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Abstract

Let P be a prime ideal of an algebraic number field X, let p be a rational
prime, and let ae K. If vp(a)20, then a is called a P-integral

element of K, where vp(a) denotes the exponent of P in the prime ideal
decomposition of (a). If a is P-integral for each prime ideal P of K such
that P|pOg, then o is called a p-integral element of K. Let
{01, 03, ..., ®,} be a basis of K over Q, where each o, 1<i<n)isa
p-integral element of K. If every p-integral element o of K is given as
o = aj0] + agwy + -+ + ap,, where the a; are p-integral elements of
Q, then {0), @g, ..., ®,} is called a p-integral basis of K. In this paper a

p-integral basis of a quartic field K defined by a trinomial is determined
for each rational prime p, and then the discriminant of K and an
integral basis of K are obtained from its p-integral bases.

1. Introduction

In this paper we determine for each prime p a p-integral basis for a
quartic field K = Q(0), where 6 is a root of the irreducible quartic
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trinomial x?* +ax + b,a, b e Z. The discriminant of K and an integral

basis of K are then obtained from its p-integral bases.

Let K = Q(8) be an algebraic number field of degree n, and let Og
denote the ring of integral elements of K. If Og = o4Z + 09Z + -+ + o, Z,

then {a;, ag, ..., @, } is said to be an integral basis of K.

Let P be a prime ideal of K, let p be a rational prime, and let o € K.
If vp(a) >0, then o is called a P-integral element of K, where vp(a)

denotes the exponent of P in the prime ideal decomposition of (o). If a is
P-integral for each prime ideal P of K such that P|pOg, then o is called

a p-integral element of K.

Let {07, ®g, ..., ®,} be a basis of K over Q, where each o; (1 <i <n)

is a p-integral element of K. If every p-integral element a of K is given as

o = aj0; + Ay0g + -+ + a,®,, where the a; are p-integral elements of

Q, then {0, 09, ..., ©,} is called a p-integral basts of K.

In Theorem 2.1 a p-integral basis of a quartic field K is determined for
every rational prime p, and in Theorem 3.1 the discriminant of K and an
integral basis of K are obtained from its p-integral bases.

Let K = Q(8), where 0 is a root of the irreducible trinomial

x* vax+b, a bel.

If for any rational prime p we have v,(a) 2 3 and v,(b) 2 4, then 0/p is

an algebraic integer whose minimal polynomial is x* + (a/p3)x + b/pt e
Z[x] and K = Q(8/p). Hence we may assume that K = Q(0), where 6 is

a root of the irreducible trinomial
x! +ax +b,a,beZ with v,(a)<3 or vp(b) <4 for every prime p.(1.1)
The discriminant of 0 is d(6)=A = 2853 _3344 20 and A = i(6)2d(K),
where d(K) denotes the discriminant of K, and i(0) is the index of 6. For

S
each rational prime p, set s, = vp(A) and A, = Alp™®.



p-INTEGRAL BASES OF A QUARTIC FIELD 139

The following three theorems are the special cases for- n =4 of

Theorem 2.1, Theorem 3.1 and Theorem 3.3 respectively, given in [2].

Theorem 1.1. Let K = Q(0) be a quartic field, where 0 is a root of the

irreductble trinomial (1.1). Let p be a rational prime, and let

2 3
x + y0 + 26 + wo
- ? m , where x, y,z, w,m € Z, m 2 0.

p

Set

X = 4x - 3aw,

Y = 6x2 - 9axw + 3ayz + 4byw + 2622 + 3a%w?,

Z = 4x3 - 9ax®w + 4bxz? + 8bxyw + 6axyz + 6a2xw? - ay®

- 4by22 - 302y2w o 5abyw2 + abz?w + 4b%2w? - a’w?,

W = x* + 3ax?yz + 2bx222 — axy® - 4bxy®z - 3ax3w + by*
+b22% + b3w? + 3a%x%w? - 302xyzw +aZx2® - 5(1bxyw2
+ abxz?w + 4b%xzw? - a®xw® + 4bx2yw + 3aby?zw
+ 2()2312w2 — abyz3 - 4b%y2%w + a’byw? - abzw?®.
Then o is p-integral if and only if

X = 0(mod p™), Y = 0(mod p*™),

Z = 0(mod p®"), W = 0(mod p*™).

Theorem 1.2. Let K = Q(0) be a quartic field, where 8 is a root of the

irreducible trinomial (1.1). Let p be a rational prime, and let

hi+ (h € 2),

1

2
u’e__i__e_ (u, U= Z)’
p}
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x+y9+292+93

pk

(x, y,zeZ)

be p-integral elements of K having the integers i, j and k as large as
possible. Then

i 7 2 k

{1 h+0 wu+uv0+62 x+y9+z62+63}
P p’ P

is a p-integral basis of K, and
vp(d(K)) = sp =20 + j + k).

Theorem 1.3. Let K = Q(0) be a quartic field, where 0 is a root of the

irreducible trinomial (1.1). If there are no rational primes dividing 1(0),

then {1, 6, 02, 93} is an integral basis of K. Let p;, py, ..., ps be the
distinct primes dividing 1(0). Let

)

{1 h+0 u, +0,0+0% x,+50+20%+ 93}
pr pr Y

be a p,-integral basis of K (r=1,2, .., s) as given in Theorem 1.2.
Define the integers h, u, v, x, y, z by
h = h,(mod pr), u = u,(mod pir), v =uv,(mod pir), (r=12 .. 5),

x = x,(mod p,".’" ), ¥ = y,(mod p,l.z’ ), z = z,(mod p,].e’ ), (r=1,2,..,5s),

and let

R = ﬁpf-’, S = ]i[p,’:’v T = ﬁpf’-
r=1 r=1 r=1

Then an integral basis of K is

1 h+0 wu+vd+ 6 x+y€)+2:62+93
" R’ S ’ T '
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2. p-integral Bases of a Quartic Field Defined by a Trinomial

Theorem 2.1. Let K = Q(8) be a quartic field, where 0 is a root of the

irreducible trinomial (1.1). Then a 2-integral basis, a 3-integral basis, and
a p(> 3)-integral basis of K are given in Table A, Table B, and Table (@1

respectively. (Note that the notation a = b(mod m) has been shortened to

a = b(m) in the tables.)

Table A

Case| Condition S9 2-integral basis , va(d(K))

Al | va(@) =0 0 |{0 02 0% g

A2 | va(@) =1 and 4 1,0 02 0% 4
b =3(4)

A3 | va(@) =1 and 4 {0,062 (1+0+02+03)2 e
b= 1(4)

A4 | vg(a) =1 and 4 {1, 0, 92, 93} 4
Vz(b) =1

A5 | va(a) =1 and 4 14,0 02 032 2
Vz(b) > 2

A6 | vo(a) = 2 and 8 {1, 0, 92, 93} 8
va(b) =1

A7 | va(a) = 2 and 8 |0 022 03/2) B
va(b) = 2

A8 | va(a) = 2 and 8 |10, 0%2 0%/22) 2
vo(b) > 3

A9 | vo(a) 2 3 and 8 |0 02 0% B
b=14)

A10| v2(a) 2 3 and 8 {6 (+62)2 (0+0%)2) g
b = 3(8)
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All|"¥z(a)= 3 and 8 | {1,0,1+02)2(1+0+02+0%)22) | 2
b =17(8)

Al12 vz(a) > 3 and 11 {1‘ 0' 62, 93} 11
va(b) =1

A13| vo(a) =3 and 12| {1, 0,022 (20 + 0%)2%) 6
va(b) = 2

Al14| a=16A,b=4+16B 14 1,0, (2+20+ 92)/22’ 6
A+ B=1Q2) (20 + 93)/22}

Al5| a = 16A, b=4+16B 14 {1, 9! (2 +20 + 62)/22, 4
A+B=0@2) (2 + 4B)0 + 202 + 03)/23}

A16| vz(a) > 4 and 14 |, 0, (2+0%)2% (20 +03)2%) 6
b = 12(16)

A17 \'2(0) =3 and 12 {1’ e, 92/2’ 63/22} 6
va(b) =3

Al8 v2(a) =4 and 16 {L e, 62/2, 93/22} 10
va(b) = 3
vo(b) = 3

A20 VZ(a) =2 and 9 {1’ 0, 62, 93} 9
b =1(4)

A21| vg(a) = 2 and 10|10, @1+0%)2 0+6%)2} 5
b =17(8)
Ag =1(4) G +0+02 +0%)2%)

Ag = 1(4)

(7 + 0 + 302 + 03)/2%}
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A24 \'2(0) = 2, b= 11(16) 11 {L e, (1 4 92)/2’ 5
Az = 3(4) a+06+ 02 + 63)/22}
A25 V2(G) =2,bs= 3(16) S9 =212 {1’ 0, (1+ 92)/2, 6
52 = 02) (x+ 30 + 20% + 0%)2")
m = (sg — 8)/2
4x - 3a = 0(mod 2"”2)
9a%y - 16b% = 0(mod 2"*4)
3az + 4b = 0(mod 2"+2)
A26 Vg(a) =2 b= 3(16) s9 213 {1’ 0, (1 § 02)/2) 5
sg =1(2), Ag =1(4) (x + 0 + 202 + 0%)2™)}
m = (sg - 7)/2
4x - 3a = 0(mod 2"*2)
9(12y - 16b% = 0(mod gin+4 )
3az + 4b = 0(mod 2" *2)
A27| a =4 +16A, 13 {1’ 0, (1 3 92)/2’ 3
b=3+16B (x+y9+292+93)/24}
s9 = 1(2) x=15+12B
A+ B =234) y=9+8B
A253(4) z=3+4B
A928| a =4 +16A, S9 = 15 {1’ 0, (1 4 92)/2’ 3
b=3+16B (x+y0 + 02 + 93)/2"1}
s9 = 1(2) m = (sg — 5)/2
A+ B =0(4) 4x — 3q = 2™ 4 pom+l
Ag = 3(4)

9a2y _16b2 = 2'”’+3(mod 2m+4)

3az + 4b = 2™ 4+ t2M+1
r+t=0(2)
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A29| a =12 +16A, 13 {1,0,(1+ 92)/2, 3
b=3+16B
x + 30 + 202 + 03)2?
/= 12) (x + 50 + 207 + 07)/2%}
A-B=1() x=9+12B
N — y=9+8B
2" z=5+4B
A30| @ =12+16A4, s2215( 9, (1+02)2, 3
b=3+16B
(x + 0 + 202 + 93)/2’”}
S9 = 1(2)
m = (sg — 5)/2
A-B=34) 1
_ om m+
Ay = 3(4) 4x —3a = 2" +r2
902y . 16b2 = 2m+3(m0d 2m+4)
3az + 4b = 2™ + 12" +1
r+t=12)
Table B
Case| Condition s3 | 3-integral basis v (d(K))
Bl | v3(b) = 0 0 |10 0% 6% i
B2 | v3(a) >1 and 3 110,02 0% 3
va(b) =1
B3 | vs(a) = 0, vs(b) = 2 3 |0 0% 0% 3
and a? #1(mod 9)
B4 | vy(a)=0,v3(b)=2 | 3 | {1,062 (0-a0®+6%)3) | !
and a® =1(mod 9)
B5 | vs(a) =1 and 6 | (0,62 6%/3) 4
V3(b) = 2
B6 | v3(a) 2 2 and 6 2

V3(b) =2

{1, 6, 62/3, 63/3}
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B7 v3(a) =0, Vg(b) =3 3 {1, 0, 62’ 63}
and a® # 1(mod 9)
B8 | v3(a) =0, v3(b) = 3 3 {10, 92, (6- ad? + 93)/3}
and a2 = 1(mod 9)
B9 | v3(a@) =1 and 7 |46 62 03/3)
V3(b) =3
B10| v3(a) > 2 and 9 {, e, 92/3’ 93/32}
v3(b) = 3
Bll v3(a) = 0, V3(b) >4 3 {1’ e, 92’ 83}
and a? # 1(mod 9)
B12| v3(a) = 0, v3(b) > 4 3 14,0,0% (6-a0®+0%)3)
and a? = 1(mod 9)
B13| v3(a) =1and 7 | {662 0%3
V3(b) >4
B14 | v3(a) = 2and 11 | 4,9, 6%/3, 63/3%)
V3(b) >4
B15| vs(a) = 0, 3 1,002 0%
b = 6(mod 9) and
a* # 4b +1(mod 9)
B16| v3(a) = 0, 3 | {1,0,02 (6-ad?+03)3}
b = 6(mod 9) and
a’ = 4b +1(mod 9)
B17| v3(a) = 0, 4

b = 3(mod 9) and
a’ # 4b +1(mod 9)

{1, 6, 62, 63}
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B18 V3(a) =0, 5 {1, 0, 92’ (9 o aez + 93)/3} 3
b = 3(mod 9)
a' = 4b +1(mod 9)
and
a* # 4b +1(mod 27)
B19 | v3(a) = 0, s326| {1, 0, (a0 + 62)/3, s3—2[s3/2]
b = 3(mod 9) and (x + y0 + 26 + 63)/3™)}
at = 4b +1(mod 27) m = [(s3 - 2)/2]
4x = 3a (mod 3™)
9a%y = 16b2 (mod 3™*2)
3az = —4b (mod 3"*1)
Table C
Case| Condition sp | p(> 3)-integral basis v, (d(K))
Cl | vpl@)21,vy(b)=0o0r 0 | ¢ 62 63} 0
vp(a)=0,v,(b) 21
C2 | vp(@) 21, vp() =1 3 a, e, 62, 63} 3
C3 | vp(a) =1, vp(b) 2 2 4 | @, 0,62 03/p} 2
C4 vp(a) > 2, Vp(b) =2 6 {1’ 0, 92/p, 93/13} 2
C5 | vpa)=2,vp(d) 23 8 | {,0 0%p, 0%/p2} 2
C6 | vp(a) =3, vp(b)=3 9 a, 8, 6%/p, 03/p2) 3
C7 Vp(ab) =0 sp | {1, 6, 02, (x + ¥0 sp—2sp/2]
+ 2062 + 63)/p™}
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m = [s,/2]
4x = 3a (mod p™)

9a%y = 16b2 (mod p™)

3az = -4b(mod p")

Proof. We give the details of the proof in eight representative cases.

Al13. vy(a) =3 and vy(b) = 2. Then sy = 12. By Theorem 1.1, the
x+ y0 + 202 + 03
92

only if the congruences

element

is 2-integral for some integers x, y and z if and

X = 0(mod 22), Y = 0(mod 2?), Z = 0(mod 28), W = 0(mod 28)

are satisfied. Since these congruences are satisfied for x =0, y =2,z =0

20 + 062 + 93
2

then

is a 2-integral element of K. We now show that

x+y9+292+93
23

2.1)

is not a 2-integral element for any integers x, y and z. If it is a 2-integral
element for some integers x, y and 2z, then by Theorem 1.1,

X =0(mod2?®), Y =0(mod2°%), Z=0(mod2%), W = 0(mod 2'%). (2.2)

It follows from X = 0(mod 2%) and W = 0(mod 2'%) that x = 0 (mod 2)

and y = 0(mod 2), respectively. So, x = 2r and y = 2s for some integers
rand s. From Y = 0 (mod 2°) we obtain, z = r (mod 2), and so z = r + 2t

for some integer . Then from Z = 0(mod 2%) and W = 0(mod 2'2), we

see that 7 = 0(mod 2) and s = 1(mod 2), respectively. Hence

x=4R, y=2+4S, z=2R+ 2t
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for some integers R, S and ¢. Substituting x, ¥ and z into the congruences
in (2.2), we obtain Y = 32 = 0 (mod 26) which is a contradiction. Hence
the element given in (2.1) is not 2-integral. Similarly, it can be easily

verified that 62/2 is a 2-integral element but the element

(x + y0 + 6)2)/22 cannot be 2-integral for any integers x and y. Note that
(x + 0)/2 cannot be a 2-integral element for any x either. Thus by

Theorem 1.2,
2 3
1,0, 9_ 20 +6
2 22

is a 2-integral basis for K and
vo(K) =89 -20+j+k)=12-21+2)=6.

A25. vy(a) =2, b=3(mod16) and sy

I

0(mod 2). Then sy >12. It

e +6 . ;
can be easily verified that X is not a 2-integral element for any

2 2
wd is a 2-integral element and x_ﬂ;:92+_9_

2-integral element for any pair of integers x, y. So by Theorem 1.2, a

is not a

integer x,

2-integral basis for K is of the form

10 1+06% x+y8+z€)2+93
b ’ 2 ) 2’,1 )

is 2-integral,

where m is the largest integer such that

and

vo(d(K)) = sg — 2(m +1).

Using MAPLE, we set w =1, X =4x - 3a, U= 32a2y — 2% and

V = 3az + 4b in Theorem 1.1, and obtain

1

= 32 [3%a2X2 + 23(U + 26V)V + A],
a

Y
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Z = = [3%%X3 - 24U° + 248%%V? + 234 %V X
27°3%a

- 283pU2V + 233403UVX - 233AUV + 3%a3AX
+243bAU - 263b2AV + 24%],

1

A 283848

[38a8X* + 253808V 2X? + 213%a5UVX 2 + 263547V 3X

_ 283343 U2Vx - 283243%U%X + 283%atp?Vt - 283%qt UV
+ 28pU4 - 253303AUVX - 2833a%AV3 + 26AU3

+ 238084 X2 - 283303p2AV X + 2633a3bAUX + 2535atpAV 2
+243404AUV + 293b2AU2 + 2332a3A2X + 260A%U + A3).

Letm=sz_8

. Note that 22m+8 | A. Define integers x, y and z by

X = 0(mod 2"*2), U = 0(mod 2™**) and V = 0(mod gl
respectively. Then substituting
X = r2m+2 T = 82m+4 V = 2:2m+2 and A = 22m+8 + k22m+9

into Y, Z and W with MAPLE, we obtain

Y = 0(mod 22™), Z = 0(mod 2*™) and W = 0(mod 2*™).

x+ y0 + 202 + 03
2]71

Thus, by Theorem 1.1, is a 2-integral element of K, and

by Theorem 1.2,
vo(d(K)) < 6.

Let m =

52 2_ 5 . Note that 227+6 | A. We now show that the element
x+ 30+ 202 + 03
2”1
2-integral if and only if

cannot be 2-integral for any integers x, y and z. It is

X = 0(mod2™), Y = 0(mod2?"), Z = 0(mod2*"), W = 0(mod 2*").
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It follows from Y = 0 (mod 22™) and Z = 0 (mod 23™) that

pEMAT 13902 X2 + 9P (7 4+ 2BVIV + & (2.3)
and

23m+14 136,55 x3 _ 243 4 243304V3 1 243403V 2X - 2830 U2V — 233AUV
+233%a%UVX + 3%a3AX + 213bAU - 28302V + 242, (2.4)
respectively. We consider the following three subcases.

(1) 2m+2 |X, (11) 2m+1 " X, (111) 2”1 ||X

(i) Let 2"*2|X. It follows from (2.3) that
22M+3 | (U + 2bV) V. (2.5)
T g |U, then the expression (2.5) would not hold. Hence either

2m+1—i ||U or 2m+3+i “ U, where { > 0.

If 24171 | U, then either 27|V or 2™*2*|| V. It follows from (2.4)

that 2373+8 243 which is a contradiction.
If gma+i |U, then gL | V. Thus we have

2m+2 | X, 2m+3 IU: 2m+1 ” V and 22m+6 “ A

Substituting
X = r2m+2 [T = s2m+3

V = 2m+1 0 t2m+2 A = 22m+6 o k22m+7

into Y, Z and W with MAPLE, we obtain 2%"|W, which is a

contradiction.
(i) Let 21| X. It follows from (2.3) that

22m+4 | (U + 20V)V. (2.6)

If 2"*3|U, then the expression (2.6) would not hold. Hence 2™*27!||U,
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where i > 0. Then (2.6) implies that either 2"*17% |V or 2m+2+ |V. It

follows from (2.4) that 23" -3i+11 |94y 3 which is a contradiction.
(iii) Let 2™ || X. It follows from (2.3) that
22"+ | (U + 26V)V. @7

If 2™+ | U, then the expression (2.7) would not hold. Hence either

2" | U or 2™ | U, where i > 0.

If gm-i | U, then (2.7) implies that either 2" 1~ [V or gmHl+i | V.

Then it follows from (2.4) that 23"~3*5 24173 which is a contradiction.
If 2*2* | U, then (2.7) implies that 2™ | V. So we have

om " b o 2m+2+i ” U, o ” V and 22/IL+6 “ A.
Substituting

X =2 42305, [T < PR g gomel
Vo= 2™ 4 g2MHl A = 9246 po2meT
into Y = 0 (mod 22™) we obtain
1+2°+ 2" (s + ¢) = 0(mod 4).
Hence i = 0 and s +¢ = 1(mod 2). Thus we have
2" X, 2" U, 2"|V, UyVy = 3(mod4) and 2276 A,
where Uy = U/2"™*2 and V, = V/2". Substituting
X =80 42" [T = p*2 o ggftid
Vo= 2™ p2mH A = 926y po2mtT gyt = ] (mod 2)

into Z with MAPLE, we obtain 2™ | Z, which is a contradiction.
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Thus a 2-integral basis for K is

10 1+ 02 x+y6+z92+63
’ ’ 2 ’ 2”1»

and
m = (sy —8)/2 and vy(d(K)) =sg —2(m +1) =6,
where the integers x, y and z are given by

4x — 3a = 0(mod 2"*2),
32a2y _ 24b2 =0 (mod 2m.+4),

3az + 4b = 0(mod 2™*2).

Cases A26, A28 and A30. vy(a)=2 b=3(modl6) and
sy = 1(mod 2). Then sy > 13.

As in case A25, a 2-integral basis for K is of the form

La 1+62 x+9y0+20%+0°
Iy b 2 bl 2,,1 |

where m is the largest integer such that is 2-integral,

and
vo(d(K)) = sg — 2(m +1).

82—7

5 Define integers x, y and z by

Let m =

X = 0(mod 2*2), U = 0(mod 2"**) and V = 0(mod 2"*?),
respectively. Then substituting

X = r2m+2 U = szm+4 V= t2m+2 and A = 22m+7 4 k22m+8
into Y, Z and W with MAPLE, we obtain

Y = 0(mod 22™), Z = 0(mod 2*™) and W = 0(mod pAmy,
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x+y€)+z@2+e3

Hence, by Theorem 1.1,
2/"

is a 2-integral element, and by

Theorem 1.2, v4(d(K)) < 5.

Now let m = 32 2_ 3. Note that 22m+3 |A. Tt follows from

Y = 0(mod 2%™) that
22M || (U + 26V)V. (2.8)

It follows from (2.8) that 2™*! yU. So 2m~ |U, where i > 0. Then (2.8)
implies that either 2™ 17 |V or 2m+i |V. Then Z =0(mod23™)

implies that 237-3i+5 |24 U3, which is a contradiction. Thus, by Theorem
1.2, vo(d(K)) > 3, and so,
vo(d(K)) = 3 or 5.

Let m=S2_5

. Note that 22m+5 | A. As in case A25, it follows from

Y = 0(mod 22™) and Z = 0(mod 2°™) that

22m+713302X2 1 23(U + 26V)V + A (2.9)
and
2om+143645x3 _ 24U 4 215304V 1 2438V 2X — 203502V
- 233AUV + 233 a%UVX + 3%a3AX + 2%3bAU - 28362AV + 242, (2.10)
respectively. |

If 2™*1| X, then (2.9) implies that

22M+2 | (U + 2bV)V. (2.11)

If 2"*2|U, then (2.11) would not hold. Hence 2M*1-i | U, where
i >0. Then (2.11) implies that either 2™~ |V or 2m+l+i | V. Then it
follows from (2.10) that 23m3i+8 12403, which is a contradiction. So

2m+1 I X.
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We now assume that 2™ || X. It follows from (2.9) that
22+ | (U + 26V)V. (2.12)

If 2mtl |U, then (2.12) would not hold. Hence either gm-i |U or

gm+2+i | U, where i > 0.

If 9mt |U, then (2.12) implies that either grel=i |V or gmHLH | V.

Then it follows from (2.10) that 23"3%5|24U3, which is a contradiction.
If gPHa+ | U, then it follows from (2.12) that 2™ || V. Thus we have

9m “ X, 2m+2+i u U, gm ” V and 22m+5 ” A.

Substituting

X = 2™ 4 pgmtl [ o 2 gome3H
V =g 4 gl § = pBmiB  polmel
into Y = 0(mod 22™), we obtain
Ag + 3+ 2" + 2 (s +t) = 0(mod 4). (2.13)

If Ay = 1(mod 4), then it follows from (2.13) that i > 2 that is oM+ U,

If Ay = 3(mod 4), then it follows from (2.13) that i =1 thatis 2"** || U.

We have shown that the only cases such that ¥ = 0 (mod 22M) with a

possibility of 23" |Z and 24 |\W are
@ 2" | X, 2™ U, 2|V and Ay =1(mod4),

i) 2" | X, 23| U, 2"|V and Ag = 3(mod4).

The first one corresponds to Case A26, and the second one
corresponds to Cases A28 and A30.
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Case A26. vy(a)=2, b=3(mod16), sy =1(mod2) and Ay =1(mod4).
Then sy > 13. For m = (sy - 5)/2, we substitute

X =9m 4 7‘2m+1, U = S2m'+4,
V =9m 4 t2m+1, A = 22m.+5 " k22m+7

into Y, Z and W with MAPLE, and obtain 23 | Z. Thus for this case,

161+62 x+y9+262+€)3
bl bl 2 b 2"1
is a 2-integral basis for K, and

m =(sg —7)/2 and ve(d(K)) = sy — 2(m +1) = 5,
where the integers x, y and z are given by
4x - 3a = 0 (mod 2"”2),
32a%y - 2% = 0(mod 2™*),
3az + 4b = 0(mod 2™*2),

Case A28. a =4 +16A, b=3+16B, sy =1(mod2), Ay = 3(mod 4)
and A + B = 0(mod 4). Then sy > 15. For m = (sy — 5)/2, we substitute

X =9Mm 4 r2m+1 U = 2m+3 + 82m+4
vV =9m, t2m+1 A=3. 22m+5 + k22m+7
r+t=0(mod2), A+ B =0(mod4)

into Y, Z and W with MAPLE, and obtain 22™|Y, 23™|Z and 24" |W.
Thus for this case,

1+62 x+y0+20%+0°
1,9, bl
2 om
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is a 2-integral basis for K, and
m = (s —5)/2 and vy(d(K)) = s9 — 2(m +1) = 3,

where the integers x, y and z are given by

4x - 3a = 2™ + rg™*,

32a2y — 24p? = gmt3 4 gom+e

3az + 4b = 2™ 4 2™+,

r+t = 0(mod 2).

Case A30. a=12+16A, b =3+16B, sy = 1(mod2), Ay = 3(mod 4)
and A - B = 3(mod 4). Then s, > 15. For m = (sy — 5)/2, we substitute

X =9m 4 r2m+1 U = 2m+3 + 82m+4
vV =9m tzllH—l A=3. 22m+5 + k22m+7
r+t=1(mod2), A- B =3(mod4)

into Y, Z and W with MAPLE, and obtain 22" |Y, 2%"|Z and 2" |W.

Thus for this case,

16 1+ 02 x+ye+z62+63
) ) 2 bl 2"1

is a 2-integral basis for K, and
m = s2-5 and vy(d(K)) = sy —2(m +1) = 3,
where the integers x, y and z are given by
4x - 3a = 2™ + r2™*!
32a2y _ 24b2 — 2m+3 + 32m+4’
3az + 4b = 2™ + 2™

r+t =1(mod 2).
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Case B16. v3(a) =0, b=6(mod9) and a* = 4b+1(mod 9). Then
s3 = 3. Substituting x =0, y=1 and z=-a into X, Y, Z and W, we

obtain

X =0(mod 3), Y = 0(mod 3%), Z = 0(mod 3%), W = 0 (mod 3*%).

0 - ab?+03

Hence 3

is a 3-integral element of K. Thus

{1 0. 62 6—a62+93}
b 2 ’ 3

is a 3-integral basis for K and v3(d(K)) =3 -2 = 1.
Case B19. v3(a) =0, b =3(mod9) and a? = 4b + 1 (mod 27). Then

2
afi+8 is a 3-integral element of K

s3 > 6. It can be easily verified that

x + y0 + 02
32
y.Let m = [(s3 — 2)/2]. Define integers x, y and z by

and the element cannot be 3-integral for any integers x and

X = 0(mod3™), U =0(mod3™*?) and V = 0(mod 3™*),

respectively. Then substituting

32m+2 + k22m+3’ if Sg iseven,

X = r3m’ U = 83m+2’ W= t3m+1, A=
32m+3 + k22m+4, if S3 is Odd,
into Y, Z and W with MAPLE, we obtain

Y = 0(mod 3%™), Z = 0(mod 3%") and W = 0(mod 3*™).

x+ y0 + 202 + 03
3"1

Hence, by Theorem 1.1, is a 3-integral element of K.

Thus, by Theorem 1.2,

r ad+0% x+y0+20%+0°
b 1 3 ) 3,)1
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is a 3-integral basis for K, and
m = [(s3 — 2)/2] and v3(d(K)) = s3 — 2(1 + m) = s3 — 2[s3/2],
where the integers x, y and z are given by
4x — 3a = 0 (mod 3™),

32a2y _ 24b2 = 0 (mod 3III.+2)’
3az + 4b = 0 (mod 3™ *).

Case C7. vp(ab)=0. Then s, >0. Let m =[sp/2]. Note that

pzm | A. Define integers x, y, z by

X =0(mod p™), U =0(mod p™) and V = 0(mod p™),
respectively. Then substituting

p2m + k22m+1’

p2m+1 + k22’”+2,

X = rpm’ U = Spm, V = tpm, A = lf Sp ?S even,
if sp 1s odd,

into Y, Z and W with MAPLE, we obtain

Y = 0(mod p?"), Z = 0(mod p*>") and W = 0(mod p*™).

X+ y0 + 202 + 03
m

p

Hence, by Theorem 1.1, is a p-integral element of K.

Thus, by Theorem 1.2,

{1 0 62 x+y6+262+63}

m

b
is a p-integral basis of K, and
m = [s,/2] and v,(d(K)) = s, - 2m =5, - 2[s,/2],
where the integers x, y and z are given by

4x — 3a = 0(mod p™),

32a2y - 2% = 0(mod p™),
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3az + 4b = 0 (mod p™).

3. An Integral Basis and the Discriminant of a Quartic Field
Defined by a Trinomial

The following theorem follows from Theorem 1.3 and Theorem 2.1.

Theorem 3.1. Let K = Q(0) be a quartic field, where 6 is a root of the

irreductble trinomial (1.1). If there are no rational primes dividing i(8),

then {1, 0, 62, 63} is an integral basis of K. Let py, ps, ..., ps be the
distinct primes dividing i(0). Let

J )
by’

{1 o Yrt 0,0 + 62 x. + 5,0+ 2,92 + 63}
) ’ s kr
by

be a p,-integral basis of K (r =1,2,..,s) as given in Theorem 1.2.
Define the integers u, v, x, y, z by

u = u, (mod pfr), v = v, (mod pir), r=1,2, ..,
k _ k, _ k, _
x = x, (mod p;"), y =y, (mod pir), z=2z.(modp¥r), r=12, ..s,
and let

S = Ii[pf’, T-= li[pf"-
=1 r=1

Then an integral basis of K is

10 u+v0 + 02 x+y9+z€2+93
b ’ S b .T )

and the discriminant of K is

d(K)=sgn(A)zusﬂH p H p? H u

p b
p>3 p>3 p>3
plab pla p*lb pla, p|b
sp odd

3
or p?la, p*|b  orp’la, p°| b
or p2|| a, p°|b
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where

and

0 if vo(a)=0,
2 if vo(a)=1and b =1(4)
or vo(a) =1 and vg(b) > 2
or vo(a) = 2 and vg(b) 2 3
or vg(a) > 3 and b = 7(8),
3 if va(a) =2, b =3(16), Ag = 3(4) and sg odd
or vo(a) = 2, b = 11(16) and Ag = 1(4),
4 if vo(a) =1and b = 3(4)
or vo(a) =1 and vg(b) =1
or va(a) = 2 and va(b) = 2
or vo(a) = 3 and b = 3(8)
ora=16A,b=4+16B and A+ B = 0(2),

={5 if va(a) =2, b=11(16) and Ag = 3(4)

or vo(a) = 2, b = 3(16), Ag = 1(4) and sy odd,
6 if vo(a)=3 and vo(b)=2,3
or vo(a) > 4 and b = 12(16)
or va(a) = 2 and b = 1(8)
or vo(a) = 2, b = 3(16) and sy even
ora=16A4,b=4+16B and A+ B =1(2),
8 if va(a) =2 and vo(b) =1
or vo(a) > 3 and b = 1(4),
9 if va(a) =2 and b =1(4),
10 if vo(a) = 4 and vg(b) = 3,
11 if va(a) 2 3 and vo(b) =1
or va(a) = 5 and vg(b) = 3,

0 if va()=0

or vg(a) =0, b = 3(9), a* = 4b +1(27) and s3 even,
1 if va(a) =0, a® = 1(9) and v3(b) 2 2

or vg(a) = 0, b = 6(9) and a* = 4b +1(9)

or v3(a) =0, b = 3(9), a = 4b + 1(27) and s3 odd,
2 if vg(a) = 2 and v3(b) = 2,
3 if v3(a)>1and v3(b) =1

i orvsg(a)=0, a® #1(9) and v3(b) > 2

or v3(a) > 2 and v3(b) = 3

or vg(a) = 0, b = 6(9) and at # 4b +1(9)

or v3(a) = 0, b = 3(9), a* = 4b +1(9) and a* # 4b+1(27),
4 if vs3(a)=1and v3(b) = 2

or v3(a) = 0, b = 3(9), at # 4b +1(9),
5 if va(a)=1and v3(b) =3
t or v3(a) = 1, 2 and v3(b) 2 4.
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Remark 3.1. Llorente, Nart and Vila [4] determined the discriminant
of a number field defined by an irreducible trinomial

x" +ax*+b, a,beZ

in terms of n, s, @, b except for some cases. When n = 4 and s =1, the

work of Llorente, Nart and Vila [4] does not cover the cases given in the
following theorem which is a special case of Theorem 3.1.

Theorem 3.2. Let K = Q(0) be a quartic field, where 0 is a root of the

irreducible trinomial (1.1).
@) If va(a) 21 and vy(b) = 0, then

(2 if vo(a) =1 and b =1(4)
or vo(a) > 3 and b = 7(8),
3 if vola) =2, b =3(16), Ay = 3(4) and sy odd
or vo(a) = 2, b =11(16) and Ay = 1(4),
4 if vo(a) =1 and b = 3(4)
or vo(a) = 3 and b = 3(8),
R e o o b o 06 RS B
or vo(a) =2, b = 3(16), Ay =1(4) and sy odd,
6 if vo(a) =2 and b =17(8)
or vo(a) = 2, b = 3(16) and sy even,
8 if va(a) >3 and b =1(4),
9 if vo(a) =2 and b = 1(4).

1) If vo(a) = 3 and vy(b) = 2, then

4 if a=16A,b=4+16B and A + B = 0(2),
if vo(a) =3 and vya(b) = 2
or vo(a) > 4 and b = 12(16)
ora =16A4,b =4+16B and A + B = 1(2).

va(d(K)) =
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@iii) If va(a) = 0 and vg(b) > 1, then

0 if v3(@)=0,b=309) a’ = 4b +1(27) and s even,
1 if vz(a) = 0, v3(b) > 2 and a® = 1(9)

or vs(a) = 0, b = 6(9) and a* = 4b + 1(9)

or vs(a) = 0, b = 3(9), a* = 4b +1(27) and s odd,
3 if va(a) = 0, v3(b) = 2 and a® # 1(9)

or v3(a) = 0, b = 6(9) and a* # 4b +1(9)

va(d(K)) =

or v3(@) = 0, b = 3(9), a* = 4b +1(9) and a* # 4b +1(27),
4 if v3(a) =0, b =3(9), a* # 4b +1(9).

In the remaining cases the evaluation of d(K) by Llorente, Nart and

Vila [4] agrees with that in Theorem 3.1.
Remark 3.2. Llorente, Nart and Vila [5] determined the discriminant
of a number field defined by an irreducible trinomial
m
xP +ax+b, a, beZ

When p = 2 and m = 2, the work of Llorente, Nart and Vila [5] does not

cover part (iii) in Theorem 3.2. In the remaining cases the evaluation of .
d(K) by Llorente, Nart and Vila [5] agrees with that in Theorem 3.2.

Remark 38.3. The discriminant of a cubic field was completely
determined in [3] by Llorente and Nart, and then in [1] by Alaca using
p-integral bases.

Example 3.1. Let K = Q(6), where 0* +a0+b=0. Let a =48 =

94.3 and b =188 = 22 .47. Since vy(a) =4 and b =12(mod16), by

case A16, a 2-integral basis for K is

2 3
{1,6,2+e 20 + 6 }

22 ¢ 22
Since vg3(b) = 0, by case B1, a 3-integral basis for K is

{1, 6, 62, 63}.
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Since v47(a) = 0 and v47(b) = 1, by case C1, a 47-integral basis is
{1, 0, 62, 63).
Since vs(ab) = 0, we find a 5-integral basis for K using case C7. Note that
A = 28p% — 33a? = 2! . 5% . 3803.
So, s5 =2 and m = s5/2 = 2/2 = 1. We need to solve the congruences
4x = 3a(mod 5), 9a’y = 16b (mod 5), 3az = —4b(mod 5).

A solutionis x =1, y = 4 and z = 2. So, a 5-integral basis for K is

{1 0. 62 1+4e+292+e3}
) ’ 9 5 .

For p # 2, 3, 5, 47, by case C7, a p-integral basis for K is
{1, 0, 62, 63}.

Then, by Theorem 3.1, an integral basis for K is

v 2+02 x+y0+20%+0°
 J b 22 ) 22.5 )

where
x = 0(mod4), y=2(mod4), z=0(mod4),

x =1(mod5), y=4(mod5), z=2(mod5).

A solution is given by x =16, y =14 and z = 12. Thus an integral basis
for K is

i g 2+0% 16+140+120% +0°3
| apts 2%.5

and the discriminant of K is
d(K) = 28 - 3803.
Example 3.2. Let K = Q(0), where 0* +a0 +b=0. Let a = 360 =

23.32.5 and b =360 =23.32.5. Since vy(a) =3 and vy(b) =3, by
case A17, a 2-integral basis for K is
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e o’
Lo — 2.\
{ 2 22}

Since vg(a)=2 and v3(b) = 2, by case B6, a 3-integral basis for K is

g* ¢°
{17 e) ? ) ?}'
Since vs(a) =1 and vs(b) = 1, by case C2, a 5-integral basis for K is

{0, 62, 03).

Since vy3(ab) = 0, we find a 13-integral basis for K using case C7. Note
that

A =28p% —33q% = 2!2.36 .53 .7.132
So, s;3 = 2 and m = s13/2 = 2/2 = 1. We need to solve the congruences
4x = 3a(mod 13), 9a%y = 16b% (mod13), 3az = —4b(mod 13).

A solutionis x =10, y = 9 and z = 3. So, a 13-integral basis of K is

{1 o a2 10+9e+392+e3}

13
Since vp(ab) = 0 for p # 2, 3, 5, 13, by case C7, a p-integral basis for K is
{1, 6, 62, 6%}

Then, by Theorem 3.1, an integral basis for K is

02 x+y6+292+63
l!e) b 2 4
2-3 22.3.13

where

x = 0(mod4), y=0(mod4), z=0(mod4),
x = 0(mod3), y=0(mod3), z=0(modS3),

x =10(mod13), y =9(mod13), z = 3(mod13).
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A solution is given by x = 36, y =48 and z =120. Thus an integral
basis for K is

Lo 82 36+480+1200” +6°
R 22.3.13

and the discriminant of K is
d(K)=-28.32.5%.7.
Example 3.3. Let K = Q(6), where 6% + a0+ b =0. Let a = 28 =
22 .7 and b =189 = 33 . 7. Then
A =28p% <3%p% =27.5% 7% . 19>
Since vg(a) = 2 and b = 1(mod 4), by case A20, a 2-integral basis for K is
(1, 6, 62, 03).

Since vs(a) =0, v3(b) = 3 and a® =1(mod 9), by case B8, a 3-integral

basis for K is

16 62 0+20%+63
8, 0%, ————.
Since vq(a) =1 and v;(b) = 1, by case C2, a 7-integral basis for K is

{1, o, 62, 8%}.

Since v;g(ab) = 0, using case C7, we find that a 19-integral basis for K is

{1 o o2 2+5e+1092+e3}

19
Since vp(ab) =0 for p # 2, 3, 7,19, by case C7, a p-integral basis for K is
{1, 6, 62, 6°}.

Then, by Theorem 3.1, we find that an integral basis for K is

9 21+ 430 +290% + 03
{1,9,9, T
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and the discriminant of K is
d(K)=2%-3.7%

In the following example we illustrate how to combine the cases from
Table A, Table B and Table C in general.

Example 3.4. Let K = Q(0), where 0% + ab + b = 0. We consider the
cases A7, B19 and C7.

Case AT7. vy(a) = 2 and vy(b) = 2.

Case B19. v3(a) = 0, b = 3(mod 9) and a* = 4b + 1 (mod 27).

Case C7. v,(ab) = 0.
A 2-integral basis of K is {1, 0, — —}

A 3-integral basis of K is

18 ad+02 x+y0+20%+0°
t b 3 ; J 3"1 )

where the integers x, y, z, m are given by
m = [(s3 - 2)/2],
4x = 3a (mod 8™,
9a%y = 16b% (mod 3™*?),
3az = —4b(mod 3™*1).

A p(> 3)-integral basis of K is

{1 0. 02 x+y6+z62+63}

m

p

where the integers x, y, z, m are given by

m = [sp/2],



p-INTEGRAL BASES OF A QUARTIC FIELD 167
4x = 3a (mod p™),
9q2y = 16b% (mod p™),
3az = —4b(mod p™).

Then an integral basis of K is

16 ad + 62 x+y9+z€2+93
b : 6 b T (2

where

T = 9. 3l(s3-2)/2] Hp[sp/2]’

p>3

and the integers x, y and z are given by

x, 5, z = 0(mod 2),

4x = 3a[mod 3l(s3-2)/2] H p[sp/ 2]],

p>3

9a2y = 16b2[mod 3l(s3+2)/2] Hp[sp/zl],
p>3

3az = —4b[mod gles /2] H p[sp /2]]. (3.1)
p>3

The discriminant of K is

d(K) = 2* [ o /2.
p#2

We illustrate this example with some numerical values. Let

K = Q(0), 6* + 760 + 2748 = 0. Then

a=176 b=2748, A=2%.3%.52.126493 and 7 =2-3%.5.
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The system of congruences (3.1) becomes

x, y, z = 0(mod 2),
4x = 3a(mod 32 - 5),
9a2%y = 16b2 (mod 3° - 5),

3az = —4b(mod 3% - 5). (3.2)

By solving the system of congruences (3.2) we find that

{1 5 40+ 02 _78 +760 — 3402 + 03
' ] bl 6 ) 2-33.5

is an integral basis of K and the discriminant of K is d(K) = 24 .126493.

Note that the last two examples are not covered by the results of [5].
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