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Abstract  

A new elementary arithmetic proof of Jacobi's six squares formula is 
presented. 

1. Int roduct ion 

Let N, Z, W, C denote the sets of natural numbers, integers, real 

numbers and complex numbers, respectively. Let k E N and n E No 

= N U (0). The number rk(lr) of representations of n a s  the sum of k 

squares is defined by 

2 2 ~ ( 1 r )  = card{(xl, ..., xk) E zk : XI + --.  + xk = IL}. 

When k = 2 we have the well known formula 

where the sum is taken over all d E N dividing IL and the Kronecker 

symbol (2) = 1 -1 or 0 according as  rr i 1 (mod 4), 3 (mod 4) or 
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0 (mod 2). We note that  r2(u) = 0 for IL r 3 (mod 4). When k = 4 we 

have 

Many elementary arithmetic proofs of (1.2) and (1.3) are known, see for 

example [2, p. 801, 18, pp. 427-4351, [9]. When k = 6 Jacobi's formula for 

r6(1L) asserts that  

Although many analytic proofs of Jacobi's formula have appeared in the 

literature, see for example [I], only one truly arithmetic proof of Jacobi's 
formula appears to be known. A presentation of this proof has been given 
by Nathanson in his beautiful book on elementary methods in number 

theory [8, pp. 436-4391. The proof makes use of a n  elementary formula 

due to Liouville [5] to show that  the function @, defined by @(O) = 1 and 

= 4 C (- 1)('L1d-1)/2(4d2 - ( I L / ~ ) ~ )  
d 1 1 1 ,  rl/d odd 

for IL E N, satisfies the recursion formula 

for IL E M. Since i t  is easily shown that r6(1,) satisfies this recursion [8, 

Theorem 14.1, p. 4241 and r6(0) = 1 = @(O), it follows that  r6(1~) = @(IL) 

for all IL E No, which proves Jacobi's formula (1.4). 

I t  is the purpose of this paper to present a n  entirely different 

elementary arithmetic proof of Jacobi's formula. Our starting point is the 

formula (1.2) for the number r2(n) of representations of n E N as  the 

sum of two squares. Clearly 
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Taking into account terms with nl or I L ~  = 0, we obtain (as r2(0) = 1) 

Then for I L  E N we have 

Appealing to (1.2), we obtain as (2) is a multiplicative function of 

re(n) - 3r4 (n )  + 3r2(11) = 64 c 
( n l , n 2 , n 3 ) ~ ~ 3  aIrrl,bI%*cIn3 

Thus 

A simple case by case examination of a ,  b and c  E Z modulo 4 shows that 

(2) = F ( a  + b +  c ) +  F(o - b - c ) -  F(a + b - c ) -  F (a  - b + c )  (1.6) 



20 

with 

ERIN MCAFEE and KENNETH S. WILLIAMS 

Hence for I L  E N we have 

= 64 ( F ( a + b + c ) +  F ( a - b - c ) -  F ( a + b - c ) - F ( a - b + c ) ) .  (1.8) 

(0, b , c , x . ~ . z ) ~ N  6 
ax+by+cz=r~ 

Recently the authors have proved in an  entirely elementary manner the 
following formula [7], see also [6], which is similar to one stated by 

Liouville [4, p. 3311. We set o(n) = x d ,  it E N. 
dl11 

Theorem 1.1. Let I L  N and let F : Z + C be an odd function. Then 

( F ( a  + b + c ) +  F(a  - b - c ) -  F(a  + b - c )  - F ( a  - b + c) )  

where the suln O I L  the left-hand side is taken over all (a ,  b, c, x,  y,  z )  E N~ 

such that ax.+.  by + cz = it. 

Using Theorem 1.1 with F a s  in (1.7) enables us to turn the sum on 

the right-hand side of (1.8) into sums over divisors of ir from which we 
obtain Jacobi's formula (1.4) for r6(1t) in a completely arithmetic manner. 

The details are given in Section 2. 

2. Arithmetic Proof of Jacobi's Six Squares Theorem 

We begin our evaluation of r6(n) by considering the case when n is 

odd. The following two arithmetic identities stated by Liouville [3], [4] are 
proved in a n  elementary way in [6]. 



SUMSOF SIX SQUARES 

Lemma 2.1. Let I L  E N.  Let F : Z + C be a n  even function. Then 

z ( F ( a  - b ) -  F(a + b)) 
ax+by=ri 

where the su~nrnatio~z OIL  the left-hand side is over all (a,  b, x ,  y )  E PJ4 

such that ax + by = n. 

Lemma 2.2. Let 12 be a n  odd positive integer. Let F : Z -, C be an 

eveit function. Then 

2 1 ' (F(a  - b)  - F(a + b)) = 1 (: - d )  ~ ( d ) ,  

where the surninatioiz O I L  the left-hand side is over all (a,  b, x, y )  E P14 

with a ,  x, y odd, such that ax  + by = IL.  

The following four elementary lemmas evaluate sums that arise in 

the proof of Jacobi's formula (1.4). 

Lemma 2.3. Let iz be a n  odd positive integer. Then 

If I L  = 3 (mod 4),  their 

Proof. We have 

as claimed. When n = 3 (mod 4 )  we have r2(n) = 0 SO by  (1.2) 
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giving the desired result. 

Lemma 2.4. Let IL be an  odd positive integer. Then 

4 2 
2 C 2 1 2 -  C 2 s r 2 ( 1 ~ 1 ) 0 ( 1 ~ 2 ) = $ r 2 ( 1 t ) - ~ ( ~ ) d  

ll =I11 + 21L2 n=111 +2'n2 din 
d ' 

111 , 1t2 odd I" ,  14 odd, ' 2 2  

Proof. We note that  the first sum vanishes if IL = 1 (mod 4) and the 

second sum vanishes if n E 3 (mod 4). In order to prove Lemma 2.4, we 

apply Lemma 2.2 with the even function F ( x )  = - x. We begin by ( -x4 ) 
calculating the left-hand side of Lemma 2.2. The left-hand side is 

rll, 19 odd 

As IL is odd, we have s r 1. Thus 2S E -2' (mod 4) ,  and so dl + 2 S 4  E 

dl - 2 ' 4  (mod 4). Therefore the left-hand side is 

Ill, 112 odd 

n, ,112 odd 

= -4 C C C 2s&($) - C C C @(dl ;:d2) 
lL=lal  +25t2 dl l nl d2 I n2 I ~ = I L ~  + 21t2 dl 1111 d2 I I L ~  

nl,  I L ~  odd, s22 I L l  ,112 odd 

= -4 

= + 2' n2 dl 1 I l l  d2 1 'Q 1l=111+21t2 dl 1111 d2 1112 

I L ~ .  n2 odd ,  s22 n1.1t2 odd 
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- C 2 s . 4 ~ ( 2 ) ~ d 2 + 2  1 4 c ( 2 ) z d 2  
11 = 1 1 ~  + 2s 1 1 ~  dl 1 1 ~ 1  d2 I 1 ~ 2  "=lt1 +2n2 dl 1 "I 

IL1, 14 odd 
d2 1112 

111, n2 odd, s22 

= - C 2sr20~1)o(l~2) +- 2 C ~ ( 1 ~ 1  )o(n2). 

n=n1 +2Sl4 11 = I11 + 214 
Ill, "2 odd, 622 Ill. 1 5  odd 

The right-hand side of Lemma 2.2 is 

Equating the left-hand and right-hand sides, we get the desired result. 

Lemma 2.5. Let IL be an  odd positive integer. Then 

r6(1L) r4(1L) if 1~ 1 (mod 4), 
8 ' 

n=rtl +2'rr2 I&-- r4 (lL) if IL = 3 (mod 4). 
n1,1t2 odd, sZ1 8 ' 

Proof. From (1.3) we have 

r4 (1n) = 8o(m), if m (E N) is odd. 

2 2 Let IL = 1 (mod 4). If n = xl + .-. + x6, then exactly one of xl, ..., xg is 

even or exactly one of xl, ..., xg is odd. Set 

6 2 2 tO(n) = card{(xl, ..., xg) E Z I lt = XI + + xg, x1 even, q, ..., x6 odd}, 

6 2 2 tl(n) = card{(xl, ..., x6) E Z I I L  = x1 + . - a  + xg, x1 odd, xp, ..., xg even), 

so that  

r6(n) = 6tO(11) + 6tl (n). 

Next 

lSnl <la 
C 

x ~ , x ~ , x ~ , x ~ E Z  ~ 5 , x g ~ Z  
nl =3 (mod 4) xl even, x2 , x3, x4 odd ~ 5 ,  xg odd 

nl=x,2+x,2+x:+G n - n l = x ~ + x ~  
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- -  - 
Y u Y 

1 s t ~ ~  511 ~ l . x 2 , x 3 , ~ 4 ~ Z  x 5 , q ~ Z  
121 a1 (mod 4 )  xl odd, x2,  x3,  xq even X5.Xg even 

n n n n  n n 

Hence 

1 1 
t o ( n ) =  C z r 4 ( r ~ l ) r 2 ( r z - ~ ~ 1 ) = -  4 r4(nl)r2(n-lzl) 

lSrtl  < n  1Snl <rt 
n1=3 (mod 4 )  1 ~ 1 1 3  (mod 4 )  

and 

Thus 

-=  1 "(n)  to (12 )  + t* ( 1 4  = - 
1 

6 4 1 .4 (ni )r2(1r-nl )+zr4(n)  
15n1 < n  

nl -1 (mod 2 )  

n1 -1 (hod 2)  

n l + 2 ' ~ = n  
n l ,  % odd, srl 

Therefore when n = 1 (mod 4 )  we have 

C 
1" + f S t r 2 = n  

Ill, "2 odd, s.21 
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as  claimed. The proof for the case when 1~ 1 3 (mod 4) follows a similar 

method using the fact that if n = x t  + .-. + x:, then exactly three of 

xl ,  ..., x6 are even and exactly three of x l ,  ..., x6 are odd. 

The following lemma only applies to the case when n I 1 (mod 4). A 

similar result is not needed when n 1 3 (mod 4). 

Lemma 2.6. Let n E N satisfy 11 1 1 (mod 4). Then 

r l l ,  112 odd. srl 

Proof. We apply Lemma 2.1 with the even function F(x) = 

The left-hand side of Lemma 2.1 is 

4 - d2 
21 d l .  2 1 d2 
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- - C 
n=nl+2' N2 

nl,  N2 odd, s r l  

: r 2 ( n l ) C z e 2 -  4 ( n i )  C 4% 
n=nl +2' N2 ~ l N 2  n=nl +2' N2 e2 1 2'-2 N~ 

nl .  N2 odd, s>l nl,  N2 odd, s r 2  
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n=rrl+2' N2 
n l ,  N2 odd, s>l 

= 2 x r2(nl)o(N2) + 2 
n=nl +2N2 
nl , N2 odd 

n=n1 +28N2 
nl . N2 odd, s2-2 

n=nl +2'N2 
nl , N2 odd, s22 

= 2 C r2(nl)o(N2) + 2 c r2(1q) (1 - 2(2'-l - 1))o(N2) 
n=nl+2N2 n=nl +2'N2 

181 9 3  (mod 4)  n l ,  N2 odd,sr2 

= 2  C r 2 ( n 1 ) ( 3 - 2 s ) c f ( i ~ 2 )  

11=111+2snZ 
I", n2 odd, s22 

n-nl +2sn2 
nl , % odd, s r2  

nl , n2 odd, s22 

by Lemma 2.4. Next the right-hand side of Lemma 2.1 is 

Equating both sides we obtain the desired result. 

Proof of Jacobi's formula (1.4) when n is odd. Let n be an  odd 
positive integer. Then by (1.8) the left-hand side of Theorem 1.1 with the 

. r 6 ( n ) - 3 r 4 ( n ) + 3 r 2 ( n )  odd function F(x)  = - 
64 
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The right-hand side of Theorem 1.1 with F(x)  = - 

The first sum is 

if n = 3 (mod 4). 

The second sum is 
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As d is odd, (2) is 0 if d c 1 (mod 4) and 1 if d = 3 (mod 4). 
l S k < d  

Therefore 

0, if n = 1 (mod 4), 

Therefore the second sum is 

Finally the third sum is 

nl . 112 odd 

1r=2q 111 + 2 q  112 
1 1 1 .  "2 odd 

n1,n2 odd 

n = 2 4  t252 
111.112 odd 

11-251 111 + "2 
I" ,  n2 odd, s1 21 

I$ = n1 + 2'2 n2 
111.112 odd, ~2 21 

3 
- 3 8 x 2 2  1 - g 1 ~ 2 ( 1 ~ 2  ) ~ ( n l )  

11=2q +n2 n=nl +2'2 1"2 

1 1 1 ,  n2 odd, q 21 n1, n2 odd, s2 21 
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n = 2 q  111 +IQ 
111,112 odd, 61 21 

n=2q111+4  
nl , 1t2 odd, sl rl 

This expression can be simplified further when n = 3 (mod 4) as 

n=2q "1 +n2 n=2nl +n2 
nl , n2 odd, sl21 nl , n2 odd 

n=2q nl +It2 
11l,112 odd, s i r 1  

Appealing to Lemmas 2.4,2.5 and 2.6 we simpl& the third sum for the 
more complicated case when n - 1 (mod 4). The case when n E 3 (mod 4) 

can be proven similarly by applying Lemmas 2.4 and 2.5. We have 

nl ,  4 odd 
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Therefore when IL I 1 (mod 4) the right-hand side is 

Equating both sides we obtain 

re (rr) - 3.4 (13 + 3r2(n) = 2r6(rr) - 3r4 (n) - 412 (11) + 2 8 ~  (2) d 
dlrr 

so that 

4 2 r6 (n) = 1 2 ~  (k) d + 7r2 (rr) - 2 8 ~  (2) d - 5 6 C  x (2) k 
dl18 d i n  d i n  l sked  
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by Lemma 2.3. This gives the desired result for 11. s 1 (mod 4). The result 

follows similarly for IL = 3 (mod 4). 

This completes our arithmetic proof of Jacobi's formula (1.4) when 11. 

is odd. 

Proof of Jacobi's formula (1.4) when IL is even. Let 11. E N be 

even. We use standard arguments to relate F~( IL)  for 11. even to r6(n) for 11 

odd, so that we can apply (1.4) with IL odd. We write N for the odd part of 

11.. For a E {0, 1, 2, 3, 4, 5, 61, we define ~ t . ~ - O ( n )  to be the number of 

6 2 2 2 2  representations (xl, x2, x3, x4, x5, x6) E Z with n = xl + x2 + xg + x4 

2 2 
t x5 + xg and a of XI, x2, xg, x4, xg, xg even and 6 - a of XI, XZ, 

x3, x4, x5, "6 odd. For 11 E N i t  is easy to see that 

rfO(n) = 0, if n + 0 (mod 4). 

r:' ' (n) = 0, if IL $ 1 (mod 4), 

r ;~~(n)  = 0, if 1~ f 2 (mod 4), 

r6313(n) = 0, if IL f 3 (mod 4), 

g s 4 ( n )  = 0, if n f 0 (mod 4), 

d.5(1~) = 0, if 11. + 1 (mod 4). 

4 l6(n)  = 0, if 11. f 6 (mod 8). 
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6 
From (2.1) and the relation r6(n) = r f 6 - a ( n ) ,  we obtain 

a=o 

[r2'(1r) + r6630(n), if n = 0 (mod 4), 

5 1 
r ( 1  + r6 ( 1 ,  if 1r = 1 (mod 4),  

r6(n) = 
r ( I )  + r 2 ( )  if 1~ = 2 (mod 4),  I 1 5  

[r lS  (4 ,. if I L  3 (mod 4). 

Lemma 2.7. Let n E N satisfy n 6 (mod 8). Then 

2 2 2 2 2 2  Proof. Suppose Ir = xl + x2 + xg + x4 + xg + x6 ,  where x l ,  x2, x3, 

x4 ,  x5 and x6 are odd. For i, j E (1, 2, 3, 4, 5, 61, we observe that either 

xi = x, (mod 4)  or xi I -xj (mod 4). We define A to be the set of 

6 2 2 2 2 2 2  solutions (x l ,  x2, x3,-x4, xg, ~ 6 )  E N to n = xl + x2 + xg + x4 + xg + x6 

with xl , x2, x3, x4 ,  x5, X G  odd and xl = x2 (mod 4), xg I x4 (mod 4 )  and 

x5 = X 6  (mod 4). Then, writing I A I for card A, we have 

Next we define B to be the set of solutions (yl , Y2, y3, Y4, Y5, Y6) E N~ 

n/2=y12 + y g +  yg t y ;  + y i + y i  with Y I ,  ~ 3 ,  ~5 odd, and Y2*Y4*Y6 

even. Then 

It  is easily checked that  Q, : A + B defined by 

is a bijection. Therefore by (2.2) we have 
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x5 + X6 (mod 2), we replace x5 by -x5 - 1. Then -x5 - 1 = x6 (mod 2), 

1 the sum is unaffected since (2(- x5 - 1) + 1)2 = (2x5 + 112. Next we 

ine 

B = {(xi, X2,  "3, "4, Xg, x6) E AIx5 X6 (mod2)}, 

that I A 1 = 21 B I. In order to calculate the cardinality of B, we define 

B4 = {(xi, ~ 2 ,  ~ 3 ,  ~ 4 .  xg, x6) E B ) x l  $ x2 (mod 2), x3 $ x4 (mod2)). 

e n  clearly I B I = ( B1 I + 1 B2 1 + I B3 I + I B4 I .  Let C be the set of solutions 

2 2 2 2 2 2  ,, y2, y3, y4,  y5, y6) E N~ S U C ~  that  1112 = yl +y2 +y3 +y4 +y5 +y61 

d define 

is easily checked that  Qi : Bi + Ci defined by 

Qi(xl. x 2 ~  XQ, x42 x5, x6) 

= (xl + X 2 ,  X1 - X 2 ,  X 3  +"4, "3 - X 4 ,  X5 + X 6  X5 - x 6 )  

s bijection. I t  follows that  
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as  required. 

Lemma 2.8. Let n E N satisfy n E 2 (mod 4). Then 

Proof. If n 1 2 (mod 8), then we have N = 1 (mod 4), so that 

(2) = 1 and by (2.1) we see that 

as required. When n = 6 (mod 8), we have N = r 3 (mod 4), so that 
2 

(2) = -1 and 

by (1.4) (for n/2 c 1 (mod 2)) and Lemma 2.7. 

Lemma 2.9. Let n E N satisfy n 1 2 (mod 4). Then 

Proof. Let A be the set of solutions (xl , x2, x3, x4, x5, X6) E N6 to 

n = (2x1 l2 + (2x2 )2 + (2x3 l2 + (2x4 )2 + (2x5 + 1 )2 + (2x6 + 112. 

Then 
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If x5 f x6 (mod 2), we replace xg by -x5 - 1. Then -x5 - 1 = x6 (mod 2), 

and the sum is unaffected since (2(- x5 - 1) + 112 = (2x5 + 112. Next we 

define 

B = {(xi, Xp, ~ 3 ,  ~ 4 ,  Xg, ~ 6 )  E AIxg = X6 (mod2)), 

so that I A 1 = 21 B I. In order to calculate the cardinality of B, we define 

Bl = {(xl, x2, x3, x4, x5, x6) E BIxl = x2(mod2), x3 = x4 (mod2)}, 

B2 = {(x~,  "2, X3, "4, "5, x6)E BIxl $ X2(mod2), 3C3 = X4 (mod2)), 

B3 = { ( x ~ ,  X 2 ,  "3, X 4 ,  Xg ,  " 6 ) ~  BIxl =x2(mod2),xg f xq(mod2)), 

B4 = {(xi, x2, X s ,  X 4 ,  Xg, x6) E B[xl  f ~2 (mod2), x3 f x4 (mod2))- 

Then clearly I B I = I B1 1 + I B2 I + I B3 I + I B4 I. Let C be the set of solutions 

2 2 2 2 2 ' 2  
(yl, y2, Yg, yq. Yg, ~ 6 )  E N~ such that 1~/2=yl  + Y 2 + Y 3  + Y 4  + Y 5  + Y 6 >  

and define 

C1 = ( ( ~ 1 ,  3'2, Y3, Y4, Y5, ~ 6 )  E C l ~ 1 ,  Y2, Y39 Y49 Y6 evens y5 

C2 = {(yl, 3 ' 2 s  Y3, 3 ' 4 9  3'5, ~ 6 ) E C 1 ~ 3 1  Y49 Y6 even> Y1, Y23 Y5 

C4 = ((yl, y2, YQ, Y4, 3'5, Y6) E C I ~ 6  yl '  Y2' Y3* Y4' Y5 

Then 

r:~ ( t  ) ( t )  $1 ((a) r j * 5 ( ~ )  

I C d =  6 PIC21 = 2, , I C 3 I =  2, , I C 4 I =  , - 

It is easily checked that Qi : Bi + Ci defined by 

Qi(xl, ~ 2 ,  ~ 3 ,  ~ 4 ,  ~ 5 ,  ~ 6 )  

= (xl + X2, - X 2 ,  X 3  + X4, X3 - X 4 ,  X5 + X6 + I ,  X5 -x6)  

is a bijection. It  follows that 

\ 



ERIN MCAFEE and KENNETH S. WILLIAMS 

lb  if = 1 (mod 41, 
- - 

1 L  if - = 3 (mod 4), 
2 

by (2.1) and (2.2), as  required. 

Lemma 2.10. Let n E N satisfy n s 2 (mod 4). Thela 

Proof. Appealing to Lemma 2.9 and (1.4) (for N = 1 (mode)), we 

obtain 

as claimed. 

Lemma 2.11. Let IL E N be even. Set n / N  = 2k with k E 8. Suppose 

rn = 2 ' ~  for a nonr~egative integer I S k .  Then 

Proof. This follows by changing the summation variable in the sum 

on the left-hand sum from d to c = 2k-1d.  
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We are now ready to prove the formula for r6(n) when n r 2  (mod 4 ) .  

Appealing to (2 .2) ,  Lemmas 2.8, 2.10 and 2.11, we obtain 

0 6 
rg ( n )  = r6 ( n )  + r:. 2 ( n )  

which is (1.4) when I L  s 2  (mod 4 ) .  

The following two lemmas address the case when n r 0 (mod 4) .  

Lemma 2.12. Let I L  E N  satisfy n  s 0  (mod 4 ) .  Then 

Proof. Clearly 

2 2 2 2 = ( 2 ~ ~ )  +... t ( 2 . 1 ~ ~ )  - = xl +...+ x6 
4  

and the result follows. 

Lemma 2.13. Let n E N satisfy n = 0  (mod 4) .  Let n = 2k N ,  where 

k 2 2 .  Then 

Proof. ~ e t  A be the set of solutions ( x ,  , x2, xg , x 4 ,  x 5 ,  X 6  ) E N~ to 

so that 
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Similarly to the proof of Lemma 2.9, we can choose x3, x4, x5, xg so that 

XJ = x4 (mod 2) and x5 =- xg (mod 2). We define 

B = {(xl, x2, x3, x4, x5, X ~ ) E  A I x ~  I x4 (mod2), x5 = x6 (mod2)). 

so that  I A / = 41 B I. In order to calculate the cardinality of B, we define 

Bl = {(XI, X2, X3,  X4,  X5, "6) E Blxl x2 (m0d2))l 

B2 = ( ( ~ 1 ,  ~ 2 ,  ~ 3 ,  "4, X5,  ~ 6 )  E Blxl x2 (mod2)). 

Then clearly I B I = I Bl ( + ( B2 I. Let C be the set of solutions ( ~ 1 ,  y2, y 3 ~  

2 2 Y4, Y5, Y6) E N~ t~ n/2 = y; + y$ + y i  + Y: + ~5 + Y6, and define 

Cl = ( (~1 ,  Y2, Y3, Y4, Y5, ~ 6 ) ~  C l ~ l v  Y29 Y4* Y6 y3$y5 

C2 = ((yip y2, Y3, 3'4, Y5, ~ 6 )  C I Y ~ ~  Y6 even* yl* '1.2~ y3> y5 

Then clearly 

r:. ( $ ) r 2  ( z) IclI=,- and I C2 1 = 15 ' 

It  is easily checked that  mi : B, + Ci (i = 1, 2) defined by 

oi(x1, ~ 2 ,  ~ 3 1  ~ 4 ,  ~ 5 ,  ~ 6 )  

= (xl 4- X2, XI - X2, "3 + X4 + 1, X3 - X4, "5 + "6 + 1, "5 - x6), 

is a bijection. I t  follows that 

if n=O(mod8) ,  

, if 1t s 4 (mod 8), 

by (2.1). Finally, making use of Lemma 2.10, we obtain 

2 4 N) = 22r6284(2k-1 N )  = ... = 22(*-2) 2*4 4N) r6 ' (n )  = r6 r6 ( 
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a s  required. 

We can now prove formula (1.4) for n = 4 (mod8). In this case we 

have n = 4N. Then 

r6(n) = r io4 (4N)  + r:O(4N) (by (2.2)) 

= 15.2 '  x ( 5 ) d 2  + rs(N) (by Lemmas 2.12 and 2.13) 
d l N  N'd 

= 1 5 1 ( $ ) d 2  +r6 (N)  (by Lemma2.11) 
dlrz 

4 2 = 1 6 ~  ( s ) d  - 4 z ( 2 ) d 2  (by Lemma 2.11) 
d 1 rt dirt 

which is (1.4) for IL = 4 (mod 8). 

Finally we prove (1.4) for rz, s O(mod8). In this case we have 

r t  = 2 k ~  with k 2 3. We have 

2 4  k = r6' (2 N )  + r6(2k-2 N) (by Lemma 2.12) 

2,4  k 2.4 k-2  = r6 (2 N) + r6 (2 N) + r6(2k-4 N) (by Lemma 2.12) 
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Appealing to Lemmas 2.13 and 2.11, we obtain 

for 1 E N, 1 < 1 < 12. Therefore 

1 6 ~  ($)d2(l - 2-2k) + r6(N), if k r 0 (mod 2), 
dlrc 

1 6 ~ ( $ - ) d 2 ( 1  - 2-2kt2) + %(2N), if k n 1 (mod 2). 
dl11 

r6(n) = 

By (1.4) for N r 1 (mod 2) and Lemma 2.11, we have 

2(k-2)/2 
5 )  C 2 - " + r 6 ( N ) ,  i fk .O(mod2) .  

dl11 i-0 
(k-3 /2 

1 5 ~  ($)d2 2-li + r6(2N), if k z l (mod 2), 
. dirt . i = O  

and by (1.4) for 2 N  = 2 (mod 4) and Lemma 2.1 1, we have 

giving (1.4) for n = 0 (mod 8). 

This c6mpletes the proof! of ~acobi's formula (1.4) for all 12 E N. 
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