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1. INTRODUCTION. In a discussion of irreducibility criteria in their fine algebra
text, Dummit and Foote include the following remark [4, p. 310]:

Unfortunately, there are examples of polynomials even in Z[x] which are
irreducible but whose reductions modulo every ideal are reducible. . . . For
example, the polynomial x4 + 1 is irreducible in Z[x] but is reducible modulo
every prime. . . and the polynomial x4 − 72x2 + 4 is irreducible in Z[x] but is
reducible modulo every integer.

The matter is then put on hold until Galois theory is treated five chapters later.
The reason for the reducibility modulo p of the cited polynomials is that they have

the Klein 4-group V as their Galois groups, so factorization modulo p follows from
the cycle structure of permutations in this group [4, Corollary 41, p. 622]. But this and
the related discussion of density [4, pp. 623 ff.] are much more advanced topics. We
shall provide an elementary treatment both of the examples cited and of families of
related polynomials so that instructors might explore this phenomenon in a bit more
detail earlier in the sequence of topics. In the course of doing so, we shall revisit
several sources, including a recent Putnam Mathematical Competition question and
a few items from the “ancient history” of polynomial factorization. The question of
reducibility modulo p can be treated rather easily for the polynomials we consider.
For certain families we discuss reducibility modulo every integer in some detail.

2. BIQUADRATIC POLYNOMIALS MODULO p. Our attention in this section
focuses on monic polynomials f of the form

f (x) = x4 + r x2 + s,

where r and s are integers. Although some authors use “quartic” and “biquadratic”
as synonyms, we follow Kappe and Warren [5] (among others) and reserve the latter
term for polynomials of this special type. We ask which among them are irreducible
over Z yet reducible modulo p for each prime p. We also investigate in section 3 the
additional property of being reducible modulo n for every integer n larger than 1.

It is convenient to begin by giving a necessary and sufficient condition for f (x) to
be reducible in Z[x]. We prove:

Theorem 1. Let r and s be integers. Then f (x) = x4 + r x2 + s is reducible in Z[x]
if and only if there exist integers a, c, and e satisfying

c + e − a2 − r = 0, (1)

a(e − c) = 0, (2)
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and

ce − s = 0, (3)

in which case

f (x) = (x2 + ax + c)(x2 − ax + e). (4)

Proof. Suppose that f (x) is reducible in Z[x]. Then f (x) has either a linear factor
x − m in Z[x] or an irreducible quadratic factor x2 + ax + c in Z[x]. In the former
case, if m �= 0 then f (x) also has the second factor x + m, making it divisible by
x2 − m2 in Z[x], whereas if m = 0 then f (x) is clearly divisible by x2. In both cases
f (x) has a quadratic factor x2 + ax + c belonging to Z[x]. Thus

x4 + r x2 + s = (x2 + ax + c)(x2 + t x + e)

for integers t and e. Equating coefficients of x3, we conclude that t = −a and (4)
follows. Equating coefficients of x2, x , and 1, we obtain (1), (2), and (3), respectively.

Conversely, suppose that (1), (2), and (3) hold. Then

(x2 + ax + c)(x2 − ax + e) = x4 + (c + e − a2)x2 + a(e − c)x + ce

= x4 + r x2 + s,

whence f (x) is reducible in Z[x].

We now continue to develop the reducibility criteria for f (x). In what follows, we
often write n = � to indicate that an integer n is a perfect square. Since r 2 − 4s is the
discriminant of the quadratic f (x1/2), it is reasonable to suspect that whether r 2 − 4s
is a perfect square or not will have an effect on if and how f (x) reduces. Indeed, the
next two corollaries to Theorem 1 show how the factorization of f (x) depends on the
quantity r 2 − 4s. In particular, when r 2 − 4s = �, then f (x) factors into a product of
two quadratics with no linear terms; and when r 2 − 4s �= � and f (x) is reducible, it
must factor into two quadratics with linear terms.

Corollary 1. Let r and s be integers such that r 2 − 4s is a perfect square, say
r 2 − 4s = t2 (t ∈ Z). Then f (x) = x4 + r x2 + s is reducible in Z[x], and

f (x) = (
x2 + 1

2 (r − t)
) (

x2 + 1
2(r + t)

)
.

Corollary 2. Let r and s be integers such that r 2 − 4s is not a perfect square. Then
f (x) = x4 + r x2 + s is reducible in Z[x] if and only if there exists an integer c such
that

c2 = s, 2c − r = �,

in which case

f (x) = (x2 + ax + c)(x2 − ax + c),

where a is an integer such that a2 = 2c − r .
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As Corollaries 1 and 2 are simple consequences of Theorem 1, we leave their proofs
to the reader.

We remark that, if r and s are integers such that r 2 − 4s �= � and if x4 + r x2 + s is
reducible in Z[x], then the integer c of Corollary 2 satisfies

(2c − r)(−2c − r) = r 2 − 4c2 = r 2 − 4s �= �,

so that

2c − r �= 0, −2c − r �= �.

Since ±c are the only integers for which c2 = s, this shows that c is unique.
The polynomials cited in the introduction provide good illustrations for this result.

In the case of x4 + 1 we have r = 0, s = 1, and r 2 − 4s = −4 �= �. Because there
does not exist an integer c satisfying c2 = 1 and 2c = �, we conclude on the basis of
Corollary 2 that x4 + 1 is irreducible in Z[x]. With x4 − 72x2 + 4 we reach the same
conclusion: here r = −72, s = 4, and r 2 − 4s = 5168 �= �, and there does not exist
an integer c such that c2 = 4 and 2c + 72 = �.

A nice example of a family of biquadratics for which reducibility in Z[x] is eas-
ily decided was given in a recent Putnam Competition [8, Problem A3], where the
polynomials

Pm(x) = x4 − (2m + 4)x2 + (m − 2)2 (m ∈ Z)

were introduced. Here r = −(2m + 4) and s = (m − 2)2, which means that

r 2 − 4s = (2m + 4)2 − 4(m − 2)2 = 32m

is a perfect square if and only if 2m is a perfect square. If 2m is a square, then m = 2u2

for some integer u and, by Corollary 1, we have

Pm(x) = (x2 − (2u2 − 4u + 2))(x2 − (2u2 + 4u + 2)).

If 2m is not a perfect square then, again by Corollary 2, Pm(x) is reducible if and only
if ±2(m − 2) + 2m + 4 = �, which happens if and only if m = t2 for some t in Z, in
which case

Pm(x) = (x2 + 2t x + t2 − 2)(x2 − 2t x + t2 − 2).

Thus Pm(x) is irreducible in Z[x] except when m or 2m is a perfect square.
So far we have considered the reducibility criteria for f (x) = x4 + r x2 + s over

Z. We now turn our attention to the other half of the problem, namely, to reducibility
criteria for f (x) over Z/pkZ, where p is a prime and k is a positive integer. Our next
theorem is the direct analog of Theorem 1, and its proof is similar enough to the proof
of that result to be left to the reader.

Theorem 2. Let p be a prime, and let k be a positive integer. Then a polynomial
f (x) = x4 + r x2 + s in Z[x] is reducible modulo pk if and only if there exist integers
a, c, and e satisfying

c + e − a2 − r ≡ 0 (mod pk), (5)

a(e − c) ≡ 0 (mod pk), (6)
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and

ce − s ≡ 0 (mod pk), (7)

in which case

f (x) ≡ (x2 + ax + c)(x2 − ax + e) (mod pk). (8)

We now give the complete story of the factorization of f (x) modulo an odd prime p.
Two special cases are easy to handle. If s ≡ 0 (mod p), then (5), (6), and (7) are
solvable with k = 1, a = c = 0, and e = r , implying that

x4 + r x2 + s ≡ x2(x2 + r) (mod p)

is reducible. If r 2 − 4s ≡ 0 (mod p) then (5), (6), and (7) are solvable with k = 1,
a = 0, and c = e ≡ r/2 (mod p), so

x4 + r x2 + s ≡ x4 + r x2 + r 2/4 ≡ (x2 + r/2)2 (mod p)

is reducible. (Here 1/2 signifies the inverse of 2 modulo p.)
In describing the rest of the criteria, we use properties of the Legendre symbol

(k/p), which is defined for an integer k and an odd prime p by

(
k

p

)
=




1 if p � k and x2 ≡ k (mod p) is solvable,
0 if p | k,

−1 if p � k and x2 ≡ k (mod p) is insolvable.

It is well known that
(

kl

p

)
=

(
k

p

)(
l

p

)

for all integers k and l, and that

(
k2l

p

)
=

(
l

p

)

if p � k.
The following result is due to Carlitz [1] and can be deduced in an elementary way

from Theorem 2:

Theorem 3. If p is an odd prime and if r and s are integers such that s �≡ 0 (mod p)

and r 2 − 4s �≡ 0 (mod p), then the following statements hold:

(i) f (x) = x4 + r x2 + s is the product of two distinct monic linear polynomials and
an irreducible monic quadratic polynomial modulo p if and only if

(
s

p

)
= −1,

(
r 2 − 4s

p

)
= 1. (9)

(ii) f (x) = x4 + r x2 + s is the product of four distinct monic linear polynomials
modulo p if and only if
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(
s

p

)
= 1,

(
r 2 − 4s

p

)
= 1,

(−r − 2t

p

)
= 1, (10)

where t is an integer such that s ≡ t2 (mod p).

(iii) f (x) = x4 + r x2 + s is the product of two distinct monic irreducible quadratic
polynomials modulo p if and only if

(
s

p

)
= 1,

(
r 2 − 4s

p

)
= 1,

(−r − 2t

p

)
= −1, (11)

where t is an integer such that s ≡ t2 (mod p), or

(
s

p

)
= 1,

(
r 2 − 4s

p

)
= −1. (12)

(iv) f (x) = x4 + r x2 + s is irreducible modulo p if and only if

(
s

p

)
= −1,

(
r 2 − 4s

p

)
= −1. (13)

As a bridge from Theorem 3 to the next result, we consider the irreducibility of
f (x) = x4 − 10x2 + 17 modulo p, where p is again an odd prime. By Theorem 3 (iv)
this polynomial is irreducible modulo p if and only if

(
17

p

)
=

(
32

p

)
= −1,

that is, if and only if

(
2

p

)
=

(
17

p

)
= −1.

In particular, it is irreducible modulo 61. This accounts for the replacement of x4 −
10x2 + 17 [3, p. 303] with x4 − 72x2 + 4 in the second edition [4, p. 310], and points
to the condition contained in the next theorem. It is worth noting that, up until this
point, all of our arguments have involved only elementary results from number theory.
However, the proof of the next result relies on Dirichlet’s famous theorem on primes
in arithmetic progressions, which states that there are infinitely many primes p with
p ≡ a (mod m) for any a relatively prime to m.

Theorem 4. Let r and s be integers such that r 2 − 4s is not a perfect square. Then the
polynomial f (x) = x4 + r x2 + s is reducible modulo p for every prime p if and only
if s = t2 for some integer t .

Proof. Suppose that s = t2 for an integer t . Consider an odd prime p. If s ≡ 0 (mod p)

or r 2 − 4s ≡ 0 (mod p) then, by the remarks following Theorem 2, f (x) is reducible
modulo p. If s �≡ 0 (mod p) and r 2 − 4s �≡ 0 (mod p), then (s/p) = 1, so f (x) is
reducible modulo p (Theorem 3(ii),(iii)). Thus f (x) is reducible modulo every odd
prime p. For p = 2, there are only the four biquadratic polynomials x4, x4 + 1, x4 +
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x2, and x4 + x2 + 1 to consider modulo 2, and it is easy to check that each of these is
reducible modulo 2.

Conversely, suppose that f (x) is reducible modulo p for every prime p. Suppose
that s is not a perfect square. Then, as both r 2 − 4s and s are nonsquares, by the law
of quadratic reciprocity and Dirichlet’s theorem on primes in arithmetic progressions,
there exist infinitely many primes p such that

(
r 2 − 4s

p

)
=

(
s

p

)
= −1.

In view of Theorem 3(iv), f (x) is irreducible modulo each of these primes, a contra-
diction. Hence s is a perfect square.

We are now in a position to state the main result of this section, which gives neces-
sary and sufficient conditions for a polynomial to be irreducible over Z but reducible
modulo p for every prime p. This result is easily obtained by combining Corollaries 1
and 2 with Theorem 4.

Theorem 5. Let r and s be integers. Then the polynomial f (x) = x4 + r x2 + s is
irreducible in Z[x] but is reducible modulo p for every prime p if and only if the
following are true:

r 2 − 4s �= �, s = �, 2
√

s − r �= �, −2
√

s − r �= �.

We return again to the polynomials cited in the introduction. First, for the polyno-
mial f (x) = x4 + 1, we have

r = 0, s = 1, r 2 − 4s = −4 �= �,
√

s = 1,

2
√

s − r = 2 �= �, −2
√

s − r = −2 �= �.

Appealing to Theorem 5, we see that f (x) is irreducible in Z[x] but is reducible mod-
ulo p for every prime p.

In the case of the polynomial f (x) = x4 − 72x2 + 4,

r = −72, s = 4, r 2 − 4s = 5168 �= �,
√

s = 2, 2
√

s − r = 76 �= �, −2
√

s − r = 68 �= �.

Thus, by Theorem 5, f (x) is irreducible in Z[x] but is reducible modulo p for every
prime p.

As another example consider f (x) = x4 − 10x2 + 1. Here we have

r = −10, s = 1, r 2 − 4s = 96 �= �,
√

s = 1,

2
√

s − r = 12 �= �, −2
√

s − r = 8 �= �.

According to Theorem 5, f (x) is irreducible in Z[x] but is reducible modulo p for
every prime p.

Next consider the family of polynomials Fa defined by

Fa(x) = x4 + 2(1 − a)x2 + (1 + a)2 (a ∈ Z).
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Here

r = 2(1 − a), s = (1 + a)2, r 2 − 4s = −16a,
√

s = 1 + a, 2
√

s − r = 4a, −2
√

s − r = −4.

Theorem 5 implies that Fa(x) is irreducible in Z[x] but is reducible modulo p for every
prime p if and only if neither a nor −a is a square. This is a slight generalization of
Lee’s theorem [6].

As yet another example, we revisit the Putnam problem, where

Pm(x) = x4 − (2m + 4)x2 + (m − 2)2 (m ∈ Z).

Suppose that m �= � and 2m �= �. Then from what we showed earlier, Pm(x) is irre-
ducible in Z[x]. By Theorem 4 Pm(x) is reducible modulo p for every prime p.

We now give an example of a one-parameter family of biquadratic polynomials that
are irreducible in Z[x] and reducible modulo p for every prime p for every value of
the parameter. Let

Lk(x) = x4 − (4k + 1)x2 + 1 (k ∈ Z).

In this situation

r = −4k − 1, s = 1, r 2 − 4s = 16k2 + 8k − 3.

As a square is congruent to 0, 1, or 4 modulo 8, we see that r 2 − 4s, 2
√

s − r , and
−2

√
s − r are not perfect squares, since

r 2 − 4s ≡ 5 (mod 8), ±2
√

s − r ≡ 3 (mod 4).

Hence, by Theorem 5, the polynomial Lk(x) is irreducible in Z[x] but reducible mod-
ulo p for every prime p independently of k.

We close this section by noting that, when a biquadratic polynomial x4 + r x2 + s
in Z[x] is irreducible, its Galois group is the Klein 4-group V if and only if s is a
perfect square. This follows, for example, from [5, Theorem 1(iii), p. 134]. Thus the
biquadratic polynomials

x4 + 1, x4 − 10x2 + 1, x4 − 72x2 + 4, Pm(x) (m, 2m �= �),

Fa(x) (±a �= �), Lk(x) (k ∈ Z)

all have the Klein 4-group V as their Galois groups. On the other hand, the biquadratic
polynomial x4 − 10x2 + 17 has the dihedral group D4 of order 8 as its Galois group. It
is the fact that the latter group contains elements permuting the roots of x4 − 10x2 + 17
in a 4-cycle, together with the Tchebotarov density theorem, that accounts for the
existence of (infinitely many) primes p for which the polynomial is irreducible modulo
p [4, p. 623].

3. BIQUADRATIC POLYNOMIALS MODULO n. We have seen that both x4 + 1
and x4 − 72x2 + 4 are irreducible in Z[x] and reducible modulo p for every prime p.
These two differ, however, when we consider their reducibility modulo an arbitrary
positive integer n.

If we suppose that x4 + 1 is reducible modulo 4, then Theorem 2 establishes the
existence of integers a, c, and e such that c and e are odd and c ≡ e (mod 4). But
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then a2 ≡ c + e ≡ 2c ≡ 2 (mod 4), which is impossible. Thus x4 + 1 is not reducible
modulo 4.

On the other hand, we claim that f (x) = x4 − 72x2 + 4 is reducible modulo n for
every positive integer n larger than 1. We recall two facts from elementary number
theory: if a is an integer such that a ≡ 1 (mod 8), then the congruence x2 ≡ a (mod
2k) is solvable for every positive integer k; if p is an odd prime and b is an integer such
that (b/p) = 1, then the congruence x2 ≡ b (mod pk) is solvable for every positive
integer k. By the Chinese remainder theorem it suffices to prove that f (x) is reducible
modulo pk for each positive integer k and each prime p. We consider a number of
cases.

Case 1: p = 2. Since 17 ≡ 1 (mod 8), there exists an integer A with A2 ≡
17 (mod 2k), whence

f (x) ≡ (x2 + 2Ax − 2)(x2 − 2Ax − 2) (mod 2k).

Case 2: p = 17. Because (19/17) = (2/17) = 1, there exists an integer B such
that B2 ≡ 19 (mod 17k), so

f (x) ≡ (x2 + 2Bx + 2)(x2 − 2Bx + 2) (mod 17k).

Case 3: p = 19. As (17/19) = (−2/19) = 1, there exists an integer C satisfying
C2 ≡ 17 (mod 19k). This gives rise to the factorization

f (x) ≡ (x2 + 2Cx − 2)(x2 − 2Cx − 2) (mod 19k).

Case 4: p �= 2, 17, or 19 and (17/p) = 1. In this case there exists an integer D
such that D2 ≡ 17 (mod pk) and

f (x) ≡ (x2 + 2Dx − 2)(x2 − 2Dx − 2) (mod pk).

Case 5: p �= 2, 17, or 19 and (19/p) = 1. Here there exists an integer E with
E2 ≡ 19 (mod pk), implying that

f (x) ≡ (x2 + 2Ex + 2)(x2 − 2Ex + 2) (mod pk).

Case 6: p �= 2, 17, or 19 and (17/p) = (19/p) = −1. We have (323/p) =
(17/p)(19/p) = 1, so there exists an integer F for which F2 ≡ 323 (mod pk). In
this instance

f (x) ≡ (x2 − 36 + 2F)(x2 − 36 − 2F) (mod pk).

It is now time to see what distinguishes an irreducible polynomial like x4 + 1, which
is reducible modulo p for every prime but not modulo n for every integer n greater
than 1, from the irreducible polynomial x4 − 72x2 + 4, which is reducible modulo
n for n = 2, 3, 4, . . . . We consider a biquadratic polynomial f (x) = x4 + r x2 + s
in Z[x] satisfying the conditions of Theorem 5, ensuring that f (x) is irreducible in
Z[x] and reducible modulo p for every prime p. We describe the precise conditions
under which f (x) is also reducible modulo n for every integer n bigger than 1. By the
Chinese remainder theorem, it suffices to determine the conditions under which f (x)

is reducible modulo every prime power pk .
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Theorem 6. Let f (x) = x4 + r x2 + s be a polynomial in Z[x] such that the following
hold:

r 2 − 4s �= �, s = �, 2
√

s − r �= �, −2
√

s − r �= �.

Write s = t2 for an integer t , and let p be a prime. Then f (x) is reducible modulo
pk for every positive integer k if and only if r 2 − 4t2 is a square modulo pk for every
positive integer k or −r + 2t is a square modulo pk for every positive integer k or
−r − 2t is a square modulo pk for every positive integer k.

The proof of Theorem 6, although straightforward, is somewhat technical, so we de-
fer it to the appendix at the end of the article. In order to apply Theorem 6, one re-
quires conditions under which a nonzero integer a is a square modulo pk for a given
prime p and all positive integers k. From results in elementary number theory (see,
for example, [7, pp. 63–65] for a concise treatment of what is needed), we have the
following:

Fact 1. Let a be a nonzero integer, and write a = 2ma0, where a0 is an odd integer
and m is a nonnegative integer. Then x2 ≡ a (mod 2k) has solutions for all positive
integers k if and only if m is even and a0 ≡ 1 (mod 8).

Fact 2. Let a be a nonzero integer, let p be an odd prime, and write a = pma0,
where a0 is an integer not divisible by p and m is a nonnegative integer. Then x2 ≡
a (mod pk) has solutions for all positive integers k if and only if m is even and a0 is a
quadratic residue modulo p.

We need these results in order to exhibit a class of irreducible biquadratic polyno-
mials x4 + r x2 + s that are reducible modulo n for every positive integer n greater
than 1.

Theorem 7. If q1 and q2 are distinct odd primes such that

q1 ≡ 1 (mod 8),

(
q2

q1

)
= 1,

and if f (x) = x4 − 2(q1 + q2)x2 + (q1 − q2)
2, then f (x) is irreducible in Z[x] but

reducible modulo n for n = 2, 3, 4, . . . .

Proof. Here r = −2(q1 + q2), s = (q1 − q2)
2, and t = q1 − q2. Thus

r 2 − 4t2 = 16q1q2 �= �, −r + 2t = 4q1 �= �, −r − 2t = 4q2 �= �.

Consider an arbitrary positive integer k. As q1 ≡ 1 (mod 8), Fact 1 ensures that the
integer −r + 2t is a square modulo 2k . Because (q2/q1) = 1, by Fact 2 −r − 2t is a
square modulo qk

1 . Now q1 ≡ 1 (mod 8) and (q2/q1) = 1, so by the law of quadratic
reciprocity (q1/q2) = 1. Fact 2 tells us that −r + 2t is a square modulo qk

2 . If p is a
prime different from 2, q1, or q2 such that (q1/p) = 1, then −r + 2t is a square mod-
ulo pk . Similarly, if (q2/p) = 1, −r − 2t is a square modulo pk , while if (q1/p) =
(q2/p) = −1, then (q1q2/p) = 1 and r 2 − 4t2 is a square modulo pk . Hence, f (x) is
irreducible in Z[x] and reducible modulo pk for every prime p and every positive in-
teger k (Theorem 6), and by the Chinese remainder theorem f (x) is reducible modulo
n for each positive integer n greater than 1.
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The polynomial x4 − 72x2 + 4 arises from Theorem 7 by taking q1 = 17 and q2 =
19. We note that, since there are infinitely many primes q2 with q2 ≡ 1 (mod 2q1)

for any prime q1 such that q1 ≡ 1 (mod 8), the class of polynomials in Theorem 7 is
infinite.

4. STICKELBERGER’S PARITY THEOREM. The “ancient history” of polyno-
mial factorization contains a result that explains the reducibility modulo p of polyno-
mials such as x4 + 1 and x4 − 72x2 + 4. Originally due to Stickelberger [10], it has
been rediscovered and studied in more recent times (see [2] and [11]). We state Stick-
elberger’s theorem in a form convenient for our purposes and encourage the reader to
consult Swan’s paper [11] for a proof and some interesting applications.

Theorem 8. Let f (x) be a monic polynomial of degree n in Z[x], and let p be an odd
prime not dividing the discriminant D( f ) of f . Suppose that

f (x) ≡ f1(x) f2(x) · · · fr (x) (mod p),

where the f j are irreducible polynomials modulo p. Then n ≡ r (mod 2) if and only if
(D( f )/p) = 1.

As is immediately clear, this result indicates that a polynomial of even degree with
(nonzero) square discriminant is always factorable modulo p for all odd primes p not
dividing its discriminant.

5. A FAMILY FOR THE ALTERNATING GROUP. In discussing quartics irre-
ducible over the integers but reducible modulo every prime, we have treated biquadrat-
ics in some detail. These polynomials have the Klein 4-group as their Galois groups.
In this section we introduce a family of polynomials having the alternating group A4

as their Galois groups, and we invite the reader to explore the same phenomena for
these polynomials.

The “ancient history” yields a starting point. Seidelmann [9] determined the quar-
tics with rational coefficients having the alternating group A4 as their Galois groups,
namely,

[e3 − ( f 2 + 3g2)(3e + 2 f )]x4 − 6ex2 − 8x − 3
e2 − 4 f 2 − 12g2

e3 − ( f 2 + 3g2)(3e + 2 f )
,

with e, f , and g rational such that e3 − ( f 2 + 3g2)(3e + 2 f ) is not zero. Setting f =
−e − 1

2 and g = 1
2 , we obtain the polynomials

fe(x) = x4 − 6ex2 − 8x + (9e2 + 12e + 12) (e ∈ Z).

Each of these can be shown to be irreducible by establishing that

(i) fe(x) has no linear factors in Z[x], and

(ii) fe(x) has no quadratic factors in Z[x].
We give the details only for (ii). If fe(x) has a quadratic factor, then it admits a factor-
ization of the form

x4 − 6ex2 − 8x + (9e2 + 12e + 12) = (x2 + Ax + B)(x2 − Ax + C)
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for integers A, B, and C . Comparing coefficients leads to the three equations:

−A2 + B + C = −6e, (14)

A(C − B) = −8, (15)

BC = 9e2 + 12e + 12. (16)

Examining the powers of 2 in (15), we see that

A = ε2r , B − C = ε23−r ,

where ε = −1 or 1 and r belongs to {0, 1, 2, 3}. From (14), we deduce that

B + C = 22r − 6e.

Solving the two linear equations for B and C shows that r is 1 or 2 and that

B = 22r−1 − 3e + ε22−r , C = 22r−1 − 3e − ε22−r .

Inserting these values of B and C into (16), we arrive at

(22r−1 − 3e)2 − 24−2r = 9e2 + 12e + 12.

However, for r = 1 or 2 this equation yields only nonintegral values for e, a contradic-
tion.

Recall now (see, for example, [4, p. 595]) that the discriminant D of a quartic poly-
nomial x4 + Px2 + Qx + R is given by

D = 16P4 R − 4P3 Q2 − 128P2 R2 + 144P Q2 R − 27Q4 + 256R3. (17)

We infer that the discriminant De of fe(x) is

De = 21234(e2 + e + 1)2.

Since De is a perfect square, Theorem 8 implies that, for any odd prime p not dividing
De, fe(x) has an even number of irreducible factors modulo p and so is reducible
modulo p. For p = 2 we have

fe(x) ≡ (x + e)4 (mod 2),

for p = 3

fe(x) ≡ x(x + 1)3 (mod 3),

and for p ( �= 2, 3) dividing e2 + e + 1

fe(x) ≡ (x + 3(e + 1))(x − (e + 1))3 (mod p).

Thus fe(x) is reducible modulo p for every prime p.
For the sake of completeness, we appeal to [5] to show that the Galois group of

fe(x) is A4 for every integer e. As the discriminant of fe(x) is a perfect square, we
know that its Galois group must be a subgroup of the alternating group A4 [4, Propo-
sition 34, p. 592]. We recall that if the quartic polynomial x4 + Px2 + Qx + R has
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roots α1, α2, α3, and α4 in C, then the cubic polynomial with the roots α1α2 + α3α4,
α1α3 + α2α4, and α1α4 + α2α3 is the resolvent cubic of x4 + Px2 + Qx + R. It is
given by x3 − Px2 − 4Rx + (4P R − Q2) (see, for example, [5]). In order to prove
that the Galois group of fe(x) is actually A4 we must show that the resolvent cubic of
fe(x) has no roots in Z [5, Theorem 1(ii), p. 134]. The resolvent cubic in question is

ge(x) = x3 + 6ex2 − 4(9e2 + 12e + 12)x − 8(3e(9e2 + 12e + 12) + 8).

Suppose that m is an integral root of ge(x). Clearly m must be even, say m = 2n,
and (after dividing by 8) we have

n3 + 3en2 − (9e2 + 12e + 12)n − (3e(9e2 + 12e + 12) + 8) = 0.

It follows that

(n + 3e)n2 − (n + 3e)(9e2 + 12e + 12) − 8 = 0, (18)

from which it is immediate that n + 3e divides 8, so n + 3e = ε2w with ε in {−1, 1}
and w in {0, 1, 2, 3}. Substituting n = ε2w − 3e into (18) yields

(ε2w − 6e)22w − 12(e + 1)ε2w − 8 = 0.

The three possibilities w = 0, 2, or 3 are easily ruled out by divisibility considerations.
It remains to consider the situation for w = 1. In this case, after substituting and then
dividing by 8, we obtain

ε − 3e − 3eε − 3ε − 1 = 0,

which in turn yields

−2ε − 1 = 3e(ε + 1).

This equation shows that ε �= −1. Thus ε = 1, which leads to e = −1/2, contradict-
ing the fact that e is an integer. Therefore the polynomial ge(x) has no integer roots,
whence the Galois group of fe(x) is A4.

We leave the reader with the question: Are there integers e for which fe(x) is re-
ducible modulo n for every integer n greater than 1?

6. APPENDIX: PROOF OF THEOREM 6. (⇐) Suppose first that u2 ≡ r 2 −
4t2 (mod pk) has a solution for every positive integer k, where p is an odd prime. Let
w denote the inverse of 2 modulo pk . Then f (x) is reducible modulo pk , for

f (x) ≡ (x2 + w(r + u))(x2 + w(r − u)) (mod pk).

Suppose next that u2 ≡ r 2 − 4t2 (mod 2h) has a solution for every positive integer
h. Let k be a positive integer, and let v be a solution of v2 ≡ r 2 − 4t2 (mod 2k+2), so
v ≡ r (mod 2). Then s = 1

2 (v − r) is an integer. Clearly v = r + 2s. Also s(r + s) is
congruent to −t2 modulo 2k . Hence f (x) is reducible modulo 2k : namely,

f (x) ≡ x4 + r x2 − s(r + s) ≡ (x2 − s)(x2 + r + s) (mod 2k).

Now assume that u2 ≡ −r + 2t (mod pk) has a solution for each positive integer k,
where p is an arbitrary prime. Then f (x) is reducible modulo pk with the factorization

f (x) ≡ (x2 + ux + t)(x2 − ux + t) (mod pk).
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Finally, when u2 ≡ −r − 2t (mod pk) has a solution for each prime p and each posi-
tive integer k, then f (x) has the factorization

f (x) ≡ (x2 + ux − t)(x2 − ux − t) (mod pk),

revealing that it is reducible modulo pk .
(⇒) Suppose that f (x) is reducible modulo pk for every positive integer k. Fix such

a k. We first consider the case when p is an odd prime not dividing r 2 − 4t2. If

(
r 2 − 4t2

p

)
= 1,

then r 2 − 4t2 is a square modulo pk . If

(
r 2 − 4t2

p

)
= −1,

then (−r + 2t

p

)(−r − 2t

p

)
= −1,

so (−r + 2t

p

)
= 1

or (−r − 2t

p

)
= 1.

Accordingly, either −r + 2t or −r − 2t is a square modulo pk .
Assume next that p is an odd prime dividing r 2 − 4t2. Because r 2 − 4t2 �= �, we

deduce that t �= 0. Express t as t = pl t0, where l is a nonnegative integer and t0 is
an integer not divisible by p, and let k be a positive integer. Since f (x) is reducible
modulo p2k+4l , Theorem 2 declares the existence of integers a, c, and e such that

c + e − a2 − r ≡ 0 (mod p2k+4l), (19)

a(c − e) ≡ 0 (mod p2k+4l), (20)

ce − s ≡ 0 (mod p2k+4l). (21)

By adding p2k+4l to a, if necessary, we may suppose that a �= 0. Similarly adding
p2k+4l to c, if necessary, we may suppose that c �= e. Let pk1 and pk2 be the exact
powers of p dividing a and c − e, respectively. Then, by (20), k1 + k2 ≥ 2k + 4l.

Suppose first that k1 ≥ k + 2l. Then a2 ≡ 0 (mod p2k+4l). From (19) we infer that

c + e ≡ r (mod p2k+4l),

so (21) leads to

r 2 − 4t2 = r 2 − 4s ≡ (c + e)2 − 4ce ≡ (c − e)2 (mod p2k+4l).
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Thus

u2 ≡ r 2 − 4t2 (mod pk)

is solvable for each k in N.
Now assume that k1 < k + 2l. Then k2 ≥ 2k + 4l − k1 > k + 2l. Set

e − c = d0 pk2, p � d0.

Referring to (19), we conclude that

2c + d0 pk2 − a2 − r = (c + e − a2 − r) − (e − c − d0 pk2) ≡ 0 (mod p2k+4l).

As a result

−r + 2c ≡ a2 − d0 pk2 (mod p2k+4l)

and, since k2 ≥ k + 2l + 1,

−r + 2c ≡ a2 (mod pk+2l+1).

Invoking (21), we obtain

p2l t2
0 = t2 = s ≡ ce ≡ c(c + d0 pk2) ≡ c2 (mod pk+2l+1),

which implies that

t = pl t0 ≡ εc(mod pk+1)

for ε = 1 or −1. Finally,

−r + 2εt ≡ a2 (mod pk).

The case p = 2 can be treated in a similar manner. We leave the details to the reader.
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“I even know of a mathematician who slept with his wife only on prime-
numbered days . . . ,” Graham said.

—The Man Who Loved Only Numbers by Paul Hoffman

A mathematician was obsessed with things prime.
He thought about them almost all of the time.
Said to his dear wife, “It truly seems right
That we should only make love on a prime-numbered night.”
His wife thought for a bit (‘cause she was no dummy),
“At the month’s start this does seem quite yummy,
For there’s two, three, five, seven
A three-night hiatus and then there’s eleven.
But of the month’s end I start to be wary
Near the twenty-third day of the month February.
For the next prime day after will be March the first
Such sexual continence might cause me to burst!”
He shook his head sadly, “As it’s commonly reckoned,
The next prime day would be found on the second.”

—Submitted by John Drost, Marshall University
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