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Density of integers which are discriminants
of cyclic fields of odd prime degree

By

Blair K. Spearman and Kenneth S. Williams

Abstract. An asymptotic formula is given for the number of integers � x which are
discriminants of cyclic fields of odd prime degree.

Let q be a fixed odd prime. Let n be a positive integer. It is known that n is the discriminant
of a cyclic field of degree q over Q if and only if

n = q2(q−1), (q1 · · · qr)
q−1 or q2(q−1)(q1 · · · qr)

q−1,

where r is a positive integer and q1, . . . , qr are distinct primes ≡ 1 (mod q), see for example
[1], [7]. Let A(q) denote the set of positive integers which are the product of distinct
primes ≡ 1 (mod q) including the empty product = 1. Then the number Cq(x) of n � x

which are discriminants of cyclic fields of degree q is (for large enough x in terms of q)

Cq(x) = 1 +
∑

1<n�x1/(q−1)

n∈A(q)

1 +
∑

1<n�x1/(q−1)/q2
n∈A(q)

1

so that

Cq(x) = Aq(x1/(q−1)) + Aq(x1/(q−1)/q2) − 1,(1)

where

Aq(x) =
∑
n�x

n∈A(q)

1.
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Our purpose is to determine an asymptotic formula for Cq(x) valid for large x. To do
this we make use of the prime number theorem for arithmetic progressions, Mertens’
theorem for arithmetic progressions, and a result, which under certain conditions, gives
the asymptotic behavior of

∑
n�x

f (n) from that of
∑
p�x

f (p), where p runs through primes.

This last result is a consequence of theorems of Wirsing [12, Satz 1, p. 76] and Odoni
[3, Theorem II, p. 205; Theorem III, p. 206; Note added in proof, p. 216.]. Throughout this
paper p denotes a prime number.

Proposition. Let f : N → R be multiplicative with 0 � f (n) � 1 for all n ∈ N.
Suppose that there are constants τ and β with τ > 0 and 0 < β < 1 such that

∑
p�x

f (p) = τ
x

log x
+ O

(
x

(log x)1+β

)
.

Then

lim
x→∞

1

(log x)τ

∏
p�x

(
1 + f (p)

p
+ f (p2)

p2
+ · · ·

)

exists, and ∑
n�x

f (n) = Ex(log x)τ−1 + O(x(log x)τ−1−β)

with

E = e−γ τ

�(τ)
lim

x→∞
1

(log x)τ

∏
p�x

(
1 + f (p)

p
+ f (p2)

p2
+ · · ·

)
.

P r o o f. See [6, Proposition 5.5]. Here γ denotes Euler’s constant. �

Prime number theorem for primes p ≡≡ 1(mod q).

∑
p�x

p≡1 (mod q)

1 = 1

q − 1

x

log x
+ O

(
x

log2 x

)
,

as x → ∞.

P r o o f. See for example [4, Satz 7.6, p. 139]. �

The cyclotomic field Q(e2πi/q) is of degree φ(q) = q − 1 over Q. We denote its class
number and regulator by h(q) and R(q) respectively. We also let

ω := e
2πi
q−1 ∈ C,
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so that ωq−1 = 1. The principal character χ0 (mod q) is defined as follows: for n ∈ Z

we have

χ0(n) =
{

1, if n �≡ 0 (mod q),
0, if n ≡ 0 (mod q).

Let g be a primitive root (mod q). For n ∈ Z with n �≡ 0 (mod q) the index indg(n) of n

with respect to g is defined modulo q − 1 by

n ≡ gindg(n) (mod q).

We define a character χg (mod q) as follows: for n ∈ Z we set

χg(n) =
{
ωindg(n), if n �≡ 0 (mod q),

0, if n ≡ 0 (mod q).

There are exactly φ(q) = q − 1 characters (mod q). They are

χ0, χg, χ2
g , . . . , χ

q−2
g ,

where χ
q−1
g = χ0. Let r ∈ {1, 2, . . . , q − 2}. We define the constant C(q, r, χg) by

C(q, r, χg) =
∏
p

χg(p) = ωr

(
1 − 1

p
q−1

(r,q−1)

)
.

As 1 � (r, q − 1) � 1
2 (q − 1) for r ∈ {1, 2, . . . , q − 2}, we have

q − 1

(r, q − 1)
� 2,

so that the infinite product converges. It is shown in [6, Section 3] that the product

q−2∏
r=1

C(q, r, χg)
(r,q−1)

does not depend on the choice of the primitive root g. Thus we can define a constant
C(q) by

C(q) :=
q−2∏
r=1

C(q, r, χg)
(r,q−1).(2)

Then we define the constants λ(q), E(q) and K(q) by

λ(q) =
(

e−γ 2−(q−3)/2q(q+2)/2π−(q−1)/2

(q − 1)h(q)R(q)C(q)

) 1
q−1

,(3)



510 Blair K. Spearman and Kenneth S. Williams arch. math.

E(q) = 1

λ(q)

e−γ /(q−1)

�( 1
q−1 )

∏
p≡1(mod q)

(
1 − 1

p2

)

= 2
q−3

2q−2 q
− q+2

2q−2 (q − 1)
1

q−1 π
1
2

(
�

(
1

q − 1

))−1 ∏
p≡1(mod q)

(
1 − 1

p2

)
(4)

× (h(q)R(q)C(q))
1

q−1 ,

and

K(q) = E(q)(q − 1)
q−2
q−1

(
1 + 1

q2

)

= 2
q−3

2q−2 q
2−5q
2q−2 (q − 1)(q2 + 1)π

1
2

(
�

(
1

q − 1

))−1 ∏
p≡1(mod q)

(
1 − 1

p2

)
(5)

× (h(q)R(q)C(q))
1

q−1 .

Mertens’ theorem for primes p ≡≡ 1(mod q). Let q be an odd prime. Then∏
p�x

p≡1 (mod q)

(
1 − 1

p

)
= λ(q)(log x)−1/(q−1) + O((log x)−q/(q−1)),

as x → ∞, where the constant implied by the O-symbol depends only on q.

P r o o f. This result is proved in [6, Proposition 6.3] from Mertens’ theorem for primes
in arithmetic progression [11] and the class number formula for abelian fields
[2, Theorem 8.4, p. 436]. �

We are now ready to prove an asymptotic formula for Aq(x).

Theorem 1. Let 0 < ε < 1. Let q be an odd prime. Then

Aq(x) = E(q)x(log x)
− q−2

q−1 + O(x(log x)
− 2q−3

q−1 +ε
),

as x → ∞, where the constant implied by the O-symbol depends only on q and ε.

P r o o f. We let

f (n) =
{

1, if n ∈ A(q),

0, if n �∈ A(q).

Clearly f (n) is a multiplicative function satisfying the conditions of the Proposition with
τ = 1

q−1 and β = 1 − ε, where 0 < ε < 1, by the prime number theorem for primes
p ≡ 1 (mod q). Hence, by the Proposition, we obtain

Aq(x) =
∑
n�x

n ∈ A(q)

1 =
∑
n�x

f (n) = E(q)
x

(log x)
q−2
q−1

+ O

(
x

(log x)
2q−3
q−1 −ε

)
,
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as x → ∞, where

E(q) = e
−γ
q−1

�( 1
q−1 )

lim
x→∞

1

(log x)
1

q−1

∏
p�x

p≡1(mod q)

(
1 + 1

p

)
.

Next, for x → ∞, we have

∏
p�x

p≡1(mod q)

(
1 + 1

p

)
= Rq(x)

Sq(x)
,

where

Rq(x) =
∏
p�x

p≡1(mod q)

(
1 − 1

p2

)
= (1 + o(1))

∏
p≡1(mod q)

(
1 − 1

p2

)
,

and by Mertens’ theorem for primes p ≡ 1 (mod q)

Sq(x) =
∏
p�x

p ≡ 1 (mod q)

(
1 − 1

p

)
= λ(q)(1 + o(1))

1

(log x)
1

q−1

,

so that

∏
p�x

p≡1 (mod q)

(
1 + 1

p

)
= 1

λ(q)

∏
p≡1 (mod q)

(
1 − 1

p2

)
(1 + o(1))(log x)1/(q−1).

Hence

lim
x→∞ (log x)−1/(q−1)

∏
p�x

p ≡ 1 (mod q)

(
1 + 1

p

)
= 1

λ(q)

∏
p≡1 (mod q)

(
1 − 1

p2

)

and

E(q) = 1

λ(q)

e
−γ
q−1

�( 1
q−1 )

∏
p≡1 (mod q)

(
1 − 1

p2

)

in agreement with (4). �

From (1), (5) and Theorem 1 we obtain
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Theorem 2. Let 0 < ε < 1. Then

Cq(x) = K(q)x
1

q−1 (log x)
− q−2

q−1 + O

(
x

1
q−1 (log x)

− 2q−3
q−1 +ε

)
,

as x → ∞, where the constant implied by the O-symbol depends only on q and ε.

We conclude with an example.

E x a m p l e. We determineC3(x) for largex. The cyclotomic field Q(e2πi/3) = Q(
√−3)

has class number h(3) = 1 and regulator R(3) = 1. In [6, Lemma 3.1] it is shown that

C(3) =
∏

p≡2 (mod 3)

(
1 − 1

p2

)
.

Now (
1 − 1

32

) ∏
p≡1 (mod 3)

(
1 − 1

p2

) ∏
p≡2 (mod 3)

(
1 − 1

p2

)

=
∏
p

(
1 − 1

p2

)
= 6

π2

so that

C(3) = 2−233π−2
∏

p≡1 (mod 3)

(
1 − 1

p2

)−1

.

By (3) we have

λ(3) = e− γ
2 2− 1

2 3
5
4 π− 1

2 C(3)−
1
2 = e− γ

2 2
1
2 3− 1

4 π
1
2

∏
p≡1 (mod 3)

(
1 − 1

p2

) 1
2

.

Then, by (4), we have as �( 1
2 ) = π

1
2

E(3) = e− γ
2 π− 1

2
∏

p≡1 (mod 3)

(
1 − 1

p2

)
λ(3)−1

= 2− 1
2 3

1
4 π−1

∏
p≡1 (mod 3)

(
1 − 1

p2

) 1
2

.

Finally, by (5), we have

K(3) = E(3)2
1
2

(
1 + 1

32

)
= 2 · 3− 7

4 5π−1
∏

p≡1 (mod 3)

(
1 − 1

p2

) 1
2
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and Theorem 2 gives

C3(x) = 2 · 3− 7
4 5π−1

∏
p≡1 (mod 3)

(
1 − 1

p2

) 1
2 x

1
2

(log x)
1
2

+ O

(
x

1
2

(log x)
3
2 −ε

)
,

for 0 < ε < 1, as x → ∞. This result without an error term was given in [5, Theorem 2].
We remark that Urazbaev [8], [9], [10] has determined asymptotic formulae for

the number of cyclic fields of prime power degree with discriminant � x.
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