The proportion of cyclic quartic fields with discriminant divisible by a given prime

By Blair K. Spearman*) and Kenneth S. Williams**)

(Communicated by Heisuke Hironaka, m. J. a., Sept. 13, 2004)

Abstract

An asymptotic formula is given for the number of cyclic quartic fields with discriminant $\leq x$ and divisible by a given prime.

Key words: Discriminant; cyclic quartic field.

1. Introduction. It was shown in [1, Theorem, p. 97] that the number $N(x)$ of cyclic quartic fields K with discriminant $d(K) \leq x$ satisfies

$$
\begin{gather*}
N(x)=\frac{3}{\pi^{2}}\left\{\frac{(24+\sqrt{2})}{24} C-1\right\} x^{1 / 2} \tag{1.1}\\
+O\left(x^{1 / 3} \log ^{3} x\right)
\end{gather*}
$$

as $x \rightarrow \infty$, where

$$
\begin{equation*}
C=\prod_{p \equiv 1(\bmod 4)}\left(1+\frac{2}{(p+1) \sqrt{p}}\right) . \tag{1.2}
\end{equation*}
$$

Here and throughout this paper p denotes a prime. Let q be a fixed prime. In this paper, which should be viewed as a continuation of [1], we determine an asymptotic formula for the number $N_{q}(x)$ of cyclic quartic fields K with discriminant $d(K) \leq x$ and $d(K) \equiv 0(\bmod q)$. We prove

Theorem. Let q be a prime. Then

$$
\begin{equation*}
N_{q}(x)=E_{q} x^{1 / 2}+O\left(x^{1 / 3} \log ^{3} x\right) \tag{1.3}
\end{equation*}
$$

as $x \rightarrow \infty$, where

$$
\begin{aligned}
E_{2}= & \frac{1}{\pi^{2}}\left(\frac{(8+\sqrt{2})}{8} C-1\right), \\
E_{q}= & \frac{3}{\pi^{2}(q+1)}\left(\left(\frac{24+\sqrt{2}}{24}\right) C-1\right), \\
& \quad \text { if } q \equiv 3 \quad(\bmod 4),
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
E_{q}= & \frac{3}{\pi^{2}(q+1)} \\
& \times\left(\left(\frac{24+\sqrt{2}}{24}\right)\left(\frac{1+\frac{2}{\sqrt{q}}}{1+\frac{2}{(q+1) \sqrt{q}}}\right) C-1\right), \\
& \text { if } q \equiv 1 \quad(\bmod 4) .
\end{aligned}
$$
\]

This theorem is proved in Section 3 after some preliminary results are given in Section 2.

The proportion d_{q} of cyclic quartic fields with discriminant divisible by the fixed prime q is

$$
d_{q}=\lim _{x \rightarrow \infty} \frac{N_{q}(x)}{N(x)}=\frac{E_{q}}{\frac{3}{\pi^{2}}\left\{\frac{(24+\sqrt{2})}{24} C-1\right\}}
$$

Appealing to the values of E_{q} given in the Theorem, the proportion d_{q} is given by

$$
\begin{aligned}
& d_{q}= \frac{(8+\sqrt{2}) C-8}{(24+\sqrt{2}) C-24}, \quad \text { if } q=2, \\
& d_{q}= \frac{1}{q+1}, \quad \text { if } q \equiv 3 \quad(\bmod 4), \\
& d_{q}=\frac{(24+\sqrt{2})\left(\frac{1+\frac{2}{\sqrt{q}}}{1+\frac{2}{\sqrt{q}(q+1)}}\right) C-24}{(q+1)((24+\sqrt{2}) C-24)}, \\
& \text { if } q \equiv 1 \quad(\bmod 4) .
\end{aligned}
$$

2. Some Lemmas. The results of this section are used in Section 3. They are either contained in [1] or [2] or are simple extensions of results there. We use ' n sqf' to indicate that the positive integer n is required to be squarefree. As usual, for $n \in$ $\mathbf{N}, \phi(n)$ is Euler's totient function and $d(n)$ counts the number of positive divisors of n. The greatest common divisor of the positive integers a and b is
denoted by (a, b).
Lemma 2.1. Let $k \in \mathbf{N}$. Then

$$
\begin{aligned}
\sum_{\substack{1 \leq n \leq x \\
n \text { sqf } \\
(n, k)=1}} 1= & x \frac{6}{\pi^{2}} \frac{\phi(k)}{k} \prod_{p \mid k}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& +O\left(x^{1 / 2} d(k)\right)
\end{aligned}
$$

as $x \rightarrow \infty$, where the implied constant is absolute.
Proof. See [2, Lemma 3, p. 182].
Lemma 2.2. Let $k \in \mathbf{N}$. Let q be an odd prime. Then

$$
\sum_{\substack{1 \leq n \leq x \\
n s q f \\
(n, k)=1 \\
q \mid n}} 1=\left\{\begin{array}{l}
0, \quad \text { if } q \mid k, \\
\frac{x}{q+1} \frac{6}{\pi^{2}} \frac{\phi(k)}{k} \prod_{p \mid k}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
+O\left(x^{1 / 2} q^{-1 / 2} d(k)\right), \quad \text { if } q \nmid k,
\end{array}\right.
$$

where the implied constant is absolute.
Proof. The result is clear for $q \mid k$. For $q \nmid k$ we have

$$
\begin{aligned}
\sum_{\substack{1 \leq n \leq x \\
n \mathrm{sqf} \\
(n, k)=1 \\
q \mid n}} 1= & \sum_{\substack{1 \leq n \leq x / q \\
n \mathrm{sqf} \\
q \nmid n}}^{(q n, k)=1} ⿺ \\
& 1=\sum_{\substack{1 \leq n \leq x / q \\
n \mathrm{sqf} \\
(n, q k)=1}} 1 \\
= & \frac{x}{q} \frac{6}{\pi^{2}} \frac{\phi(q k)}{q k} \prod_{p \mid q k}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& +O\left(\left(\frac{x}{q}\right)^{1 / 2} d(q k)\right) \\
= & \frac{x}{q+1} \frac{6}{\pi^{2}} \frac{\phi(k)}{k} \prod_{p \mid k}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& +O\left(x^{1 / 2} q^{-1 / 2} d(k)\right),
\end{aligned}
$$

by Lemma 2.1.
Following [1, eq. (3.7), p. 100] we set

$$
\begin{array}{r}
\wp=\left\{D \mid D=q_{1} \cdots q_{r}(r \geq 1), q_{1}, \ldots, q_{r}\right. \\
\text { distinct primes } \equiv 1 \quad(\bmod 4)\} .
\end{array}
$$

Note that $1 \notin \wp$. We set (as in [1, eq. (3.8), p. 100])

$$
S(x):=\sum_{\substack{D \leq x^{1 / 3} \\ D \in \wp}} d(D) \sum_{\substack{1 \leq A \leq \sqrt{x D^{-3}} \\ A, \text { sqf } \\(A, 2 D)=1}} 1
$$

Lemma 2.3.

$$
S(x)=\frac{4}{\pi^{2}}(C-1) x^{1 / 2}+O\left(x^{1 / 3} \log ^{3} x\right)
$$

where the implied constant is absolute.
Proof. See [1, p. 103]. Note that we have $c_{0}+$ $1=C$.

Let q be an odd prime. We define

$$
S_{1}(x):=\sum_{\substack{D \leq x^{1 / 3} \\ D \in \wp \\ q \mid D}} d(D) \sum_{\substack{1 \leq A \leq \sqrt{x D^{-3}} \\ A \operatorname{sqf} \\(A, 2 D)=1}} 1
$$

and

$$
S_{2}(x):=\sum_{\substack{D \leq x^{1 / 3} \\ D \in \wp}} d(D) \sum_{\substack{1 \leq A \leq \sqrt{x D^{-3}} \\ A \operatorname{sqf} \\(A, 2 D)=1 \\ q \mid A}} 1 .
$$

We note that

$$
S_{1}(x)=0, \quad \text { if } \quad q \equiv 3 \quad(\bmod 4)
$$

Lemma 2.4. Let q be an odd prime. Then

$$
S_{2}(x)=\frac{4}{\pi^{2}(q+1)}\left(C^{\prime}-1\right) x^{1 / 2}+O\left(x^{1 / 3} \log ^{3} x\right)
$$ where the implied constant depends only on q, and

$$
\begin{equation*}
C^{\prime}=\prod_{\substack{p \equiv 1(\bmod 4) \\ p \neq q}}\left(1+\frac{2}{(p+1) \sqrt{p}}\right) \tag{2.1}
\end{equation*}
$$

We note that $C^{\prime}=C$ if $q \equiv 3(\bmod 4)$, whereas

$$
\begin{equation*}
C^{\prime}=\frac{C}{\left(1+\frac{2}{(q+1) \sqrt{q}}\right)} \tag{2.2}
\end{equation*}
$$

if $q \equiv 1(\bmod 4)$.
Proof. We have by Lemma 2.2

$$
\begin{aligned}
& S_{2}(x)= \sum_{\substack{D \leq x^{1 / 3} \\
D \in \wp \\
q \nmid D}} d(D)\left\{\frac{x^{1 / 2}}{D^{3 / 2}} \frac{1}{q+1}\right. \\
& \times \frac{6}{\pi^{2}} \frac{\phi(2 D)}{2 D} \prod_{p \mid 2 D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
&\left.+O\left(x^{1 / 4} D^{-3 / 4} d(D)\right)\right\} \\
&= \frac{4}{\pi^{2}} \frac{x^{1 / 2}}{q+1} \sum_{\substack{D \leq x^{1 / 3}}} d(D) D^{-5 / 2} \\
& q \nmid D
\end{aligned}
$$

$$
\times \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1}
$$

$$
+O\left(x^{1 / 4} \sum_{\substack{D \leq x^{1 / 3} \\ D \in \wp}} d^{2}(D) D^{-3 / 4}\right)
$$

It is shown in [1, p. 103] that

$$
\sum_{\substack{D \leq x^{1 / 3} \\ D \in \wp}} d^{2}(D) D^{-3 / 4}=O\left(x^{1 / 12} \log ^{3} x\right)
$$

Also

$$
\begin{aligned}
& \sum_{\substack{D \leq x^{1 / 3} \\
D \in \wp \\
q \nmid D}} d(D) D^{-5 / 2} \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& \quad=\sum_{\substack{D=1 \\
D \in \wp \\
q \nmid D}}^{\infty} d(D) D^{-5 / 2} \phi(D) \prod_{\substack{ }}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& \quad+O\left(\sum_{\substack{D>x^{1 / 3} \\
D \in \wp}} d(D) D^{-5 / 2} \phi(D)\right)
\end{aligned}
$$

as

$$
\prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1}<\frac{\pi^{2}}{6}
$$

Clearly

$$
\begin{aligned}
& \sum_{\substack{D=1 \\
D \in \wp \\
q \nmid D}}^{\infty} d(D) D^{-5 / 2} \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& =\prod_{\substack{p \equiv 1(\bmod 4) \\
p \neq q}}\left(1+\frac{2}{(p+1) \sqrt{p}}\right)-1=C^{\prime}-1
\end{aligned}
$$

Also

$$
\sum_{\substack{D>x^{1 / 3} \\ D \in \wp}} d(D) D^{-5 / 2} \phi(D)=O\left(x^{-1 / 6} \log x\right)
$$

see [1, p. 103]. Thus

$$
\begin{aligned}
S(x)= & \frac{4}{\pi^{2}} \frac{x^{1 / 2}}{q+1}\left(C^{\prime}-1\right)+O\left(x^{1 / 2-1 / 6} \log x\right) \\
& +O\left(x^{1 / 4+1 / 12} \log ^{3} x\right)
\end{aligned}
$$

which gives the asserted result.
Lemma 2.5. Let q be a prime $\equiv 1(\bmod 4)$.
Then

$$
S_{1}(x)=\frac{8}{\pi^{2}} \frac{x^{1 / 2}}{(q+1) \sqrt{q}} C^{\prime}+O\left(x^{1 / 3} \log ^{3} x\right)
$$

Proof. We have by Lemma 2.1

$$
\begin{aligned}
S_{1}(x)= & \sum_{\substack{D \leq x^{1 / 3} \\
D \in \wp \\
q \mid D}} d(D)\left\{\left(\frac{x}{D^{3}}\right)^{1 / 2} \frac{6}{\pi^{2}}\right. \\
& \times \frac{\phi(2 D)}{2 D} \prod_{p \mid 2 D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& \left.+O\left(\left(\frac{x}{D^{3}}\right)^{1 / 4} d(D)\right)\right\} \\
= & \frac{4}{\pi^{2}} x^{1 / 2} \sum_{\substack{D \leq x^{1 / 3}}} d(D) D^{-5 / 2} \\
& \times \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& +O\left(x^{1 / 4} \sum_{\substack{D \leq x^{1 / 3}}} d^{2}(D) D^{-3 / 4}\right) .
\end{aligned}
$$

As in Lemma 2.4 the error term is

$$
O\left(x^{1 / 4+1 / 12} \log ^{3} x\right)=O\left(x^{1 / 3} \log ^{3} x\right)
$$

Also

$$
\begin{aligned}
& \sum_{\substack{D \leq x^{1 / 3} \\
D \in \wp \\
q \mid D}} d(D) D^{-5 / 2} \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& =\sum_{\substack{D=1 \\
D \in \wp \\
q \mid D}}^{\infty} d(D) D^{-5 / 2} \phi(D) \prod_{p \mid D}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& \quad+O\left(\sum_{\substack{D>x^{1 / 3} \\
D \in \wp}} d(D) D^{-5 / 2} \phi(D)\right) \\
& =d(q) q^{-5 / 2} \phi(q)\left(1-\frac{1}{q^{2}}\right)^{-1} \\
& \quad \times \prod_{\substack{p \equiv 1(\bmod 4) \\
p \neq q}}\left(1+\frac{2}{(p+1) \sqrt{p}}\right) \\
& \quad+O\left(x^{-1 / 6} \log x\right) \\
& =\frac{2}{(q+1) \sqrt{q}} C^{\prime}+O\left(x^{-1 / 6} \log x\right) .
\end{aligned}
$$

Finally

$$
\begin{aligned}
S_{1}(x)= & \frac{4 x^{1 / 2}}{\pi^{2}}\left(\frac{2}{(q+1) \sqrt{q}} C^{\prime}+O\left(x^{-1 / 6} \log x\right)\right) \\
& +O\left(x^{1 / 3} \log ^{3} x\right) \\
= & \frac{8}{\pi^{2}} \frac{x^{1 / 2}}{(q+1) \sqrt{q}} C^{\prime}+O\left(x^{1 / 3} \log ^{3} x\right)
\end{aligned}
$$

which is the assertion of Lemma 2.5.
3. Proof of Theorem. From [1, (3.3) and (3.4), p. 100] we see that if $q=2$

$$
\begin{aligned}
N_{q}(x)=2 & \sum_{\substack{A \leq\left(x / 2^{11}\right)^{1 / 2} \\
A \text { sqf } \\
A \text { odd }}} 1+2 S\left(2^{-11} x\right) \\
& +S\left(2^{-6} x\right)+\frac{1}{2} S\left(2^{-4} x\right)
\end{aligned}
$$

if $q \equiv 3(\bmod 4)$

$$
\begin{aligned}
N_{q}(x)= & 2 \sum_{\substack{A \leq\left(x / 2^{11}\right)^{1 / 2} \\
A \text { sqf } \\
A \text { odd } \\
q \mid A}} 1+2 S_{2}\left(2^{-11} x\right) \\
& +S_{2}\left(2^{-6} x\right)+\frac{1}{2} S_{2}\left(2^{-4} x\right)+\frac{1}{2} S_{2}(x)
\end{aligned}
$$

and if $q \equiv 1(\bmod 4)$

$$
\begin{aligned}
N_{q}(x)= & 2 \sum_{\substack{A \leq\left(x / 2^{11}\right)^{1 / 2} \\
A \text { sqf } \\
A \text { odd } \\
q \mid A}} 1+2 S_{2}\left(2^{-11} x\right)+S_{2}\left(2^{-6} x\right) \\
& +\frac{1}{2} S_{2}\left(2^{-4} x\right)+\frac{1}{2} S_{2}(x)+2 S_{1}\left(2^{-11} x\right) \\
& +S_{1}\left(2^{-6} x\right)+\frac{1}{2} S_{1}\left(2^{-4} x\right)+\frac{1}{2} S_{1}(x)
\end{aligned}
$$

For $q=2$ we have by Lemmas 2.1 and 2.3

$$
\begin{aligned}
& N_{q}(x)=2\left(\left(\frac{x}{2^{11}}\right)^{1 / 2} \frac{6}{\pi^{2}} \frac{\phi(2)}{2}\right. \\
& \left.\quad \times \prod_{p \mid 2}\left(1-\frac{1}{p^{2}}\right)^{-1}+O\left(x^{1 / 4}\right)\right) \\
& +\frac{8}{\pi^{2}}(C-1)\left(\frac{x}{2^{11}}\right)^{1 / 2}+\frac{4}{\pi^{2}}(C-1)\left(\frac{x}{2^{6}}\right)^{1 / 2} \\
& +\frac{2}{\pi^{2}}(C-1)\left(\frac{x}{2^{4}}\right)^{1 / 2}+O\left(x^{1 / 3} \log ^{3} x\right) \\
& =\frac{1}{2^{5 / 2}} \frac{x^{1 / 2}}{\pi^{2}}+\frac{2(C-1)}{\pi^{2}} x^{1 / 2}\left(\frac{4}{2^{11 / 2}}+\frac{2}{2^{3}}+\frac{1}{2^{2}}\right) \\
& \quad+O\left(x^{1 / 3} \log ^{3} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x^{1 / 2}}{8 \pi^{2}}(\sqrt{2}+(C-1)(\sqrt{2}+8))+O\left(x^{1 / 3} \log ^{3} x\right) \\
& =\frac{x^{1 / 2}}{8 \pi^{2}}((8+\sqrt{2}) C-8)+O\left(x^{1 / 3} \log ^{3} x\right) \\
& =\frac{1}{\pi^{2}}\left(\frac{(8+\sqrt{2})}{8} C-1\right) x^{1 / 2}+O\left(x^{1 / 3} \log ^{3} x\right)
\end{aligned}
$$

For $q \equiv 3(\bmod 4)$ we have by Lemmas 2.2 and 2.4

$$
\begin{aligned}
N_{q}(x)= & 2\left(\left(\frac{x}{2^{11}}\right)^{1 / 2} \frac{1}{q+1} \frac{6}{\pi^{2}} \frac{\phi(2)}{2}\right. \\
& \left.\times \prod_{p \mid 2}\left(1-\frac{1}{p^{2}}\right)^{-1}+O\left(x^{1 / 4}\right)\right) \\
& +\frac{8}{\pi^{2}} \frac{(C-1)}{(q+1)}\left(\frac{x}{2^{11}}\right)^{1 / 2} \\
+ & \frac{4(C-1)}{\pi^{2}(q+1)}\left(\frac{x}{2^{6}}\right)^{1 / 2} \\
& +\frac{2(C-1)}{\pi^{2}(q+1)}\left(\frac{x}{2^{4}}\right)^{1 / 2}+\frac{2(C-1)}{\pi^{2}(q+1)} x^{1 / 2} \\
& +O\left(x^{1 / 3} \log ^{3} x\right) \\
= & \frac{x^{1 / 2}}{(q+1) \pi^{2}}\left(\frac{2^{3}}{2^{11 / 2}}\right)+\frac{(C-1)}{(q+1) \pi^{2}} x^{1 / 2} \\
& \times\left(\frac{8}{2^{11 / 2}}+\frac{4}{2^{3}}+\frac{2}{2^{2}}+2\right) \\
& +O\left(x^{1 / 3} \log ^{3} x\right) \\
= & \frac{3}{\pi^{2}} \frac{x^{1 / 2}}{(q+1)}\left(\left(\frac{24+\sqrt{2}}{24}\right) C-1\right) \\
& +O\left(x^{1 / 3} \log ^{3} x\right)
\end{aligned}
$$

For $q \equiv 1(\bmod 4)$ we have by Lemmas $2.2,2.4$ and 2.5

$$
\begin{aligned}
N_{q}(x)= & \frac{3}{\pi^{2}} \frac{x^{1 / 2}}{q+1}\left(\left(\frac{24+\sqrt{2}}{24}\right) C^{\prime}-1\right) \\
& +\frac{8 C^{\prime} x^{1 / 2}}{\pi^{2}(q+1) \sqrt{q}}\left\{\frac{2}{2^{11 / 2}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2}\right\} \\
& +O\left(x^{1 / 3} \log ^{3} x\right) \\
= & \frac{3}{\pi^{2}} \frac{x^{1 / 2}}{(q+1)} \\
& \times\left(\left(\frac{24+\sqrt{2}}{24}\right)\left(1+\frac{2}{\sqrt{q}}\right) C^{\prime}-1\right) \\
& +O\left(x^{1 / 3} \log ^{3} x\right)
\end{aligned}
$$

This completes the proof of the Theorem.

Acknowledgement. Both authors were supported by grants from the Natural Sciences and Engineering Research Council of Canada.

References

[1] Ou, Z. M., and Williams, K. S.: On the density of cyclic quartic fields. Canad. Math. Bull., 44, 97-104 (2001).
[2] Spearman, B. K., and Williams, K. S.: Integers which are discriminants of bicyclic or cyclic quartic fields. JP J. Algebra Number Theory Appl., 1, 179-194 (2001).

[^0]: 2000 Mathematics Subject Classification. Primary 11R16; Secondary 11R21, 11R29.
 *) Department of Mathematics and Statistics, Okanagan University College, Kelowna, B.C. Canada V1V 1V7.
 **) School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6.

