AN EXTENSION OF VULAKH'S THEOREM ON UNITS IN COMPLEX CUBIC FIELDS

KENNETH S. WILLIAMS

(Received January 2, 2004)

Submitted by K. K. Azad

Abstract

Let $f(x) = x^3 - tx^2 - ux - 1 \in \mathbb{Z}[x]$. Conditions are given on t and u which ensure that f(x) has exactly one real root θ which is the fundamental unit (>1) of the cubic field $\mathbb{Q}(\theta)$.

1. Introduction

Recently Vulakh [2, Theorem 1, p. 1306] has proved the following theorem.

Theorem 1. Let $f(x) = x^3 - tx^2 - ux - 1$, where t and u are integers such that

$$\begin{cases} t > u(u+1)/2, & \text{if } u \text{ is odd,} \\ t \ge u(u+2)/2, & \text{if } u \text{ is even.} \end{cases}$$
 (1.1)

Assume that f(x) has exactly one real root θ . Let $K = \mathbb{Q}(\theta)$. Assume that the discriminant of f(x) is squarefree. Then θ is a fundamental unit of the

2000 Mathematics Subject Classification: 11R16, 11R27.

Key words and phrases: fundamental unit, real cubic field with two complex embeddings.

Research supported by Natural Sciences and Engineering Research Council of Canada grant A-7233.

© 2004 Pushpa Publishing House

ring O_K of the integers of K, that is, every unit of O_K is of the form $\pm \theta^k$ for some $k \in \mathbb{Z}$.

We note that if the conditions of Theorem 1 are met, then K is a real cubic field with two complex embeddings. We prove the following extension of Vulakh's theorem. It is always stronger than Vulakh's theorem when $|u| \ge 24$, as well as in some other cases. The proof is elementary.

Theorem 2. Let $f(x) = x^3 - tx^2 - ux - 1$, where t and u are integers such that

$$t \ge (u^2 + 18|u| + 12)/4.$$

Then

- (i) f(x) is irreducible in $\mathbb{Z}[x]$,
- (ii) the discriminant D of f(x) is negative so that f(x) has exactly one real root θ ,
- (iii) if the discriminant of f(x) is squarefree, then θ is the fundamental unit > 1 of the ring O_K of integers of the cubic field $K = \mathbb{Q}(\theta)$.

2. Proof of Theorem 2

First we observe that

$$t \ge \frac{u^2 + 18|u| + 12}{4} \ge \frac{12}{4} = 3 \tag{2.1}$$

and

$$t > \frac{18|u|}{4} \ge |u|. \tag{2.2}$$

Secondly we show that $f(1) \neq 0$. Suppose that f(1) = 0. Then t + u = 0. By (2.1) t > 0 so that u < 0 and |u| = -u = t, contradicting (2.2). Hence

$$f(1) \neq 0. \tag{2.3}$$

Thirdly we show that $f(-1) \neq 0$. Suppose that f(-1) = 0. Then u = t + 2. By (2.1) we have t > 0 so that u > 0 and thus |u| = u = t + 2 > t, which contradicts (2.2). Hence

$$f(-1) \neq 0. \tag{2.4}$$

From (2.3) and (2.4) we see that ± 1 are not roots of the cubic f(x) so that f(x) has no linear factors in $\mathbb{Z}[x]$ and thus f(x) is irreducible in $\mathbb{Z}[x]$, proving (i).

Fourthly, we prove that

$$4t^3 - u^2t^2 + 18ut - 4u^3 > 4(1+t)^{\frac{3}{2}}. (2.5)$$

We consider two cases according as $u \ge 0$ or u < 0. If $u \ge 0$, then |u| = u and

$$t \ge \frac{u^2 + 18u + 12}{4}.$$

Thus

$$4t^{3} - u^{2}t^{2} + 18ut - 4u^{3}$$

$$= t^{2}(4t - u^{2}) + 2u(9t - 2u^{2})$$

$$\geq t^{2}(18u + 12) + \frac{u}{2}(u^{2} + 162u + 108)$$

$$\geq 12t^{2}$$

$$> 4(1+t)^{\frac{3}{2}}.$$

If u < 0, then |u| = -u and

$$t \geq \frac{u^2 - 18u + 12}{4}.$$

Then, as u < 0 and $t \ge 3$, we have

$$4t^{3} - u^{2}t^{2} + 18ut - 4u^{3}$$

$$> 4t^{3} - u^{2}t^{2} + 18ut^{2} - 4u^{3}$$

$$> 4t^{3} - u^{2}t^{2} + 18ut^{2}$$

$$= t^{2}(4t - u^{2} + 18u)$$

$$\geq 12t^{2}$$

$$> 4(1+t)^{\frac{3}{2}}.$$

This completes the proof of (2.5).

The discriminant D of f(x) is given by

$$D = -4t^3 + u^2t^2 - 18ut + 4u^3 - 27,$$

see for example [1, p. 139]. By (2.5) we see that

$$-D - 27 = 4t^3 - u^2t^2 + 18ut - 4u^3 > 4(1+t)^{\frac{3}{2}} > 0,$$
(2.6)

so that

$$D < 0. (2.7)$$

Thus f(x) has exactly one real root θ , proving (ii).

From (2.6) and (2.7) we deduce that

$$|D| > 27 + 4(1+t)^{\frac{3}{2}},$$
 (2.8)

so that by (2.1)

$$|D| > 59. \tag{2.9}$$

Next we show that f(1+t) > 0. We have (as t > 0 and t > |u|)

$$f(1+t) = (1+t)^3 - t(1+t)^2 - u(1+t) - 1$$
$$= t(2+t) - u(1+t)$$
$$> t(1+t) - u(1+t)$$

$$\geq t(1+t) - |u|(1+t)$$

$$= (t - |u|)(1+t)$$

$$\geq 0,$$

so that

$$f(1+t) > 0. (2.10)$$

Next we determine the sign of f(1). We have

$$f(1) = -t - u \le |u| - t < 0,$$

by (2.2), so that

$$f(1) < 0. (2.11)$$

As f has exactly one real root θ , we deduce from (2.10) and (2.11) that

$$1 < \theta < 1 + t. \tag{2.12}$$

Now suppose that D is squarefree so that the discriminant d(K) of K is equal to D and thus by (2.9) we have

$$|d(K)| > 59.$$

Let η denote the fundamental unit (> 1) of O_K . Hence, by [1, Theorem 13.6.1, p. 370], we have

$$\eta^3 > \frac{|d(K)| - 27}{4}. \tag{2.13}$$

Then, from (2.8) and (2.12), we deduce

$$\eta^3 > (1+t)^{\frac{3}{2}} > \theta^{\frac{3}{2}}$$

so that

$$\eta^2 > \theta. \tag{2.14}$$

As $\theta(\theta^2 - t\theta - u) = 1$, we deduce that $\theta \mid 1$ in O_K , so that θ is a unit of O_K . Hence, by Dirichlet's unit theorem, we have

$$\theta = \pm \eta^k \tag{2.15}$$

for some $k \in \mathbb{Z}$ [1, Theorems 13.4.2, 13.5.2, pp. 362, 366]. As $\theta > 1$ and $\eta > 1$ we deduce from (2.15) that

$$\theta = \eta^k, \quad k \in \mathbb{N}. \tag{2.16}$$

From (2.14) and (2.16) we obtain

$$1 < \eta^k < \eta^2, \ k \in \mathbb{N},$$

so that k=1 and $\theta=\eta$. Hence θ is the fundamental unit (> 1) of O_K , proving (iii).

3. An Example

We close with a numerical example to which Theorem 2 applies but Theorem 1 does not.

Example.
$$f(x) = x^3 - 152x^2 - 17x - 1$$
.

Here t = 152 and u = 17. As

$$\frac{u(u+1)}{2} = \frac{(17)(18)}{2} = 153 > t$$

the condition (1.1) is not satisfied and Vulakh's theorem does not apply.

As

$$\frac{u^2 + 18|u| + 12}{4} = \frac{17^2 + (18)(17) + 12}{4} = \frac{289 + 306 + 12}{4}$$
$$= \frac{607}{4} = 151.75 < 152 = t$$

and

$$\operatorname{disc}(x^3 - 152x^2 - 17x - 1) = -7397063$$

being a prime is squarefree, Theorem 2 applies and the unique real root θ of $x^3 - 152x^2 - 17x - 1 = 0$ is the fundamental unit (> 1) of the cubic field $K = \mathbb{Q}(\theta)$, $\theta^3 - 152\theta^2 - 17\theta - 1 = 0$.

References

- [1] S. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cambridge University Press, 2004.
- [2] L. Ya. Vulakh, Continued fractions associated with $SL_3(\mathbb{Z})$ and units in complex cubic fields, Canad. J. Math. 54 (2002), 1305-1318.

Centre for Research in Algebra and Number Theory School of Mathematics and Statistics, Carleton University Ottawa, Ontario, Canada K1S 5B6 e-mail: williams@math.carleton.ca