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Abstract

We give the explicit factorization of the principal ideal (2) in cubic

fields with index 2.

Let K be an algebraic number field. Let Ok denote the ring of
integers of K. Let d(K) denote the discriminant of K. Let 0 ¢ Ok be such
that K = Q(6). The minimal polynomial of & over Q is denoted by
irrg(0). The discriminant D(6) and the index ind(6) of 6 are related by

the equation
D(6) = (ind(0))*d(K). M

If p is a prime not dividing ind(8), then it is well known that the

following theorem of Dedekind gives explicitly the factorization of the
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principal ideal (p) of Ok into prime ideals in terms of the irreducible
factors of the minimal polynomial ier(G) modulo p, see for example
[2, Theorem 10.5.1, p. 257].

Theorem 1. Let K =Q (0) be an algebraic number field with 6 € Og.

Let p be a rational prime. Let
f(x) = irrg(6) € Z[x].

Let ™ denote the natural map : Z[x] - Z,[x], where Z, = Z/pZ. Let

f(x) = g(x) - g, (x),

where gi(x), ..., g,(x) are distinct irreducible polynomials in Z,lx] and
ey, ..., e, are positive integers. For i=1,2 .. r let fi(x) be any

polynomial of Z[x] such that f; = g; and deg(f;) = deg(g;). Set
Po=(pf0) i=12 .,r

If ind(0) # 0 (mod p), then P, .., P, are distinct prime ideals of Og
with

(p) = P& .. Bfr
and

N(P)=plehi =12 ., r

On the other hand if p is a prime dividing ind(6), then this theorem

does not apply. One might try to change 6 to obtain a different index but
in the case where p is a common index divisor it is impossible to find an
element 0 for which p does not divide ind(8). The only approach left is the

Buchmann-Lenstra algorithm [3, p. 315] for decomposing a prime in a

number field.

In this paper we treat the case where K is a cubic field such that the
prime p =2 is a common index divisor. This is the only possible
nontrivial common index divisor for a cubic field [4, p. 234], [5, p. 585]. In
other words the cubic field K has index 2. We give explicitly the two-
element representation of the prime ideals which appear in the
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factorization of (2) in Og. The form of the prime ideal factorization has

been given by Llorente and Nart [5, Theorem 1, p. 580].
It is well known that K can be given in the form K = Q (6), where 6
is a root of the irreducible polynomial
f(x) = 22 —ax + b, a,beZ, 2)
so that irrg(8) = f(x). Moreover it is further known that a and b can be

chosen so that there are no primes p with p2 |a and p3 |b. We set
" 3 2 s
A = D(B) = 4a° - 27b%, sp =vp(A), A, =A/p?,

where Up(k) denotes the largest nonnegative integer m such that p™"

divides the nonzero integer k. From (1) we deduce that
. 1
v, (ind(8)) = E(Sp - vp(d(K))).

The determination of v, (d(K)) was carried out by Llorente and Nart [5,

Theorem 2, p. 583] in 1983, see also Alaca [1]. We need the following
result of Llorente and Nart [5, Theorem 4, p. 585] giving a necessary and
sufficient condition for the index of K to be 2.

Theorem 2. Let K = Q(0) be a cubic field, where 0 is a root of

x3 —ax + b and the integers a and b are such that there does not exist a

rational prime p with p> la and p3 |b. Then the index of the field K
equals 2 if and only if

a=1(mod2), b=0(mod2), s, =0 (mod2) and Ay =1 (mod8). (3)
We note that condition (3) splits into two cases:
a=1(mod4), b=0(mod4), Ay =1 (mod8), 4)

and

a =3 (mod4), b=2(mod4), s =0 (mod2), Ay =1 (mod8). (5)

If (4) holds, we have sy = 2 and if (5) holds, then sy > 4. When K is a



276 S. ALACA, B. K. SPEARMAN and K. S. WILLIAMS
cubic field of index 2, we know from [5, p. 585] that
(2) = PQR, where P, Q and R are distinct prime ideals. (6)

Clearly N(P)= N(Q)= N(R)=2. We prove the following theorem, which
gives the prime ideals P, @ and R explicitly.

Theorem 3. Let K = Q(0) be a cubic field, where 6 is a root of

x3 —ax + b and a and b are integers such that there are no primes p with

p2 |a and p2 |b. Suppose that the index of the field K is equal to 2 so that
(6) holds and either (4) or (5) holds.

If (4) holds, then
2 2
P=(26), @- < 2__e__e_> R- <2, gLe>

If (5) holds, then
P=(206), @Q=(2a), R=(26+0a)

where
2 _
o = Lya-‘-e_ , m= 82—2‘ > 1’
2m+1 2
and x and y are integers satisfying
3b

3x = —2a (mod 22™*3), ay = 5t 2" (mod 22m+3).

Proof. Let K = Q(8) be a cubic field of index 2, where 0 is a root of

x3 — ax + b with the restriction that there are no rational primes p such
that p2 |a and p3 |b. By the remarks following Theorem 2, (6) holds and
either (4) or (5) holds.

First we suppose that (4) holds. Then

B bY v b2=3_ (2)2
a—b=a—4(zj=a—4(z) =a—108(z) =a° - 27 )

3 2
Eéa_:lﬁb__z%sAzsl(modS),
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so we can define integers A and B by

a=8A4A+4B +1, b = 4B.

From the work of Alaca [1, Table A, p. 1951] we know that {1,6, ¢} is a
2-integral basis of Ok, where

6 +6°
0=
Set
a=6, B=1+¢, y=1+0+¢.
We have
62 = -0 + 2¢,
63=—4B+(8A+4B+1)9,
0* = (84 + 8B +1)0 + (16A + 8B + 2)¢,.
Hence
2 a3
0 = ;9 = 2B+ (44 + 2B)0 + ¢
and
2 3, o4
¢2=M#=-23+2Ae+(4,4+23+1)¢.
Thus
afp=06+6¢=-2B+(4A+2B+1)0+ ¢
and

y+72 =2+02+¢% + 30 + 30 + 200
=(2-6B)+(2+10A +4B)0 + (8 + 4A + 2B)¢

so that (y + y2)2 € Og. Hence
272 y+1)=(4, 2y, 2y + 2, v +72) = (2, 7y +v%) = (2).

Similarly

(2, a) (2, a +1) = (2, B)(2, B+ 1) = (2).
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Next
(2, @) (2, B) = (4, 2a, 2B, ap)
= (4,20,2+2¢, - 2B + (44 + 2B +1)0 + ¢)
= (4,26, 2+ 20, - 2B + 0 + ¢)
=(4,20,2+2)-2(-2B+0+¢), —2B+6+0)
=(4,20,2, -2B+0+¢)
=(2,0+9¢)
= (2, y+1).
Thus
(2, 0) (2, B) (2. 7) =2 v +1)(2,7) = (2)-

Suppose that (2, a) = (1). Then (2, a +1) = (2) so that o +1 € (2) and
thus

This contradicts that (1 + 8)/2 is not a 2-integral element of Og. Hence
we have (2, a) # (1). Similarly we can show that (2, B) # (1) and (2,7v)
# (1). Thus we can choose
P ={2 a) = (2, 0),
2+6+6°
Q=@p-1+e-(2 —2;>

R=(2,Y)=(2,1+e+¢>=<2,Lg+ez_>’

as asserted.

We now suppose that (5) holds. It is convenient to set b = 2B so that

B is an odd integer. As sy is an even integer greater than or equal to 4,

we can define an integer m by
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so that
m=21, sy =2m+2 a3-27B% = 22" (mod gl
Let x and y be integers such that
3x = -2a (mod 22"*3), qy = 3B + 2™ (mod 22+3),
We note that
x =0 (mod2), y=B+2" (mod4).

By [1, Table A, p. 1951] {1, 6, o} is a 2-integral basis of Ok, where

X+ y0 + 02
o= —
2m+1

Thus
02 = —x-y0+2"* 1 =9 (mod 20k ).
We show that there exists an integer M such that
b+xy = (8M - 3)2™*1,

Let v and w be integers such that 3v =1 (mod22"*3) and aw =
1 (mod 22™*3), so that x =-2av (mod 22™+3), y = (3B +2™) (mod 227+3),
and xy = -b - 2"™*1y (mod 22™*3). Hence 2"+ |b+xy and (b + xy)2mH!

= —u(mod 2"*2). Thus (b+xy)2"*"! +3=3-0v=0 (mod 8). Therefore

there is an integer M such that

b+2y . 3_gm
2m+1 d

which is the asserted result. Similarly we can show that there exist
integers N, P, @ and R such that

a+x— y2 = _3 . 22m+1 _ 3B2m+1 + 2m+4N’
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a+ 2x + y2 — 3.92m+l | 32+ 4 2/n+4P,
y3 —ay+b= 22”1+3Q’

x2 + ax + 2by + xy® = 22" 3R,

Next, as

~ (brx)  (@rx-y?)
Oo = — 2m+1 i 2m+1 0+ ya,

we obtain

0o = —(8M - 3) + (- 3B+ 8N —3-2")0 + ya
so that

fa = -1+ (B +2™)0 + (B +2™)a (mod 40k ).

Further, as

2 2 3 2
a2=—(x +ax +2by +xy7) (v —ay+b)e+(a+2x+y )a,

92m+2 92m+2 gm+1
we obtain
o2 = 2R -2Q0 + (8P +3B +3-2M)a,
so that
o? = o (mod 20g).
Hence
02 + o2 + 0+ a = 0 (mod 20k).
Next

(2, 0) (2, o) = (4, 26, 2at, Bat)
= (4,26, 20, -1+ (B+2")0 + (B + 2™)ol)
= (4, 26, 20, -1+0+a)
=(4,26,20,-1+6+0, 2(-1+6+a)-20-20+4)

= (4,26, 20, -1+6+0, 2)
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=(2,—1+6+a)
=(2,1+0+a).
Also
(2,9+a)(2,1+9+a)
= (4,20 + 20, 20 + 200 + 2, 62 + 200 + o + 0 + 1)
=(2,62+a2+6+a)
= (2).
Hence

(2, 0)(2, a)(2, 0+ a) = (2).

Next we show that (2, 6) # 1. Suppose that (2,8) = (1). Then (2, a)(2,0+a)
= (2). Hence (6 + a) € (2) so that

—(8M -3 +2R)+ (8N - 3B - 3-2™ +2Q)0
+(8P +3B+3-2" + y)a € (2).

As B and y are both odd, we deduce that 1+60 e (2) so that
(1 + 6)/2 € Ok, contradicting that (1 + 6)/2 is not a 2-integral element of
Okg. Similarly we can show that (2, o) # (1) and (2, 6 + a) = (1). Thus

we can choose
P=(2, 0), Q=<2,a), R=(2,9+oc),
as asserted.

Example. Let d =1 (mod8) be a squarefree integer with d =1
allowed. In [6] infinite parametric families of cubic fields with index 2
whose splitting fields contain Q(vd) were given in terms of a defining
polynomial of the form x3 — ax + b. If 0 denotes a root of this polynomial
then, since it is proved in [6, p. 334] that a =1 (mod 2), b = 0 (mod 2),
sy =2 and A =1 (mod8), Theorem 3 gives for all of these fields the

prime ideal decomposition of 2 as
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@) = (2. 9><2, 2+92+ 92><27 2+3g+92>'
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