l2>>F(Ao,no);

plm

where p runs over all distinct prime divisors of m. Clearly

2 2
iz = do(i> and <n0, (i> > = 1.
m m m
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If p is a prime such that p|ng, then pt % and so pt f(d/m?). Now applying
Theorems 7.4(i) and 8.6(i) we see that

AQ, Tl() H F ord,, no)
plno
0 if there is a prime ¢ such that ¢ € R(Ap) and 3| (ordy ng + 1),
={ (-1)* H (14 ord,ng) otherwise,
pER(1o)
ptdo

where p runs over all distinct prime divisors of ng. Thus (iii) follows and the
theorem is proved.

For negative discriminants d it is known (see for example [WH, Propo-
sition, p. 132])

LEMMA 10.1. Let d < 0 be a discriminant. Then h(d) = 3 if and only
if d = —23,—31, —44, —59, —76, —83, —92, —107, —108, —124, —139, —172,
Z911, —243, —268, —283, —307, —331, —379, —499, —547, —643, —652, —883,
—-907.

For positive discriminants d we know that h(d) = 3 for d = 148,229,
257,404, . ...

THEOREM 10.2. Let d < 0 be a discriminant with conductor f. Suppose
h(d) = 3 and H(d) = {I, A, A%} with A3 = I. Let n € N and F(A,n) =
(R(I,n) — R(A,n))/2.

(i) If (n, f) =1, then
F(A,n)
0 if there is a prime p such that (%) = —1 and 2t ord, n,
0 if there is a prime p such that p € R(A) and 3| (14 ord,n),
(=1 H (14+ordy,n) otherwise,
ptd, pER(I)

where in the product p runs over all distinct prime divisors of n and

- Y
pER(A)
ord, n=1 (mod 3)

(ii) Suppose (n, f) > 1 and d # —92,—124. Then F(A,n) = 0.

(iii) Suppose (n, f) > 1 and d = —92,—124. Then I = [1,0,—d/4] and
we may take A = [3,2,8] or [5,4,7] according as d = —92 or —124.
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If 2||n, then F(A,n) =0. If 4|n, then

(0 if there is a prime p such that (dT&) =-1
and 21 ord, n,

0 if there is a prime p such that p € R([Q, 1, %])
and 3| (14 ord, 2),

(=1 H (1+ord,2) otherwise,

PER([1,1,%5])
pF#—d/4

where in the product p runs over all distinct prime divisors of n/4

and
W= Z 1.
PER([2,1,%554])
ord, 4 =1 (mod 3)

Proof. Putting m = 1 in Theorem 10.1(iii) we obtain (i). Now suppose
(n, f) > 1. If (n, f?) is not a square, then F(4,n) = 0 by Theorem 10.1.
Assume (n, f?) = m? for m € N—{1}. If d # —92, —124, using Lemma 10.1
and (9.3) we see that h(d/m?) =1 and so F(A,n) = 0 by Theorem 10.1(ii).

If d = —92,-124, then f = 2, m = 2 and h(d/m?) = h(d/4) = 3 by
Lemma 10.1. It is easy to see that

n(6)= {5 b )

Thus applying Theorem 10.1 we obtain (iii). So the theorem is proved.

11. Formulas for R(K,n) (K € H(d)) when H(d) = Z4. For m € N,
throughout this section we let Z,, be the additive group consisting of residue
classes modulo m.

Let d < 0 be a discriminant. We know that h(d) = 4 if and only if —d has
one of the 84 values listed in [WL, Proposition 1.1]. If h(d) = 4, then clearly
H(d) = Z4 or H(d) = Zy x Zy. Checking the group structure of H(d), we
find

PROPOSITION 11.1. Let d < 0 be a discriminant such that h(d) = 4.
Then

(i) H(d) = Z4 if and only if d has one of the following 50 values:
-39, —55, —56, —63, —68, —80, —128, —136, —144, —155, —156,
—171, 184, —196, —203, —208, —219, —220, —252, —256, —259,
—275,—-291,—-292, —323, —328, —355, —363, —387, —388, —400,
475, 507, —568, —592, —603, —667, —723, —763, —T72, —955,
1003, —1027, —1227, —1243, —1387, —1411, —1467, —1507, —1555.
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(ii) H(d) = Zo X Zs if and only if d has one of the following 34 values:
—84,—-96, —120, —132, —160, —168, —180, —192, —195, —228, —240,
980, —288, —312, —315, —340, —352, —372, —408, —435, —448,
483, —520, —532, —555, —595, —627, —708, —715, —760, —795,
—928, —1012, —1435.

For positive discriminants d we know that h(d) = 4 for d = 60, 96, 105,
120, 136, 140, 145, 156, 160, 165, 168, 192, . . ..

THEOREM 11.1. Let d be a discriminant with conductor f and dy =
d/f?. Suppose H(d) = {I,A, A% A3} = Z,. Let n € N and F(A,n)
(R(I,n) — R(A%,n))/w(d).

() If (n, f?) is not a square, then F(A,n) = 0.
(ii) If (n, f2) = m? with m € N and h(d/m?) # 4, then F(A,n) = 0.
(iii) If (n, f2) = m? with m € N and h(d/m?) = 4, setting ng = n/m?>
and H(d/m?) = {Iy, Ao, A%, A3} with A} = Iy we then have

O = R YET

pER(Iy)UR(AZ) plm PP

X (—1)" 11 (1 + ord, ng),
PER(Io)UR(A7)
ptdo
where p runs over all distinct primes and
o= > 1+ > 1.
PER(Ao) PER(A2)
ord, no=2 (mod 4) ord, no=1 (mod 2)

Proof. (i) and (ii) follow from Theorem 8.3. Now suppose (n, f?) = m?
with m € N and h(d/m?) = 4. From Theorem 2.1 we know that ¢,
is a surjective homomorphism from H(d) to H(d/m?) and H(d/m?) =
H(d)/Ker p1 m. Since h(d) = h(d/m?) = 4 we infer that Kerpq,, = I,
H(d/m?) = Z, and so we may assume H(d/m?) = {Iy, Ag, A3, A3} with
A} = Iy. Clearly ¢, (A) = Ag or A3 and so F(p1,(A),n0) = F(Ag, ng)
by Remark 7.1. Thus applying Theorems 8.3 and 7.4(ii) we have

F@&n):ntI(F——%(d€T2>>PKAmnw

plm

132 e

plno

where p runs over all distinct primes. As d/m? =doy(f/m)?, (no, (f/m)?) =1
and f(d/m?) = f/m we have (ng, f(d/m?)) = 1. Suppose that p is a prime
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such that p|ng. Then p{% If p|do, then p € R(Ip) by Corollary 8.1(ii).
Hence (%0) = —1or p € R(Ay) if and only if p ¢ R(Iy) U R(A3). Now from
Theorem 8.7 we see that

H F(A(%pordp no)

p|no

__1)ordp no __1)ordp no
e LU qp e

2 2
(d0)=—1 pPER(Ao)
X H (14 ordy, no)
pER(In)UR(AD)
ptdo
14 (=1 ord, ng
= (—1)* 11 % 11 (14 ord, ng),
p¢R(I0)UR(A3) PER(Io)UR(AD)
ptdo

where p runs over all distinct prime divisors of ng.
By the above, the theorem is proved.

THEOREM 11.2. Let d be a discriminant with conductor f. Suppose
H(d)={I,A A%, A3} 2 7Z,. Let n € N and F(A?,n) = (R(I,n) —2R(A,n)
+ R(A%,n))/w(d). Let N(n,d) be as in Theorem 4.1.

() If (n, f?) is not a square, then F(A% n)=0.

(ii) If (n, f?) = m? with m € N and h(d/m?) = 1 (i.e. t(d/m?) = 0),
then F(A?,n) = 0.

(iii) If (n, f?) = m? with m € N and h(d/m?) > 1 (i.e. t(d/m?) = 1),
then

ord, n N(n7d)

w(d)
where Ag is a generator of H(d/m?) and p runs over all distinct
primes satisfying p|n and p € R(Ap).

F(A%n) = (=1)>rercin

Proof. Clearly (i) and (ii) follow from Theorem 8.3 and Lemma 9.1. Now
suppose (n, f2) = m? with m € N and h(d/m?) > 1. By Theorem 2.1 we
have H(d/m?) = H(d)/Ker 1 . Thus H(d/m?) = Zs or H(d/m?) = Z,.
Let Iy be the principal class in H(d/m?) and let Ag be a generator of
H(d/m?). By Theorem 2.1 we have ¢ ,,(A) = Ay or Ay'. Set dy = d/f?,
ho = h(d/m?) and ny = n/m?. Using Theorem 8.3 we see that

pey =] (1 5(22) et ),

p b
plm
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where p runs over all distinct prime divisors of m. As d/m? = do(f/m)? and
so (ng, f(d/m?)) = 1, from Theorems 7.4, 8.5(i) and 8.7 we see that
F(4"" o)

— H F(Ago/27pordpno)

plno
1 -1 ord, ng
— H % . (_1)ZPGR(A0) ordp mo H (1 -+ ordp no),
(d0)=—1 (9)=1

where p runs over all distinct prime divisors of ng. Now combining the above
with Theorem 4.1 and Lemma 9.1 we obtain (iii). This completes the proof
of the theorem.

THEOREM 11.3. Let d be a discriminant with conductor f and do =d/ f?.
Suppose H(d) = {I, A, A% A3} 2 Z, and n € N. Then
R(I,n) = (F (I n) +2F(An) + F(A2 n))w(d)/4,
(11.1) R(A,n) = R(A%,n) = (F(I,n) — F(A* n))w(d)/4,
R(A2, n) = (F(I, n) —2F(A;n) +F(A2, n))w(d)/4,
where F(I,n), F(A,n) and F(A% n) are given by Remark 7.1, Theorems 11.1
and 11.2 respectively.

Proof. Let F(A,n) and F(A2, n) be given as in Theorem 7.4. From The-
orem 7.3 we have

R(A* n) = %d) (F(I,n) + 2 cos # F(An)+ (—1)’“F(A2,n))

for k € Z. Thus (11.1) holds. Now applying Remark 7.1, Theorems 11.1
and 11.2 yields the result.
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