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Abstract

Watson’s method for determining the roots of a solvable quintic
equation in radical form is examined in complete detail. New methods
in the spirit of Watson are constructed to cover those exceptional cases
to which Watson’s original method does not apply, thereby making
Watson’s method completely general. Examples illustrating the various
cases that arise are presented.

1. Introduction

In the 1930’s the English mathematician George Neville Watson
(1886-1965) devoted considerable effort to the evaluation of singular
moduli and class invariants arising in the theory of elliptic functions
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[6]-[11]. These evaluations were given in terms of the roots of polynomial
equations whose roots are expressible in terms of radicals. In order to
solve those equations of degree 5, Watson developed a method of finding
the roots of a solvable quintic equation in radical form. He described his
method in a lecture given at Cambridge University in 1948. A
commentary,on this lecture was given recently by Berndt, Spearman and
Williams [1]. This commentary included a general description of Watson’s
method. However it was not noted by Watson (nor in [1]) that there are
solvable quintic equations to which his method does not apply. In this
paper we describe Watson’s method in complete detail treating the
exceptional cases separately, thus making Watson’s method applicable to
any solvable quintic equation. Several examples illustrating Watson’s
method are given. Another method of solving the quintic has been given
by Dummit [4].

2. Watson’s Method

Let f(x) be a monic solvable irreducible quintic polynomial in Q[x].
By means of a linear change of variable we may suppose that the

coefficient of x* ‘is 0 so that
f(x) = x® +10Cx® + 10Dx* + 5Ex + F 2.1)

for some C, D, E, F € Q. Let xy, xg, X3, ¥4, x5 € C be the five roots of
f(x). The discriminant & of f(x) is the quantity

§ = H (xj—xk)?‘. (2.2)

1<j<k<b
In terms of the coefficients of f(x), 5 is given by
5 = 8250000C2D2F?2 + 500000CE2F? - 375000CDF?
— 6750000D*E2 — 10000000C*D?E? - 4500000C*EF*
+10800000 D*F + 18000000CD?E® +16000000C*D3F

+ 14000000C2DE2F — 36000000C*DEF — 31500000CD*EF
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+ 1125000 D*EF2 — 2000000 DE3F + 20000000C*E3

—~ 8000000C2E* + 800000E° + 3125F% + 10800000C°F2.  (2.3)

As f(x) is solvable and irreducible, we have [4, p. 390]

§ > 0. (2.4)
We set
K = E +3C?, (2.5)
L = -2DF + 3E* - 2C?E + 8CD? + 15C*, (2.6)

M = CF? - 2DEF + E® - 2C%DF - 11C%E?
+ 28CD?E -16D* + 35C*E - 40C3D? - 25C6. 2.7

Let xy, x9, x3, x4, x5 € C be the five roots of f(x). Cayley [2] has shown
that

§ = X1X9 + X9Xg + X3Xy + X4 X5 + X5X] — X X3 — X3Xp5 — X5Xg — XoXy — X%,
do = X X3 + X3X4 + XX + XoX5 + X5X] — XXy — XX — X5Xg — X3Xg — XoXq,
d3 = X1X4 + X4X9 + X9Xg + X3X5 + X5X] — X X9 — XgX5 — X5Xy — XyXg — X3X],
by = X X9 + XoX5 + X5X3 + X3%4 + XgX] — X1 %5 — X5%4 — X4Xg — XX — XgXy,
b5 = X1X3 + X3X5 + X5Xy + Xg4Xg + XoX] — X X5 — X5Xg — XgXg — X3Xy4 — X4X],

¢l6 = X1X4 +X4%X5 + X5X9 + X9Xg + XgX] — X X5 — X5X3 — XgX4 — X4X9 — X9X7,

(2.8)

are the roots of
g(x) = x® —100Kx* + 2000Lx? — 32V5x + 40000M € Q(V3)[x]. (2.9)

Watson [1] has observed as f(x) is solvable and irreducible that g(x) has
a root of the form ¢ = p+/8, where p € Q, so that ¢ € (@(«/g) We set

0= ‘1’5—0@ e Q(J53)  R. (2.10)
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Clearly 6 is a root of

6 K 4. L 2 B8 M
hix) = 2% =" 2% + 750" ~ 350695 * + 3125 - 2.11)

The following simple lemma enables us to determine the solutions of
a quintic equation.

Lemma. Let C, D, E, F € Q. If uy, ug, us, uy € C are such that

wjy + ugg = —2C, (2.12)
ulug + uzuf + u3u12 + u4u92, = -2D, (2.13)
u%ui + u%u% - u?uz - ugu4 - ugul - ui’u3 — ujugugty = E, (2.14)

ud +ud +uf +uf - 5(uguy —uguy)ulug —uduy —uduy +udus)=-F, (2.15)
then the five roots of f(x) = 0 are
X = 0u + 032u2 + m3u3 + 034u4, (2.16)
where o runs through the fifth roots of unity.

Proof. This follows from the identity

(0w + 0%us + 0lug + 0uy)? - 5U(0u; + 0?uy + 0’ug + wluy)?

— 5V(ou, + o?ug + wlug + 0)4u4)2 + 5W(ou; + 0lug + 03ug + otuy)
+5(X-Y)-Z =0,

where

U = wuy +ugug,

V = ulu% + ugug + u3u12 + u4u§,

W =ufu? + u%u% ~uduy - udug - ug'ul ~ulug - ujuguguy,
X = ufu3u4 + ugu1u3 + ugu2u4 + u2u1u2,

Y = uluguz + u2u12u§ + u3u§u§ + u4u12u%,
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Z =u} +ud +uf +ul,
see for example [5, p. 987].

If 6 # 0, £ C Watson’s method of determining the roots of f(x) = 0 in

radical form is given in the next theorem.

Theorem 1. Let f(x) be the solvable irreducible quintic polynomial
(2.1). Suppose that 6 = 0, + C. Set

p(T) = T* + (- 14C0% — 2D? + 2CE - 2C3)T? + 16 D03T
+(-250% + (35C2 + 6E)0* + (-11C* - 2CD? - 4C%E - E®)0?
+(C® + 2C3D? - 2CD?E - 2C*E + C2E? + D%)) (2.17)
and
q(T) = —CT? - DOT? +(2506* - (10C2 + E)0% + C* + CD? - C2E)T
+ (- F3 + (- 2CDE + C?F + D?)®). (2.18)
Then the pair of equations
p(T)=qT)=0 (2.19)

has at least one solution T € C, which is expressible by radicals. Set

Ry = (D -T) + 4(C - 02(C + 0) (2.20)
and
C(D?-TH+(C?-06%)(C%+30% - E) .
R, = R0 o i By 20, (2.21)
J(D + T + 4(C + 8)2(C - 0). if R =0.
If R, # 0, then we have
Ry = (D + T)% + 4(C + 0)%(C - 0). (2.22)

Set
X=tED+T+R) X=1(-D+T-Ry), (2.23)
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Y:%(—D—T+R2), Y=3(-D-T-Ry), 2.24)
Z=-C-0+0 Z=-C+06=%0. (2.25)

Let uy be any fifth root of X2Y/Z?. Set

XY 3 XZY 4

= ﬁul, Uy = —2—2ZT4U,1 . (226)

Ug = Z u?, u
2 Zz 1> 3
Then the five roots of f(x) = O are given in radical form by (2.16).

The proof of Theorem 1 is given in Section 3. Theorem 1 does not
apply when (1) 6 = 0, since in this case Ry is not always defined; when

(i) 6 =C, since Z =0 and Ug, ug, wy are not defined; and when (iii)
0 =-C, since Z =0 and uq, ug, uy are not defined. These excluded

cases were not covered by Watson [1] and are given in Theorems 2, 3, 4.
Theorem 2 covers 6 = #C # 0, Theorem 3 covers 6 =C =0, and

Theorem 4 covers 8 = 0, C # 0.

Theorem 2. Let f(x) be the solvable irreducible quintic polynomial

(2.1). Suppose that 6 = +C # 0. Set
r(T) = T3 + DT? + (-16C® + 2CE - D®*)T + (2CDE - D3)  (2.27;
and
s(T) = T® + (88C> - 3D?*)T* + 112C3D - 4C%F)T3
+ (- 64C® - 3203D? — 4C2DF + 3D*)T?
+(128C8D - 48C3D? + 4C2D*F)T
+ (- 64C%D? + 8C3D* + 4C2D3F - DS). (2.28)
Then the pair of equations
r(T) = s(T) = 0 (2.29)

has at least one solution T € C expressible by radicals.
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(a) If D # £T, we let uy be any fifth root of

~(D-TR(D+T)

if 6 =C,
4402
“16CD-T) g,
D+T)
and set
2C o G
R if 8=C,
R (D + T) 2
, 1f 0=-C,
4C2 f
4% 5 .
ug = D2 T2 1 Lf6=C,
0, if 8 =-C,
0, if 6 =C,
w= D17 f6=-C.
8(p-T)C®
() If D = +T, then
D=0
and either
3 _z? 6 3,2
@ E = 4C% or i) E=16C°-2° p_64C —ssg 72 -7
2C 4C%7

forsome Z € Q, Z # 0. Let uy be any fifth root of

{- F +128¢C° + F?

= 0}
2CZ, (i),

and set
Ug = 0,

{0, i),
Ug = 1 3 .
3C uy, (i1),

55

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)
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1 [-F-+128C° +F2 | 4 .
3 up, (1),
(2.39)
et 7 uy, (11)
Then in both cases (a) and (b) the five roots of f(x) = 0 are given by (2.16).

Theorem 3. Let f(x) be the solvable irreducible quintic polynomial

(2.1). Suppose that 6 = C = 0. In this case
@) D=E=0 or (i) D#0, E #0. (2.40)

In case (i1) we have

E3 -16D*
F = “—=DE (2.41)
Let uy be any fifth root of
-F, (@),
8D% . (2.42)
T (11)'
Set
and
{0, (1)
ap?

Then the five roots of f(x) = 0 are given by (2.16).

Theorem 4. Let f(x) be the solvable irreducible quintic polynomial

(2.1). Suppose that 6 = 0, C = 0. Set

T = JC3 - CE + D2?. (2.45)

Then
T2((D - T)? + 4C*)((D + T)? + 4C?)

= (2C3D - C%F + D® - DT?)%, (2.46)
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Let Ry, Ry € C be such that

RZ = (D-T)* +4C?, (2.47)
Ry = (D+T)* +4C3, (2.48)
TR Ry = 2C3D - C?F + D3 - DT?. (2.49)
Set
X:—;—(—D+T+R1), Xz%(—D+T—R1), 2.50)
Y=L(D-T+Ry), ¥ =3(-D~T - Ry). @2.51)
2
Let uy be any fifth root of X 2Y . Set
c
X XY 3 XY, \
Ug = ?ul, Ug = C—4u1, Uy = Ful . (252}

Then the five roots of f(x) = 0 are given by (2.16).
3. Proof of Theorem 1

If C#0 or D#0 or 256* — (10C2 + E)6? + (C* + CD? - C2E) = 0,
then the polynomial q(T) is non-constaut and the resultant R(p, q) of p
and q is

R(p, q) = 5'%6*(C? - 62)R(0) (- 0). (3.1
As h(6) = 0, we have R(p, q) = 0. Thus (2.19) has at least one solution
T ¢ C, which is expressible by radicals as it is a root of the quartic
polynomial p(T').

On the other hand if C =D =2506% —(10C? + E)8% + (C* + CD? - C2E)
= 0, then we show that ¢(T) is identically zero and the assertion remains
valid. In this case 250* — E62 = 0. As 6 # 0 we have 62 = E/25. Thus
(2.3), (2.5), (2.6) and (2.7) give

§=2985%E% +5°F* K-E L =3E? M =E>
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Hence
2 8 5 4\1/2 3
W)= a8 - Byt 3L 2 ZECFOT B
o 5 5 57
Thus

0 = h(6) =

2'gS  (2PES + EFY
56 - 56 .

As E # 0 we deduce that F = 0 proving that ¢(T') = 0.

Multiplying p(T) = 0 by C? - 02 (= 0) and rearranging, we obtain

(C(D? - T?) + (C? - 0%)(C? + 30% - E))?

= 02((D - T)? + 4(C - 0)*(C + 0)) (D + T)* + 4(C + 6)*(C - ).

(3.2)

Define R; and Ry as in (2.20) and (2.21). If R} # 0, as @ # 0, then we

deduce from (3.2) that

R: = (D + TY + 4C +0)2(C - 6),

which is (2.22). Define X, X, Y, Y. Z, Z as in (2.23), (2.24) and (2.25).

Clearly
X+X+Y+Y =-2D, X+X-Y-Y =2T.
From (2.20), (2.23) and (2.25; we deduce that
XX = zZ2.
From (2.21), (2.22), (2.24) and (2.25) we deduce that
YY = Z%Z.
From (2.23), (2.24) and (2.25) we obtain
Xy, & 47 XF)

2 oy 72
YA Z7Z + Z (Z Z+Z 7

—C* + 30" - 2C%? + R|Ry9 - CD? + CT?

(3.3)

(5.4)

(3.5)
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Appealing to (2.20) and (3.2) if R; = 0 and to (2.21) if R, # 0, then we
deduce that '

s yzeg (XY XY XP XV
Z°~72Z +7Z 7 Z+Z+ZJ—E. (3.6)
From (2.20)-(2.25) we obtain
X%y Xv? Xy? X%
b - 2079
z2  z? 7z 7
_ 3 _ 2 :

(€* -e%)o

Now define u;, ug, ug, uy by (2.26). As Z, Z # 0 we deduce from (3.4)

and (3.5) that X, X, Y, Y # 0. Further, by (3.4) and (3.5), we have

XY 722 X% Y

2Z% XY’ 727t x?’

so that
u szug Uqs = _Y_:_ul
3 XY 1 4 X2 1
Then
YY XX
Uy = —5 =2, Ugy = =5 =27 (3.8)
14%4 Z2 2443 Z2
and
5 XY? _XY*: s X%
G- =T W) (3.9)
Hence

Uy + UgUg = Z + Z = —ZC,
which is (2.12). Next

ui?u3 * u,%ul + u§u4 + uiuz
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that 1s,

9 9 9 9 -2D, with + signs,
ujug t usuy + uzuy + uglg = . . (3.10)
2T, with - signs.

The first of these is (2.13).

Further

2 2 2 2
Uy + Uglly — UjlgUglly — ufuz - ug’u4 — ug’ul - u§u3

w(Y2 z8  z%y
i T oav2 T vay
x* x%? xty

|
«
=

3y 6 vV3z2
(el ZT e L T
XY

]

Z%+ 72 —-ZZ—[X—Y+X_X+£_Y—+§]
Z VA VA YA
= F,
which is (2.14).
Finally, from (3.7), (3.8), (3.9) and (3.10), we obtain

u15 + ug + ug + ug - 5(uguy - u2u3)(u12u3 - ugul - u§u4 + uguz)

2 Tv2 2 T 2v
=XY+X_Y +X_Y +XY—20TE)
z2 72 A 7?2

:—F’

which is (2.15). By the Lemma the roots of f(x) = 0 are given by (2.16).
As 6 and T are expressible by radicals so are R;, R,, X, XYY, Z Z.

Hence u;, ug, ug, uy are expressible by radicals. Thus the roots x;, x9,

xg, x4, x5 of f(x) = 0 are expressible by radicals.
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4. Proof of Theorem 2
Using MAPLE we find that

15
R(r, s) = - 50—2 h(C)h(- C) = 0, 4.1)
as 8 = +C, so that there is at least one solution T' € C of (2.29). As T'is a
root of a cubic equation, T is expressible in terms of radicals.
If D # T, then we define uy, ug, ug, uy asin (2.30)-(2.33). Thus
8C3uf’

(D-TPD+T)
(D + TY?u}

Uiy + Uglly

il

!
Do
o

which is (2.12).
Next
8C 2Du15

2 b
2 2 2 2 (D-T)(D+T)

Uity + Uoly + UgU] + Uguf =

e e Pollackd | 1)t

(D-TY? 320%(D-T)°

= =2D,
which is (2.13).

Further, for both 6 = C and 6 = —-C, we have

ulzul% + u%ug - u?uz - u%u4 - ugul - u2u3 — UjligUgliy

a2 (DP-T®) . (D-T) _
=4C* + 5C 4C (D+T)—E’

by (2.27) and (2.29), which is (2.14).

Finally, using (2.30)-(2.33), we obtain

2 2 2 2
uf) + ug + ug’ + ui - 5(u1u4 - u2u3)(u1 Uz — Ugl] — Ugly + u4u2)
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ul+u2+u3—20CT 1f9=C,
I,Ll +u2+u4—2OCT if OZ—C,

-20CT, if 6 =C,

4C2 (D-T)  (D+T)?
16C*(D-T) (D +T)(D-T) , 2C(D + T)?
(D +T) 4C? (D-T)

{ (D-TP(D+T) , 5 (D+Tf 16C(D-T)
1 ~20CT, if 6 = -C,

7

by (2.28) and (2.29), which is (2.15).
If D = +T, then from r(T') = r(+ D) = 0, we obtain

128C3D* = 0, if T =D,
-256C%D? =0, if T =-D.

As C # 0 we deduce that D = 0. Then (2.5)-(2.7) become

K =3C% +E,
L =15C* — 2C?E + 3E?,
M = -25C% + 35C*E - 11C2E2 + CF? + E3.

From

WC)h(= C) = h(B)h(- 6) = 0
and (2.3) with D = 0, we obtain
(4C2 - E)*(- 160000C2 + 48000C°E — 4400C*E?
+16C3F2 +120C%E3 - 2CEF? - E*) = 0.

If E = 8C?, then this equation becomes - 212¢!2 = o, contradicting

C # 0. Thus E # 8C2. Hence either
() E = 4C?
or
(400C* - 60C%E + E2)?

(i) F? = 2\
2C(8C* - E}
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Since f(x) is irreducible, F # 0, and in case (ii) we have
2C(8C2 - E)= 2%
for some Z € Q with Z = 0. Then

_16C% - 72

E 2C

and

_ 400C* - 60C*E + E* _ 64C® - 88¢32% - 2*
4 AC*z

F

Now define u;, ug, us, uy asin (2.36)-(2.39). Then
Uil + Ugug = uy = —2C,
which i1s (2.12).
Next
uiu% + uzug + u3u12 + u4u§ = u3u12 + u4u§ =0 =-2D,
which is (2.13).

Further

u-lzu% + u%ug - U«?uz - LLSLL4 - ug’ul - u}}u‘g — UjlgUgliy

ujuf - uiu - uius

(402 (),
=y16C3 - 22 .
{ e (i)
= E,

which is (2.14).

Finally

B 2 2 2 2
up + ug + ug + ug — B(uguy — ugug) (Uius — ugU; — UZUy + Uilg)
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{uf + ug, (1),

ud +ud +uj +20CZ, (i),

-F, @),

z3  18ct .
22CZ+Z—C"—2—— 7’ (11),

od —F’
which is (2.15).

In both cases (i) and (ii), by the Lemma the roots of f(x) =0 are
given by (2.16). As T is expressible in terms of radicals, so are u;, usg,

u3, uy, and thus x;, x9, x3, x4, x5 are expressible in radicals.

5. Proof of Theorem 3
As 0 = C = 0 we deduce from h(0) = 0 that
M = -16D* - 2DEF + E? = 0.
If E =0, then D = 0 and conversely. Thus
@) D=E=0or (ii)) D=0, E #0.
In case (i1) we have

3 4
F = E° -16D ‘
2DE
Define u, ug, ug, uy asin (2.42)-(2.44). Then
Uy + ugug = 0 = -2C,

which is (2.12). Also

0, @)
ulu% + uzuf + u3u12 + u4u§ = u12u3 = { oD, (i) =-2D,

which is (2.13). Further

ulzu% + u%u% - ufuz - ugu4 - ugul - u2u3 — Ujligligliy
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s O O]
= {y of -

which is (2.14). Finally

u15 + ug + ug + ui - 5wy - u2u3)(u12u3 - u%ul - u§u4 + u§u2)
. 5 '—F) (1)
3]
=uy +u3 =316p* - g3 .} =-F,

which is (2.15). Hence by the Lemma the roots of f(x) = 0 are given by
(2.16). Clearly uy, ug, ug, uy can be expressed in radical form so that

Xi, X9, X3, X4, X5 are expressible by radicals.
1, X2, X3, X4, X5 Y Yy

6. Proof of Theorem 4

We define T by (2.45). As 6 = 0 we have h(6) = h(0) = 5—11!42—5 =0 so
that
- 25C% +35C*E — 40C3D? - 2C2DF - 11C2E?2
+ 28CDE + CF? -16D* - 2DEF + E3 = 0. (6.1)
‘3 2 2
Replacing E by (—g#-) in (6.1), we obtain (2.46). Define R; and

Ry asin (2.47)-(2.49). Define X, X, Y, Y asin (2.50) and (2.51). Clearly

X, X,Y,Y 20
and
XX =YY =-C3 X+X+Y+Y =-2D. (6.2)
Next ‘
o2, (3 X)C(Y +Y) _C°- 7;2 +D* _ 6.3)
Also

X%y + XY2%2 « XY2 4+ X%y

CZ
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1
TR Ry - DR} - - TR? -+ DR} + TR} - D? + 5 DT?
C2

= -F. (6.4)

Now define u, ug, ug, uy by (2.52). Then
wuy = ugug = —C.

Also

Xy? Xy?
ug = C2 s ug = , ui’ =

Then
wuy + ugug = -2C,
which is (2.12). Also
uud + uogus +ugu? +uuf =Y+ X+Y +X = 2D,
which is (2.13). Further
ulzuf +u§u§ — UjUglUgly — (u?uz + u§u4 + ugul + u2u3)

_cz (XY XY XY XV
C C C C
- E,
by (6.3), which is (2.14). Finally

uf’ + ug + ug + ui’ (T u2u3)(u12u2 - u%ul - u§u4 + uguz)

=u15+ug+ug’+u2

X%y Xy? XY2+X_217
C2 + C2 + Cz CZ

:—F,

by (6.4), which is (2.15). By the Lemma the roots of f(x) = 0 are given by
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(2.16). As T, R, Ry, X, X, Y, Y are expressible by radicals, so are u,

ug, us, uy, and thus x;, xy, x3, x4, x5 are expressible by radicals.

7. Examples

We present eight examples.

Example 1. This is Example 3 from [1] with typos corrected

f(x) = x® — 2543 + 50x% - 25, Gal(f) = Z/5Z [MAPLE]

C=—%, D=5 E=0, F=-25
75 5375 30625
K‘T’L‘ 16’M‘ 64
e B B T e 49
M) = o - pat 4 o - gplix - oo
= 2 2 2 7} 16 ° "800

Theorem 1 and (3.9) give
R, =V-25+10v5, Ry = —V-25-10V5

_5+4-25+10v5 y o8- ~25-10v5 Z_5+J5
2 0T 2 T2

X =

1/5
o {X‘?Y]M) B [25 11545 + 5v- 130 - 58v5 ]/
Lo B 4

Z2

_ 1/5
o (XYz ]1/5 B [25 ~15v5 + 5V~ 130 + 58Y5 J/
2" - 4

_ ; 1/5
x72 )V (25-155 - 5v—130 + 585 /
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—o— —_———\1/5
2275 (2541545 - 5v-130 — 5845 |

Example 2.

flx) = x® +10x3 +10x% + 10x + 78, Gal(f) = Fpy [MAPLE]

C=1 D=1 E=2 F =178

K=5 L=-125, M =5625 & =2%5!3

_.6_ .4 .2 4 9 5,.4 . 9
Mx)=x" —x* —x 59c+5—(9c 1)(x +x% —x 5)
6=1 T =3.
Theorem 2(a) (6 = C) gives

1
uf’ = —4, ug =—uiz, Ug :—iu?, uy =0

x = -022/% ~ 2245 4 o325,
Example 3.
f(x) = x5 +10x3 + 20x + 1, Gal(f) = Fyy [MAPLE]
C=1 D=0 E=4, F=1
K=17 L=55 M=4, &=325%32

11 o 129 4
_x —

_ .6 _1 4 12 . 4
hix) = 67 - g 2% + o2 3125 © * 3125

_ 5,4 2,3 2.2, 1 _.ﬁ_)
—(x—l)(x = e R T

Theorem 2(b)(i) gives

1/5
~1+ 4120} e~ . o [1=+129 /
U = ———2—v , Ug =Ug =V, Uy = _—2
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(—1 + \/129]1/5 4(—1 —«/129]1/5
X=o—p | to | .

Example 4.
f(x) = 2% + 1023 + 30x - 38, Gal(f) = Fyy [MAPLE]

C=1 D=0, E=6, F=-38
K=9 L=111, M =1449, § = 24554312

9 4 111 o 1724 1449
M) = 28 = Lt 1L 2 1724 1449
() = 27 - ga® + Topa” — g x + 3i5s

DB p 23 4,2 11 _%)
=(x 1)(x Fal—ox — =X e X — o

0=1 T =0.
Theorem 2(b)(ii) gives

Z =2

w0
R
Tt

w =225, uy =0, uy =2Y5, u, =-2
x = 0225 & <9321/5 — 0425,
Example 5.
f(x) = % — 20x® +180x — 236, Gal(f) = Fyy [MAPLE]
C=-2 D=0, E=36 F=-238

K =48, L = 3840, M = -103200, & - 385°

6 84, T68 5 16 28
M) = 27 =St pmat o -

(- 2) 2P o2yt 28,3 56, - 208 4:?9%j
= (x 2)(.’)6 + 2x 5 X = 55 T 195
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With T = 0 Theorem 2(b)(ii) gives
Z=-4
u = 2%, uy =0, ug =225 u, =285
x = 025 _ 3225  ;196/5
With T = 4 Theorem 2(a) (0 = -C) gives
U = 26/5, Uy = —22/5, ug =0, uy = 24/5
x = 0285 _ 0)222/5 +at24/s
in agreement with the solutions given with 7" = 0.
Example 6.
f(x) = x° +10x% + 10x - 2, Gal(f) = Fy, [MAPLE]
C=0, D=1, E=2 F =2

K=2 L=16, M =0, &= 2%55192

_x6_2,4, .16 o 76
M) = 5% = 55" + 1op 2%~ 195 %

6=0.
Theorem 3(ii) gives
u =245, up =0, ug=-2Y5 u, =0

X = 0)22/5 - m321/5.

Example 7.
f(x) = x° - 202% + 8x% + 76x - %, Gal(f) = Fpo [MAPLE]
4 76 96
C=-2, D_g, E—~5—, F—-%
~136 , _ 100928 2619992
K_T’L_W’M 0, 8= 53
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_ 6 _136 4 100928 5 511744
h(x) = 27 - 52" + To %" ~ Tos3135 *

6 =0.

Theorem 4 gives

24 . 4.
Tz?, R1=4L, R2=‘5‘L
X=2+2, X=2-2, Y=‘145+2l, Y:#

—4 - 28/ 1-1) 2
U = —5 ) - Ug = 5 uj
- -4 + 31 % —-1+7 A
3-U 10 ) M {20 )7

_ 2(1-1) 2 3(—4 +3t) 3 4 -1+Ti\ 4
x—cou1+co[ 3 )u1+w( 10 )u1+co( 20 )ul.

Example 8.

f(x) = % + 40x% — 12022 + 160x + 96, Gal(f) = Dy [MAPLE]
C=4, D=-12, E=32, F =96
K =80, L=12800, M =0, &= 22034510

h(x) = x® —16x* + —5—;—2—x2 - %82—\/536
6 =0.
Theorem 4 gives
T =45
R, = 4V30 + 6v5, Ry = -4vV30-6v5 (by (2.49))
X =6+2J5+2V30 + 645, X =6+2v5 2430 + 65

Y =6-2/5 -2v30-6v5, ¥ = 6-2V5 +2v30 - 65
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u; = (- 24 — 40v5 - 84150 + 30v5 )/

[3++5-V30+6v5 )
Ug = 8 241
1-3v5 +v30-645 | 3
u3= 16 U
Lo -3—5\/5_+x/150+30«/5]u4
4 = 1
32

X=0U +0 uf

2[3+«/§—\/30+6\/5]
8

16

. 3[1—3J§+«/30—6J5J 3
(O] u

. w4(— 3 - 55 + V150 + 30«/§]u4
1-

32

8. Concluding Remarks
We take this opportunity to note some corrections to [1].
On page 20 in the expression for A the terms
~ 20a%bef®, 4080a%bd?c2f, -180ab’c3f, - 3375b%*
should be replaced by
— 20a%bef®, 4080a%bd%e’f, —180ab3edf, - 3375b%".

On page 24 in the second column Sy, S; and Sg should be replaced
by E2, E4 and EG'

On page 27 in the first column in the equation given by MAPLE the
term 3CD62 — T83 should be replaced by C3D - 3C%70 + 3CDe? - T9°.

On page 28 in Step 3 equation (7) should be replaced by (8).
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