p-INTEGRAL BASES OF A QUARTIC FIELD DEFINED BY A TRINOMIAL $x^4 + ax + b$

ŞABAN ALACA and KENNETH S. WILLIAMS*

(Received July 18, 2003)

Submitted by K. K. Azad

Abstract

Let P be a prime ideal of an algebraic number field K, let p be a rational prime, and let $\alpha \in K$. If $v_P(\alpha) \ge 0$, then α is called a P-integral element of K, where $v_P(\alpha)$ denotes the exponent of P in the prime ideal decomposition of $\langle \alpha \rangle$. If α is P-integral for each prime ideal P of K such that $P \mid pO_K$, then α is called a p-integral element of K. Let $\{\omega_1, \omega_2, ..., \omega_n\}$ be a basis of K over $\mathbb Q$, where each ω_i $(1 \le i \le n)$ is a p-integral element of K. If every p-integral element α of K is given as $\alpha = a_1\omega_1 + a_2\omega_2 + \cdots + a_n\omega_n$, where the a_i are p-integral elements of $\mathbb Q$, then $\{\omega_1, \omega_2, ..., \omega_n\}$ is called a p-integral basis of K. In this paper a p-integral basis of a quartic field K defined by a trinomial is determined for each rational prime p, and then the discriminant of K and an integral basis of K are obtained from its p-integral bases.

1. Introduction

In this paper we determine for each prime p a p-integral basis for a quartic field $K = \mathbb{Q}(\theta)$, where θ is a root of the irreducible quartic

 ${\bf 2000~Mathematics~Subject~Classification:~11R16,~11R29}.$

Key words and phrases: quartic field, p-integral basis, integral basis, discriminant.

*Research supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.

© 2004 Pushpa Publishing House

trinomial $x^4 + ax + b$, $a, b \in \mathbb{Z}$. The discriminant of K and an integral basis of K are then obtained from its p-integral bases.

Let $K = \mathbb{Q}(\theta)$ be an algebraic number field of degree n, and let O_K denote the ring of integral elements of K. If $O_K = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \cdots + \alpha_n \mathbb{Z}$, then $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is said to be an *integral basis* of K.

Let P be a prime ideal of K, let p be a rational prime, and let $\alpha \in K$. If $\nu_P(\alpha) \geq 0$, then α is called a P-integral element of K, where $\nu_P(\alpha)$ denotes the exponent of P in the prime ideal decomposition of $\langle \alpha \rangle$. If α is P-integral for each prime ideal P of K such that $P \mid PO_K$, then α is called a p-integral element of K.

Let $\{\omega_1, \, \omega_2, \, ..., \, \omega_n\}$ be a basis of K over \mathbb{Q} , where each ω_i $(1 \leq i \leq n)$ is a p-integral element of K. If every p-integral element α of K is given as $\alpha = a_1\omega_1 + a_2\omega_2 + \cdots + a_n\omega_n$, where the a_i are p-integral elements of \mathbb{Q} , then $\{\omega_1, \, \omega_2, \, ..., \, \omega_n\}$ is called a p-integral basis of K.

In Theorem 2.1 a p-integral basis of a quartic field K is determined for every rational prime p, and in Theorem 3.1 the discriminant of K and an integral basis of K are obtained from its p-integral bases.

Let $K = \mathbb{Q}(\theta)$, where θ is a root of the irreducible trinomial

$$x^4 + ax + b$$
, $a, b \in \mathbb{Z}$.

If for any rational prime p we have $v_p(a) \geq 3$ and $v_p(b) \geq 4$, then θ/p is an algebraic integer whose minimal polynomial is $x^4 + (a/p^3)x + b/p^4 \in \mathbb{Z}[x]$ and $K = \mathbb{Q}(\theta/p)$. Hence we may assume that $K = \mathbb{Q}(\theta)$, where θ is a root of the irreducible trinomial

 $x^4 + ax + b$, $a, b \in \mathbb{Z}$ with $v_p(a) < 3$ or $v_p(b) < 4$ for every prime p.(1.1)

The discriminant of θ is $d(\theta) = \Delta = 2^8 b^3 - 3^3 a^4 \neq 0$ and $\Delta = i(\theta)^2 d(K)$, where d(K) denotes the discriminant of K, and $i(\theta)$ is the index of θ . For each rational prime p, set $s_p = v_p(\Delta)$ and $\Delta_p = \Delta/p^{s_p}$.

The following three theorems are the special cases for n=4 of Theorem 2.1, Theorem 3.1 and Theorem 3.3 respectively, given in [2].

Theorem 1.1. Let $K = \mathbb{Q}(\theta)$ be a quartic field, where θ is a root of the irreducible trinomial (1.1). Let p be a rational prime, and let

$$\alpha = \frac{x + y\theta + z\theta^2 + w\theta^3}{p^m}, \text{ where } x, y, z, w, m \in \mathbb{Z}, m \ge 0.$$

Set

$$X = 4x - 3aw$$

$$Y = 6x^2 - 9axw + 3ayz + 4byw + 2bz^2 + 3a^2w^2,$$

$$Z = 4x^{3} - 9ax^{2}w + 4bxz^{2} + 8bxyw + 6axyz + 6a^{2}xw^{2} - ay^{3}$$
$$-4by^{2}z - 3a^{2}yzw + a^{2}z^{3} - 5abyw^{2} + abz^{2}w + 4b^{2}zw^{2} - a^{3}w^{3}.$$

$$W = x^{4} + 3ax^{2}yz + 2bx^{2}z^{2} - axy^{3} - 4bxy^{2}z - 3ax^{3}w + by^{4}$$

$$+ b^{2}z^{4} + b^{3}w^{4} + 3a^{2}x^{2}w^{2} - 3a^{2}xyzw + a^{2}xz^{3} - 5abxyw^{2}$$

$$+ abxz^{2}w + 4b^{2}xzw^{2} - a^{3}xw^{3} + 4bx^{2}yw + 3aby^{2}zw$$

$$+ 2b^{2}y^{2}w^{2} - abyz^{3} - 4b^{2}yz^{2}w + a^{2}byw^{3} - ab^{2}zw^{3}.$$

Then α is p-integral if and only if

$$X \equiv 0 \pmod{p^m}, \quad Y \equiv 0 \pmod{p^{2m}},$$
$$Z \equiv 0 \pmod{p^{3m}}, \quad W \equiv 0 \pmod{p^{4m}}.$$

Theorem 1.2. Let $K = \mathbb{Q}(\theta)$ be a quartic field, where θ is a root of the irreducible trinomial (1.1). Let p be a rational prime, and let

$$\frac{h+\theta}{p^i} \quad (h \in \mathbb{Z}),$$

$$\frac{u+v\theta+\theta^2}{p^j} \quad (u,v\in\mathbb{Z}),$$

$$\frac{x + y\theta + z\theta^2 + \theta^3}{p^k} \quad (x, y, z \in \mathbb{Z})$$

be p-integral elements of K having the integers i, j and k as large as possible. Then

$$\left\{1, \frac{h+\theta}{p^i}, \frac{u+v\theta+\theta^2}{p^j}, \frac{x+y\theta+z\theta^2+\theta^3}{p^k}\right\}$$

is a p-integral basis of K, and

$$v_p(d(K)) = s_p - 2(i+j+k).$$

Theorem 1.3. Let $K = \mathbb{Q}(\theta)$ be a quartic field, where θ is a root of the irreducible trinomial (1.1). If there are no rational primes dividing $i(\theta)$, then $\{1, \theta, \theta^2, \theta^3\}$ is an integral basis of K. Let $p_1, p_2, ..., p_s$ be the distinct primes dividing $i(\theta)$. Let

$$\left\{1, \frac{h_r + \theta}{p_r^{i_r}}, \frac{u_r + v_r\theta + \theta^2}{p_r^{j_r}}, \frac{x_r + y_r\theta + z_r\theta^2 + \theta^3}{p_r^{k_r}}\right\}$$

be a p_r -integral basis of K (r = 1, 2, ..., s) as given in Theorem 1.2. Define the integers h, u, v, x, y, z by

$$h \equiv h_r \pmod{p_r^{i_r}}, \quad u \equiv u_r \pmod{p_r^{j_r}}, \quad v \equiv v_r \pmod{p_r^{j_r}}, \quad (r = 1, 2, ..., s),$$

$$x\equiv x_r(\bmod p_r^{k_r}),\ y\equiv y_r(\bmod p_r^{k_r}),\ z\equiv z_r(\bmod p_r^{k_r}),\ (r=1,\,2,\,...,\,s),$$

and let

$$R = \prod_{r=1}^{s} p_r^{i_r}, \, S = \prod_{r=1}^{s} p_r^{j_r}, \, T = \prod_{r=1}^{s} p_r^{k_r}.$$

Then an integral basis of K is

$$\left\{1,\,\frac{h+\theta}{R}\,,\,\frac{u+v\theta+\theta^2}{S}\,,\,\frac{x+y\theta+z\theta^2+\theta^3}{T}\right\}.$$

2. p-integral Bases of a Quartic Field Defined by a Trinomial

Theorem 2.1. Let $K = \mathbb{Q}(\theta)$ be a quartic field, where θ is a root of the irreducible trinomial (1.1). Then a 2-integral basis, a 3-integral basis, and a p(>3)-integral basis of K are given in Table A, Table B, and Table C, respectively. (Note that the notation $a \equiv b \pmod{m}$ has been shortened to $a \equiv b(m)$ in the tables.)

Table A

	Table A							
Case	Condition	s_2	2-integral basis	$v_2(d(K))$				
A1	$v_2(a) = 0$	0	$\{1, \theta, \theta^2, \theta^3\}$	0				
A2	$v_2(a) = 1$ and $b = 3(4)$	4	$\{1, \theta, \theta^2, \theta^3\}$	4				
A3	$v_2(a) = 1$ and $b = 1(4)$	4	$\{1, \theta, \theta^2, (1 + \theta^2 + \theta^3)/2\}$	2				
A4	$v_2(a) = 1$ and $v_2(b) = 1$	4	$\{1, \theta, \theta^2, \theta^3\}$	4				
A5	$v_2(a) = 1$ and $v_2(b) \ge 2$	4	$\{1, \theta, \theta^2, \theta^3/2\}$	2				
A6	$v_2(a) = 2$ and $v_2(b) = 1$	8	$\{1, \theta, \theta^2, \theta^3\}$	8				
A7	$v_2(a) = 2$ and $v_2(b) = 2$	8	$\{1, \theta, \theta^2/2, \theta^3/2\}$	4				
A8	$v_2(a) = 2$ and $v_2(b) \ge 3$	8	$\{1, \theta, \theta^2/2, \theta^3/2^2\}$	2				
A9	$v_2(a) \ge 3$ and $b = 1(4)$	8	$\{1,\theta,\theta^2,\theta^3\}$	8				
A10	$v_2(a) \ge 3$ and $b = 3(8)$	8	$\{1, \theta, (1 + \theta^2)/2, (\theta + \theta^3)/2\}$	4				

A11	$v_2(a) \ge 3$ and $b = 7(8)$	8	$\{1, \theta, (1+\theta^2)/2, (1+\theta+\theta^2+\theta^3)/2^2\}$	2
A12	$v_2(a) \ge 3$ and $v_2(b) = 1$	11	$\{1, \theta, \theta^2, \theta^3\}$	11
A13	$v_2(a) = 3$ and $v_2(b) = 2$	12	$\{1, \theta, \theta^2/2, (2\theta + \theta^3)/2^2\}$	6
A14	a = 16A, b = 4 + 16B A + B = 1(2)	14	$\{1, \theta, (2 + 2\theta + \theta^2)/2^2, (2\theta + \theta^3)/2^2\}$	6
A15	a = 16A, b = 4 + 16B $A + B = 0(2)$	14	$\{1, \theta, (2 + 2\theta + \theta^2)/2^2, ((2 + 4B)\theta + 2\theta^2 + \theta^3)/2^3\}$	4
A16	$v_2(a) \ge 4$ and $b \equiv 12(16)$	14	$\{1, \theta, (2+\theta^2)/2^2, (2\theta+\theta^3)/2^2\}$	6
A17	$v_2(a) = 3$ and $v_2(b) = 3$	12	$\{1, \theta, \theta^2/2, \theta^3/2^2\}$	6
A18	$v_2(a) = 4$ and $v_2(b) = 3$	16	$\{1, \theta, \theta^2/2, \theta^3/2^2\}$	10
A19	$v_2(a) \ge 5$ and $v_2(b) = 3$	17	$\{1, \theta, \theta^2/2, \theta^3/2^2\}$	11
A20	$v_2(\alpha) = 2$ and $b \equiv 1(4)$	9	$\{1, \theta, \theta^2, \theta^3\}$	9
A21	$v_2(\alpha) = 2$ and $b \equiv 7(8)$	10	$\{1, \ \theta, \ (1 + \theta^2)/2, \ (\theta + \theta^3)/2\}$	6
A22	a = 4(16), b = 11(16) $\Delta_2 = 1(4)$	11	$\{1, \theta, (1 + \theta^2)/2, (5 + \theta + \theta^2 + \theta^3)/2^3\}$	3
A23	$a = 12(16), b = 11(16)$ $\Delta_2 = 1(4)$	11	$\{1, \theta, (1 + \theta^2)/2, (7 + \theta + 3\theta^2 + \theta^3)/2^3\}$	3

A24	$v_2(a) = 2, b \equiv 11(16)$	11	$\{1, \theta, (1+\theta^2)/2,$	5
	$\Delta_2 \equiv 3(4)$		$(1 + \theta + \theta^2 + \theta^3)/2^2$	
A25	$v_2(a) = 2, b \equiv 3(16)$	$s_2 \ge 12$	$\{1, \theta, (1 + \theta^2)/2,$	6
	$s_2 = 0(2)$		$(x + y\theta + z\theta^2 + \theta^3)/2^m\}$	
			$m = (s_2 - 8)/2$	
			$4x - 3a \equiv 0 \pmod{2^{m+2}}$	
			$9a^2y - 16b^2 \equiv 0 \pmod{2^{m+4}}$	
			$3az + 4b \equiv 0 \pmod{2^{m+2}}$	
A26	$v_2(a)=2,b\equiv 3(16)$	<i>s</i> ₂ ≥ 13	$\{1, \theta, (1 + \theta^2)/2,$	5
	$s_2 \equiv 1(2), \ \Delta_2 \equiv 1(4)$		$(x + y\theta + z\theta^2 + \theta^3)/2^m\}$	
			$m = (s_2 - 7)/2$	
			$4x - 3a \equiv 0 \pmod{2^{m+2}}$	
			$9a^2y - 16b^2 \equiv 0 \pmod{2^{m+4}}$	
1.43			$3az + 4b \equiv 0 \pmod{2^{m+2}}$	
A27	a=4+16A,	13	$\{1, \theta, (1+\theta^2)/2,$	3
	b = 3 + 16B		$(x + y\theta + z\theta^2 + \theta^3)/2^4$	
	$s_2 \equiv 1(2)$		x = 15 + 12B	
	$A+B\equiv 2(4)$		y = 9 + 8B	
i	$\Delta_2 \equiv 3(4)$		z = 3 + 4B	
A28	$\alpha=4+16A,$	$s_2 \ge 15$	$\{1, \theta, (1+\theta^2)/2,$	3
	b = 3 + 16B		$(x+y\theta+z\theta^2+\theta^3)/2^m\}$	
	$s_2 \equiv 1(2)$		$m = (s_2 - 5)/2$	
	$A+B\equiv 0(4)$		$4x - 3a = 2^m + r2^{m+1}$	
	$\Delta_2 = 3(4)$		$9a^2y - 16b^2 \equiv 2^{m+3} \pmod{2^{m+4}}$	
_			$3az + 4b = 2^m + t2^{m+1}$	
			$r+t\equiv 0(2)$	

A29	$a = 12 + 16A,$ $b = 3 + 16B$ $s_2 = 1(2)$ $A - B = 1(4)$ $\Delta_2 = 3(4)$	13	$\{1, \theta, (1 + \theta^{2})/2, (x + y\theta + z\theta^{2} + \theta^{3})/2^{4}\}$ $x = 9 + 12B$ $y = 9 + 8B$ $z = 5 + 4B$	3
A30	$a = 12 + 16A,$ $b = 3 + 16B$ $s_2 = 1(2)$ $A - B = 3(4)$ $\Delta_2 = 3(4)$	s ₂ ≥ 15	$\{1, \theta, (1 + \theta^{2})/2, (x + y\theta + z\theta^{2} + \theta^{3})/2^{m}\}$ $m = (s_{2} - 5)/2$ $4x - 3a = 2^{m} + r2^{m+1}$ $9a^{2}y - 16b^{2} = 2^{m+3} \pmod{2^{m+4}}$ $3az + 4b = 2^{m} + t2^{m+1}$ $r + t = 1(2)$	3

Table B

Case	Condition	s_3	3-integral basis	$v_3(d(K))$
B1	$v_3(b) = 0$	0	$\{1, \theta, \theta^2, \theta^3\}$	0
B2	$v_3(a) \ge 1$ and $v_3(b) = 1$	3	$\{1, \theta, \theta^2, \theta^3\}$	3
Вз	$v_3(a) = 0, v_3(b) = 2$ and $a^2 \not\equiv 1 \pmod{9}$	3	$\{1, \theta, \theta^2, \theta^3\}$	3
B4	$v_3(a) = 0, v_3(b) = 2$ and $a^2 \equiv 1 \pmod{9}$	3	$\{1, \theta, \theta^2, (\theta - \alpha\theta^2 + \theta^3)/3\}$	1
В5	$v_3(a) = 1$ and $v_3(b) = 2$	6	$\{1, \theta, \theta^2, \theta^3/3\}$	4
В6	$v_3(a) \ge 2$ and $v_3(b) = 2$	6	$\{1, \ \theta, \ \theta^2/3, \ \theta^3/3\}$	2

В7	$v_3(a) = 0, v_3(b) = 3$	3	$\{1, \theta, \theta^2, \theta^3\}$	3
	and $a^2 \not\equiv 1 \pmod{9}$		1, 1's . 01 au	
В8	$v_3(a) = 0, v_3(b) = 3$ and $a^2 \equiv 1 \pmod{9}$	3	$\{1, \theta, \theta^2, (\theta - \alpha\theta^2 + \theta^3)/3\}$	1
В9	$v_3(a) = 1$ and $v_3(b) = 3$	7	$\{1, \theta, \theta^2, \theta^3/3\}$	5
B10	$v_3(a) \ge 2$ and $v_3(b) = 3$	9	$\{1, \theta, \theta^2/3, \theta^3/3^2\}$	3
B11	$v_3(a) = 0, v_3(b) \ge 4$ and $a^2 \not\equiv 1 \pmod{9}$	3	$\{1, \theta, \theta^2, \theta^3\}$	3
B12	$v_3(a) = 0, v_3(b) \ge 4$ and $a^2 \equiv 1 \pmod{9}$	3	$\{1, \theta, \theta^2, (\theta - \alpha\theta^2 + \theta^3)/3\}$	1
B13	$v_3(a) = 1$ and $v_3(b) \ge 4$	7	$\{1, \theta, \theta^2, \theta^3/3\}$	5
B14	$v_3(a) = 2$ and $v_3(b) \ge 4$	11	$\{1, \theta, \theta^2/3, \theta^3/3^2\}$	5
B15	$v_3(a) = 0,$ $b \equiv 6 \pmod{9}$ and $a^4 \not\equiv 4b + 1 \pmod{9}$	3	$\{1, \theta, \theta^2, \theta^3\}$	3
B16	$v_3(a) = 0,$ $b \equiv 6 \pmod{9}$ and $a^4 \equiv 4b + 1 \pmod{9}$	3	$\{1, \theta, \theta^2, (\theta - a\theta^2 + \theta^3)/3\}$	1
B17	$v_3(a) = 0,$ $b \equiv 3 \pmod{9}$ and $a^4 \not\equiv 4b + 1 \pmod{9}$	4	$\{1, \theta, \theta^2, \theta^3\}$.4

B18	$v_3(a)=0,$	5	$\{1, \theta, \theta^2, (\theta - \alpha\theta^2 + \theta^3)/3\}$	3
	$b \equiv 3 \pmod{9}$			141
	$a^4 \equiv 4b + 1 \pmod{9}$		Li rathien is	
	and		12 × 12 ± 1 5 6	kes
	$a^4 \not\equiv 4b + 1 \pmod{27}$			
B19	$v_3(a) = 0,$	$s_3 \ge 6$	$\{1, \theta, (\alpha\theta + \theta^2)/3,$	$s_3 - 2[s_3/2]$
	$b \equiv 3 \pmod{9}$ and		$(x+y\theta+z\theta^2+\theta^3)/3^m\}$	he bun
	$a^4 \equiv 4b + 1 \pmod{27}$		$m = \left[(s_3 - 2)/2 \right]$	
			$4x \equiv 3a \pmod{3^m}$	
			$9a^2y \equiv 16b^2 \pmod{3^{m+2}}$	
			$3az \equiv -4b \pmod{3^{m+1}}$	

Table C

Case	Condition	s_p	p(> 3)-integral basis	$v_p(d(K))$			
C1	$v_p(a) \ge 1$, $v_p(b) = 0$ or $v_p(a) = 0$, $v_p(b) \ge 1$	0	$\{1,\theta,\theta^2,\theta^3\}$	0			
C2	$v_p(a) \ge 1, v_p(b) = 1$	3	$\{1, \theta, \theta^2, \theta^3\}$	3			
СЗ	$v_p(a) = 1, v_p(b) \ge 2$	4	$\{1, \theta, \theta^2, \theta^3/p\}$	2			
C4	$v_p(a) \ge 2, v_p(b) = 2$	6	$\{1, \theta, \theta^2/p, \theta^3/p\}$	2			
C5	$v_p(a) = 2, v_p(b) \ge 3$	8	$\{1, \theta, \theta^2/p, \theta^3/p^2\}$	2			
С6	$v_p(a) \ge 3, v_p(b) = 3$	9	$\{1, \theta, \theta^2/p, \theta^3/p^2\}$	3			
C7	$v_p(ab) = 0$	s_p	$\{1, \theta, \theta^2, (x + y\theta)\}$	$s_p - 2[s_p/2]$			
			$+z\theta^2+\theta^3)/p^m$ }				

	$m = [s_p/2]$	*
and prophers of	$4x \equiv 3a \pmod{p^m}$	
	$9a^2y \equiv 16b^2 \pmod{p^m}$	
	$3az \equiv -4b \pmod{p^m}$	E-h-u

Proof. We give the details of the proof in eight representative cases.

A13. $v_2(a)=3$ and $v_2(b)=2$. Then $s_2=12$. By Theorem 1.1, the element $\frac{x+y\theta+z\theta^2+\theta^3}{2^2}$ is 2-integral for some integers x, y and z if and only if the congruences

$$X \equiv 0 \pmod{2^2}, Y \equiv 0 \pmod{2^4}, Z \equiv 0 \pmod{2^6}, W \equiv 0 \pmod{2^8}$$

are satisfied. Since these congruences are satisfied for x=0, y=2, z=0 then $\frac{2\theta+\theta^2+\theta^3}{2^2}$ is a 2-integral element of K. We now show that

$$\frac{x + y\theta + z\theta^2 + \theta^3}{2^3} \tag{2.1}$$

is not a 2-integral element for any integers x, y and z. If it is a 2-integral element for some integers x, y and z, then by Theorem 1.1,

$$X \equiv 0 \pmod{2^3}$$
, $Y \equiv 0 \pmod{2^6}$, $Z \equiv 0 \pmod{2^9}$, $W \equiv 0 \pmod{2^{12}}$. (2.2)

It follows from $X \equiv 0 \pmod{2^3}$ and $W \equiv 0 \pmod{2^{12}}$ that $x \equiv 0 \pmod{2}$ and $y \equiv 0 \pmod{2}$, respectively. So, x = 2r and y = 2s for some integers r and s. From $Y \equiv 0 \pmod{2^6}$ we obtain, $z \equiv r \pmod{2}$, and so z = r + 2t for some integer t. Then from $Z \equiv 0 \pmod{2^9}$ and $W \equiv 0 \pmod{2^{12}}$, we see that $r \equiv 0 \pmod{2}$ and $s \equiv 1 \pmod{2}$, respectively. Hence

$$x = 4R$$
, $y = 2 + 4S$, $z = 2R + 2t$

for some integers R, S and t. Substituting x, y and z into the congruences in (2.2), we obtain $Y \equiv 32 \equiv 0 \pmod{2^6}$ which is a contradiction. Hence the element given in (2.1) is not 2-integral. Similarly, it can be easily verified that $\theta^2/2$ is a 2-integral element but the element $(x + y\theta + \theta^2)/2^2$ cannot be 2-integral for any integers x and y. Note that $(x + \theta)/2$ cannot be a 2-integral element for any x either. Thus by Theorem 1.2,

$$\left\{1, \ \theta, \ \frac{\theta^2}{2}, \ \frac{2\theta + \theta^3}{2^2}\right\}$$

is a 2-integral basis for K and

$$v_2(K) = s_2 - 2(i + j + k) = 12 - 2(1 + 2) = 6.$$

A25. $v_2(a) = 2$, $b \equiv 3 \pmod{16}$ and $s_2 \equiv 0 \pmod{2}$. Then $s_2 \ge 12$. It can be easily verified that $\frac{x+\theta}{2}$ is not a 2-integral element for any integer x, $\frac{1+\theta^2}{2}$ is a 2-integral element and $\frac{x+y\theta+\theta^2}{2^2}$ is not a 2-integral element for any pair of integers x, y. So by Theorem 1.2, a 2-integral basis for K is of the form

$$\left\{1, \, \theta, \, \frac{1+\theta^2}{2}, \, \frac{x+y\theta+z\theta^2+\theta^3}{2^m}\right\},\,$$

where m is the largest integer such that $\frac{x + y\theta + z\theta^2 + \theta^3}{2^m}$ is 2-integral, and

$$v_2(d(K)) = s_2 - 2(m+1).$$

Using MAPLE, we set w=1, X=4x-3a, $U=3^2a^2y-2^4b^2$ and V=3az+4b in Theorem 1.1, and obtain

$$Y = \frac{1}{2^3 3^2 a^2} [3^3 a^2 X^2 + 2^3 (U + 2bV)V + \Delta],$$

$$\begin{split} Z &= \frac{1}{2^4 3^6 a^5} [3^6 a^5 X^3 - 2^4 U^3 + 2^4 3^3 a^4 V^3 + 2^4 3^4 a^3 b V^2 X \\ &\quad - 2^6 3 b U^2 V + 2^3 3^4 a^3 U V X - 2^3 3 \Delta U V + 3^4 a^3 \Delta X \\ &\quad + 2^4 3 b \Delta U - 2^6 3 b^2 \Delta V + 2 \Delta^2], \end{split}$$

$$\begin{split} W &= \frac{1}{2^8 3^8 a^8} \big[3^8 a^8 X^4 + 2^5 3^6 a^6 b V^2 X^2 + 2^4 3^6 a^6 U V X^2 + 2^6 3^5 a^7 V^3 X \\ &- 2^8 3^3 a^3 b U^2 V X - 2^6 3^2 a^3 U^3 X + 2^8 3^4 a^4 b^2 V^4 - 2^8 3^3 a^4 b U V^3 \\ &+ 2^8 b U^4 - 2^5 3^3 a^3 \Delta U V X - 2^6 3^3 a^4 \Delta V^3 + 2^6 \Delta U^3 \\ &+ 23^6 a^6 \Delta X^2 - 2^8 3^3 a^3 b^2 \Delta V X + 2^6 3^3 a^3 b \Delta U X + 2^5 3^5 a^4 b \Delta V^2 \\ &+ 2^4 3^4 a^4 \Delta U V + 2^9 3 b^2 \Delta U^2 + 2^3 3^2 a^3 \Delta^2 X + 2^6 b \Delta^2 U + \Delta^3 \big]. \end{split}$$

Let $m = \frac{s_2 - 8}{2}$. Note that $2^{2m+8} \parallel \Delta$. Define integers x, y and z by

$$X \equiv 0 \pmod{2^{m+2}}, \quad U \equiv 0 \pmod{2^{m+4}} \text{ and } V \equiv 0 \pmod{2^{m+2}},$$

respectively. Then substituting

$$X = r2^{m+2}$$
, $U = s2^{m+4}$, $V = t2^{m+2}$ and $\Delta = 2^{2m+8} + k2^{2m+9}$

into Y, Z and W with MAPLE, we obtain

$$Y \equiv 0 \pmod{2^{2m}}, Z \equiv 0 \pmod{2^{3m}} \text{ and } W \equiv 0 \pmod{2^{4m}}.$$

Thus, by Theorem 1.1, $\frac{x+y\theta+z\theta^2+\theta^3}{2^m}$ is a 2-integral element of K, and by Theorem 1.2,

$$v_2(d(K)) \leq 6.$$

Let $m=\frac{s_2-6}{2}$. Note that $2^{2m+6}\parallel \Delta$. We now show that the element $\frac{x+y\theta+z\theta^2+\theta^3}{2^m}$ cannot be 2-integral for any integers x, y and z. It is 2-integral if and only if

$$X \equiv 0 \pmod{2^m}, \quad Y \equiv 0 \pmod{2^{2m}}, \quad Z \equiv 0 \pmod{2^{3m}}, \quad W \equiv 0 \pmod{2^{4m}}.$$

It follows from $Y \equiv 0 \pmod{2^{2m}}$ and $Z \equiv 0 \pmod{2^{3m}}$ that

$$2^{2m+7} \mid 3^3 a^2 X^2 + 2^3 (U + 2bV)V + \Delta$$
 (2.3)

and

$$2^{3m+14} \, | \, 3^6 \alpha^5 X^3 \, - \, 2^4 U^3 \, + \, 2^4 3^3 \alpha^4 V^3 \, + \, 2^4 3^4 \alpha^3 b V^2 X \, - \, 2^6 3 b U^2 V \, - \, 2^3 3 \Delta U V$$

$$+2^{3}3^{4}a^{3}UVX + 3^{4}a^{3}\Delta X + 2^{4}3b\Delta U - 2^{6}3b^{2}\Delta V + 2\Delta^{2}, \tag{2.4}$$

respectively. We consider the following three subcases.

(i)
$$2^{m+2} | X$$
, (ii) $2^{m+1} | X$, (iii) $2^m | X$.

(i) Let $2^{m+2}|X$. It follows from (2.3) that

$$2^{2m+3} \| (U+2bV)V. \tag{2.5}$$

If $2^{m+2}\|U$, then the expression (2.5) would not hold. Hence either $2^{m+1-i}\|U$ or $2^{m+3+i}\|U$, where $i\geq 0$.

If $2^{m+1-i} \| U$, then either $2^{m-i} \| V$ or $2^{m+2+i} \| V$. It follows from (2.4) that $2^{3m-3i+8} | 2^4 U^3$, which is a contradiction.

If $2^{m+3+i} \parallel U$, then $2^{m+1} \parallel V$. Thus we have

$$2^{m+2} | X, 2^{m+3} | U, 2^{m+1} \| V \text{ and } 2^{2m+6} \| \Delta.$$

Substituting

$$X = r2^{m+2}, \quad U = s2^{m+3},$$

$$V = 2^{m+1} + t2^{m+2}$$
. $\Lambda = 2^{2m+6} + k2^{2m+7}$

into Y, Z and W with MAPLE, we obtain $2^{4m} \nmid W$, which is a contradiction.

(ii) Let $2^{m+1} \parallel X$. It follows from (2.3) that

$$2^{2m+4} \| (U+2bV)V. \tag{2.6}$$

If $2^{m+3} \mid U$, then the expression (2.6) would not hold. Hence $2^{m+2-i} \parallel U$,

where $i \geq 0$. Then (2.6) implies that either $2^{m+1-i} \parallel V$ or $2^{m+2+i} \parallel V$. It follows from (2.4) that $2^{3m-3i+11} \mid 2^4 U^3$, which is a contradiction.

(iii) Let $2^m \parallel X$. It follows from (2.3) that

$$2^{2m+1} \| (U+2bV)V. \tag{2.7}$$

If $2^{m+1} \parallel U$, then the expression (2.7) would not hold. Hence either $2^{m-i} \parallel U$ or $2^{m+2+i} \parallel U$, where $i \geq 0$.

If $2^{m-i} \parallel U$, then (2.7) implies that either $2^{m-1-i} \parallel V$ or $2^{m+1+i} \parallel V$. Then it follows from (2.4) that $2^{3m-3i+5} \mid 2^4 U^3$, which is a contradiction.

If $2^{m+2+i} \parallel U$, then (2.7) implies that $2^m \parallel V$. So we have

$$2^m \parallel X, \quad 2^{m+2+i} \parallel U, \quad 2^m \parallel V \quad \text{and} \quad 2^{2m+6} \parallel \Delta.$$

Substituting

$$X = 2^m + r2^{m+1}, \quad U = 2^{m+2+i} + s2^{m+3+i},$$

$$V = 2^m + t2^{m+1}, \quad \Delta = 2^{2m+6} + k2^{2m+7}$$

into $Y \equiv 0 \pmod{2^{2m}}$ we obtain

$$1 + 2^{i} + 2^{1+i}(s+t) \equiv 0 \pmod{4}$$
.

Hence i = 0 and $s + t \equiv 1 \pmod{2}$. Thus we have

$$2^{m} \| X$$
, $2^{m+2} \| U$, $2^{m} \| V$, $U_{2}V_{2} \equiv 3 \pmod{4}$ and $2^{2m+6} \| \Delta$,

where $U_2 = U/2^{m+2}$ and $V_2 = V/2^m$. Substituting

$$X = 2^m + r2^{m+1}, \quad U = 2^{m+2} + s2^{m+3}.$$

$$V = 2^m + t2^{m+1}, \quad \Delta = 2^{2m+6} + k2^{2m+7}, \quad s+t \equiv 1 \pmod{2}$$

into Z with MAPLE, we obtain $2^{3m} \nmid Z$, which is a contradiction.

Thus a 2-integral basis for K is

$$\left\{1, \, \theta, \, \frac{1+\theta^2}{2}, \, \frac{x+y\theta+z\theta^2+\theta^3}{2^m}\right\}$$

and

$$m = (s_2 - 8)/2$$
 and $v_2(d(K)) = s_2 - 2(m + 1) = 6$,

where the integers x, y and z are given by

$$4x - 3a \equiv 0 \pmod{2^{m+2}},$$

 $3^2a^2y - 2^4b^2 \equiv 0 \pmod{2^{m+4}},$
 $3az + 4b \equiv 0 \pmod{2^{m+2}}.$

Cases A26, A28 and A30. $v_2(a) = 2$, $b \equiv 3 \pmod{16}$ and $s_2 \equiv 1 \pmod{2}$. Then $s_2 \ge 13$.

As in case A25, a 2-integral basis for K is of the form

$$\left\{1, \, \theta, \, \frac{1+\theta^2}{2}, \, \frac{x+y\theta+z\theta^2+\theta^3}{2^m}\right\},$$

where m is the largest integer such that $\frac{x + y\theta + z\theta^2 + \theta^3}{2^m}$ is 2-integral, and

$$v_2(d(K)) = s_2 - 2(m+1).$$

Let $m = \frac{s_2 - 7}{2}$. Define integers x, y and z by

 $X\equiv 0\ (\mathrm{mod}\ 2^{m+2}),\quad U\equiv 0\ (\mathrm{mod}\ 2^{m+4})\quad \mathrm{and}\quad V\equiv 0\ (\mathrm{mod}\ 2^{m+2}),$ respectively. Then substituting

$$X = r2^{m+2}$$
, $U = s2^{m+4}$, $V = t2^{m+2}$ and $\Delta = 2^{2m+7} + k2^{2m+8}$

into Y, Z and W with MAPLE, we obtain

$$Y \equiv 0 \pmod{2^{2m}}, Z \equiv 0 \pmod{2^{3m}} \text{ and } W \equiv 0 \pmod{2^{4m}}.$$

Hence, by Theorem 1.1, $\frac{x+y\theta+z\theta^2+\theta^3}{2^m}$ is a 2-integral element, and by Theorem 1.2, $v_2(d(K)) \le 5$.

Now let $m=\frac{s_2-3}{2}$. Note that $2^{2m+3}\parallel \Delta$. It follows from $Y\equiv 0\ ({\rm mod}\ 2^{2m})$ that

$$2^{2m} \| (U + 2bV)V. \tag{2.8}$$

It follows from (2.8) that $2^{m+1} \not\mid U$. So $2^{m-i} \mid\mid U$, where $i \geq 0$. Then (2.8) implies that either $2^{m-1-i} \mid\mid V$ or $2^{m+i} \mid\mid V$. Then $Z \equiv 0 \pmod{2^{3m}}$ implies that $2^{3m-3i+5} \mid 2^4 U^3$, which is a contradiction. Thus, by Theorem 1.2, $v_2(d(K)) \geq 3$, and so,

$$v_2(d(K)) = 3 \text{ or } 5.$$

Let $m=\frac{s_2-5}{2}$. Note that $2^{2m+5}\parallel \Delta$. As in case A25, it follows from $Y\equiv 0\ (\text{mod }2^{2m})$ and $Z\equiv 0\ (\text{mod }2^{3m})$ that

$$2^{2m+7} |3^3a^2X^2 + 2^3(U+2bV)V + \Delta$$
 (2.9)

and

$$2^{3m+14} | 3^6a^5X^3 - 2^4U^3 + 2^43^3a^4V^3 + 2^43^4a^3bV^2X - 2^63bU^2V - 2^33\Delta UV + 2^33^4a^3UVX + 3^4a^3\Delta X + 2^43b\Delta U - 2^63b^2\Delta V + 2\Delta^2, \ (2.10)$$
 respectively.

If $2^{m+1} | X$, then (2.9) implies that

$$2^{2m+2} \| (U+2bV)V. \tag{2.11}$$

If $2^{m+2} \mid U$, then (2.11) would not hold. Hence $2^{m+1-i} \parallel U$, where $i \geq 0$. Then (2.11) implies that either $2^{m-i} \parallel V$ or $2^{m+1+i} \parallel V$. Then it follows from (2.10) that $2^{3m-3i+8} \mid 2^4 U^3$, which is a contradiction. So $2^{m+1} \nmid X$.

We now assume that $2^m \parallel X$. It follows from (2.9) that

$$2^{2m+1} \| (U+2bV)V. \tag{2.12}$$

If $2^{m+1} \parallel U$, then (2.12) would not hold. Hence either $2^{m-i} \parallel U$ or $2^{m+2+i} \parallel U$, where $i \geq 0$.

If $2^{m-i} \parallel U$, then (2.12) implies that either $2^{m-1-i} \parallel V$ or $2^{m+1+i} \parallel V$. Then it follows from (2.10) that $2^{3m-3i+5} \mid 2^4 U^3$, which is a contradiction.

If $2^{m+2+i} \parallel U$, then it follows from (2.12) that $2^m \parallel V$. Thus we have

$$2^{m} \| X$$
, $2^{m+2+i} \| U$, $2^{m} \| V$ and $2^{2m+5} \| \Delta$.

Substituting

$$X = 2^m + r2^{m+1}, \quad U = 2^{m+2+i} + s2^{m+3+i},$$
 $V = 2^m + t2^{m+1}, \quad \Delta = 2^{2m+5} + k2^{2m+6}$

into $Y \equiv 0 \pmod{2^{2m}}$, we obtain

$$\Delta_2 + 3 + 2^i + 2^{1+i}(s+t) \equiv 0 \pmod{4}.$$
 (2.13)

If $\Delta_2 \equiv 1 \pmod 4$, then it follows from (2.13) that $i \geq 2$ that is $2^{m+4} \mid U$. If $\Delta_2 \equiv 3 \pmod 4$, then it follows from (2.13) that i = 1 that is $2^{m+3} \parallel U$.

We have shown that the only cases such that $Y \equiv 0 \pmod{2^{2m}}$ with a possibility of $2^{3m} \mid Z$ and $2^{4m} \mid W$ are

(i)
$$2^m \| X$$
, $2^{m+4} | U$, $2^m \| V$ and $\Delta_2 \equiv 1 \pmod{4}$,

(ii)
$$2^m \| X$$
, $2^{m+3} \| U$, $2^m \| V$ and $\Delta_2 \equiv 3 \pmod{4}$.

The first one corresponds to Case A26, and the second one corresponds to Cases A28 and A30.

Case A26. $v_2(a) = 2$, $b \equiv 3 \pmod{16}$, $s_2 \equiv 1 \pmod{2}$ and $\Delta_2 \equiv 1 \pmod{4}$. Then $s_2 \ge 13$. For $m = (s_2 - 5)/2$, we substitute

$$X = 2^m + r2^{m+1}, \quad U = s2^{m+4},$$

$$V = 2^m + t2^{m+1}, \quad \Delta = 2^{2m+5} + k2^{2m+7}$$

into Y, Z and W with MAPLE, and obtain $2^{3m} \nmid Z$. Thus for this case,

$$\left\{1, \, \theta, \, \frac{1+\theta^2}{2}, \, \frac{x+y\theta+z\theta^2+\theta^3}{2^m}\right\}$$

is a 2-integral basis for K, and

$$m = (s_2 - 7)/2$$
 and $v_2(d(K)) = s_2 - 2(m + 1) = 5$,

where the integers x, y and z are given by

$$4x - 3a \equiv 0 \pmod{2^{m+2}},$$

$$3^{2}a^{2}y - 2^{4}b^{2} \equiv 0 \pmod{2^{m+4}},$$

$$3az + 4b \equiv 0 \pmod{2^{m+2}}.$$

Case A28. $a=4+16A,\ b=3+16B,\ s_2\equiv 1\ (\text{mod }2),\ \Delta_2\equiv 3\ (\text{mod }4)$ and $A+B\equiv 0\ (\text{mod }4).$ Then $s_2\geq 15.$ For $m=(s_2-5)/2,$ we substitute

$$X = 2^m + r2^{m+1}, \quad U = 2^{m+3} + s2^{m+4},$$
 $V = 2^m + t2^{m+1}, \quad \Delta = 3 \cdot 2^{2m+5} + k2^{2m+7},$
 $r + t \equiv 0 \pmod{2}, \quad A + B \equiv 0 \pmod{4}$

into Y, Z and W with MAPLE, and obtain $2^{2m} \, | \, Y$, $2^{3m} \, | \, Z$ and $2^{4m} \, | \, W$. Thus for this case,

$$\left\{1, \, \theta, \, \frac{1+\theta^2}{2}, \, \frac{x+y\theta+z\theta^2+\theta^3}{2^m}\right\}$$

is a 2-integral basis for K, and

$$m = (s_2 - 5)/2$$
 and $v_2(d(K)) = s_2 - 2(m + 1) = 3$,

where the integers x, y and z are given by

$$4x - 3a = 2^{m} + r2^{m+1},$$

$$3^{2}a^{2}y - 2^{4}b^{2} = 2^{m+3} + s2^{m+4}$$

$$3az + 4b = 2^{m} + t2^{m+1},$$

$$r + t \equiv 0 \pmod{2}.$$

Case A30. a = 12 + 16A, b = 3 + 16B, $s_2 \equiv 1 \pmod{2}$, $\Delta_2 \equiv 3 \pmod{4}$ and $A - B \equiv 3 \pmod{4}$. Then $s_2 \ge 15$. For $m = (s_2 - 5)/2$, we substitute

$$X = 2^m + r2^{m+1}, \quad U = 2^{m+3} + s2^{m+4},$$
 $V = 2^m + t2^{m+1}, \quad \Delta = 3 \cdot 2^{2m+5} + k2^{2m+7},$ $r + t \equiv 1 \pmod{2}, \quad A - B \equiv 3 \pmod{4}$

into Y, Z and W with MAPLE, and obtain $2^{2m} \, | \, Y$, $2^{3m} \, | \, Z$ and $2^{4m} \, | \, W$. Thus for this case,

$$\left\{1, \, \theta, \, \frac{1+\theta^2}{2}, \, \frac{x+y\theta+z\theta^2+\theta^3}{2^m}\right\}$$

is a 2-integral basis for K, and

$$m = \frac{s_2 - 5}{2}$$
 and $v_2(d(K)) = s_2 - 2(m + 1) = 3$,

where the integers x, y and z are given by

$$4x - 3a = 2^{m} + r2^{m+1},$$

$$3^{2}a^{2}y - 2^{4}b^{2} = 2^{m+3} + s2^{m+4},$$

$$3az + 4b = 2^{m} + t2^{m+1},$$

$$r + t \equiv 1 \pmod{2}.$$

Case B16. $v_3(a) = 0$, $b \equiv 6 \pmod{9}$ and $a^4 \equiv 4b + 1 \pmod{9}$. Then $s_3 = 3$. Substituting x = 0, y = 1 and z = -a into X, Y, Z and W, we obtain

$$X \equiv 0 \pmod{3}, \ Y \equiv 0 \pmod{3^2}, \ Z \equiv 0 \pmod{3^3}, \ W \equiv 0 \pmod{3^4}.$$

Hence $\frac{\theta - a\theta^2 + \theta^3}{3}$ is a 3-integral element of K. Thus

$$\left\{1, \, \theta, \, \theta^2, \, \frac{\theta - a\theta^2 + \theta^3}{3}\right\}$$

is a 3-integral basis for K and $v_3(d(K)) = 3 - 2 = 1$.

Case B19. $v_3(a) = 0$, $b \equiv 3 \pmod 9$ and $a^4 \equiv 4b + 1 \pmod 27$. Then $s_3 \ge 6$. It can be easily verified that $\frac{a\theta + \theta^2}{3}$ is a 3-integral element of K and the element $\frac{x + y\theta + \theta^2}{3^2}$ cannot be 3-integral for any integers x and y. Let $m = [(s_3 - 2)/2]$. Define integers x, y and z by

$$X\equiv 0\,(\text{mod }3^m),\ \ U\equiv 0\,(\text{mod }3^{m+2})\ \ \text{and}\ \ V\equiv 0\,(\text{mod }3^{m+1}),$$
 respectively. Then substituting

$$X=r3^m,\ U=s3^{m+2},\ V=t3^{m+1},\ \Delta= \begin{cases} 3^{2m+2}+k2^{2m+3},\ ext{if}\ s_3\ ext{is even},\ 3^{2m+3}+k2^{2m+4},\ ext{if}\ s_3\ ext{is odd}, \end{cases}$$

into Y, Z and W with MAPLE, we obtain

$$Y \equiv 0 \pmod{3^{2m}}, Z \equiv 0 \pmod{3^{3m}} \text{ and } W \equiv 0 \pmod{3^{4m}}.$$

Hence, by Theorem 1.1, $\frac{x+y\theta+z\theta^2+\theta^3}{3^m}$ is a 3-integral element of K. Thus, by Theorem 1.2,

$$\left\{1, \, \theta, \, \frac{\alpha\theta + \theta^2}{3}, \, \frac{x + y\theta + z\theta^2 + \theta^3}{3^m}\right\}$$

is a 3-integral basis for K, and

$$m = [(s_3 - 2)/2]$$
 and $v_3(d(K)) = s_3 - 2(1 + m) = s_3 - 2[s_3/2]$,

where the integers x, y and z are given by

$$4x - 3a \equiv 0 \pmod{3^m},$$

 $3^2a^2y - 2^4b^2 \equiv 0 \pmod{3^{m+2}},$
 $3az + 4b \equiv 0 \pmod{3^{m+1}}.$

Case C7. $v_p(ab)=0$. Then $s_p\geq 0$. Let $m=[s_p/2]$. Note that $p^{2m}\mid \Delta$. Define integers x,y,z by

$$X \equiv 0 \pmod{p^m}$$
, $U \equiv 0 \pmod{p^m}$ and $V \equiv 0 \pmod{p^m}$,

respectively. Then substituting

$$X = rp^m, U = sp^m, V = tp^m, \Delta = \begin{cases} p^{2m} + k2^{2m+1}, & \text{if } s_p \text{ is even,} \\ p^{2m+1} + k2^{2m+2}, & \text{if } s_p \text{ is odd,} \end{cases}$$

into Y, Z and W with MAPLE, we obtain

$$Y \equiv 0 \pmod{p^{2m}}, \quad Z \equiv 0 \pmod{p^{3m}} \text{ and } W \equiv 0 \pmod{p^{4m}}.$$

Hence, by Theorem 1.1, $\frac{x + y\theta + z\theta^2 + \theta^3}{p^m}$ is a *p*-integral element of *K*.

Thus, by Theorem 1.2,

$$\left\{1, \, \theta, \, \theta^2, \, \frac{x + y\theta + z\theta^2 + \theta^3}{p^m}\right\}$$

is a p-integral basis of K, and

$$m = [s_p/2]$$
 and $v_p(d(K)) = s_p - 2m = s_p - 2[s_p/2]$,

where the integers x, y and z are given by

$$4x - 3a \equiv 0 \pmod{p^m},$$
$$3^2a^2y - 2^4b^2 \equiv 0 \pmod{p^m},$$

$$3az + 4b \equiv 0 \pmod{p^m}.$$

3. An Integral Basis and the Discriminant of a Quartic Field Defined by a Trinomial

The following theorem follows from Theorem 1.3 and Theorem 2.1.

Theorem 3.1. Let $K = \mathbb{Q}(\theta)$ be a quartic field, where θ is a root of the irreducible trinomial (1.1). If there are no rational primes dividing $i(\theta)$, then $\{1, \theta, \theta^2, \theta^3\}$ is an integral basis of K. Let $p_1, p_2, ..., p_s$ be the distinct primes dividing $i(\theta)$. Let

$$\left\{1, \ \theta, \ \frac{u_r + v_r \theta + \theta^2}{p_r^{j_r}}, \ \frac{x_r + y_r \theta + z_r \theta^2 + \theta^3}{p_r^{k_r}}\right\}$$

be a p_r -integral basis of K (r = 1, 2, ..., s) as given in Theorem 1.2. Define the integers u, v, x, y, z by

$$u \equiv u_r \pmod{p_r^{j_r}}, \quad v \equiv v_r \pmod{p_r^{j_r}}, \quad r = 1, 2, ..., s,$$

$$x \equiv x_r \pmod{p_r^{k_r}}, \quad y \equiv y_r \pmod{p_r^{k_r}}, \quad z \equiv z_r \pmod{p_r^{k_r}}, \quad r = 1, 2, ..., s,$$

and let

$$S = \prod_{r=1}^{s} p_r^{j_r}, \quad T = \prod_{r=1}^{s} p_r^{k_r}.$$

Then an integral basis of K is

$$\left\{1, \, \theta, \, \frac{u + v\theta + \theta^2}{S}, \, \frac{x + y\theta + z\theta^2 + \theta^3}{T}\right\},\,$$

and the discriminant of K is

$$d(K) = \operatorname{sgn}(\Delta) 2^{\alpha} 3^{\beta} \prod_{\substack{p > 3 \\ p \nmid ab \\ s_p \text{ odd}}} p \prod_{\substack{p > 3 \\ p \parallel a, p^2 \mid b \\ or p^2 \mid a, p^2 \parallel b \\ or p^3 \mid b}} p^2 \prod_{\substack{p > 3 \\ p \mid a, p \parallel b \\ or p^3 \mid a, p^3 \parallel b}} p^3,$$

where

$$\begin{cases} 0 & \text{if } v_2(a) = 0, \\ 2 & \text{if } v_2(a) = 1 \text{ and } b \equiv 1(4) \\ & \text{or } v_2(a) = 1 \text{ and } v_2(b) \geq 2 \\ & \text{or } v_2(a) = 2 \text{ and } v_2(b) \geq 3 \\ & \text{or } v_2(a) \geq 3 \text{ and } b \equiv 7(8), \\ 3 & \text{if } v_2(a) = 2, b \equiv 3(16), \Delta_2 \equiv 3(4) \text{ and } s_2 \text{ odd} \\ & \text{or } v_2(a) = 2, b \equiv 11(16) \text{ and } \Delta_2 \equiv 1(4), \\ 4 & \text{if } v_2(a) = 1 \text{ and } b \equiv 3(4) \\ & \text{or } v_2(a) = 1 \text{ and } v_2(b) = 1 \\ & \text{or } v_2(a) = 2 \text{ and } v_2(b) = 2 \\ & \text{or } v_2(a) \geq 3 \text{ and } b \equiv 3(8) \\ & \text{or } a = 16A, b = 4 + 16B \text{ and } A + B \equiv 0(2), \\ 6 & \text{if } v_2(a) = 2, b \equiv 3(16), \Delta_2 \equiv 1(4) \text{ and } s_2 \text{ odd}, \\ 6 & \text{if } v_2(a) = 3 \text{ and } v_2(b) = 2, 3 \\ & \text{or } v_2(a) \geq 4 \text{ and } b \equiv 12(16) \\ & \text{or } v_2(a) \geq 2 \text{ and } b \equiv 7(8) \\ & \text{or } v_2(a) = 2, b \equiv 3(16) \text{ and } s_2 \text{ even} \\ & \text{or } a = 16A, b = 4 + 16B \text{ and } A + B \equiv 1(2), \\ 8 & \text{if } v_2(a) = 2 \text{ and } b \equiv 1(4), \\ 9 & \text{if } v_2(a) = 2 \text{ and } b \equiv 1(4), \\ 10 & \text{if } v_2(a) = 2 \text{ and } b \equiv 1(4), \\ 10 & \text{if } v_2(a) \geq 3 \text{ and } v_2(b) = 3, \\ 11 & \text{if } v_2(a) \geq 3 \text{ and } v_2(b) = 3, \\ 11 & \text{if } v_2(a) \geq 5 \text{ and } v_2(b) = 3, \\ \end{cases}$$

and

$$\begin{cases} 0 & if \ v_3(b) = 0 \\ & or \ v_3(a) = 0, \ b \equiv 3(9), \ a^4 \equiv 4b + 1(27) \ and \ s_3 \ even, \\ 1 & if \ v_3(a) = 0, \ a^2 \equiv 1(9) \ and \ v_3(b) \geq 2 \\ & or \ v_3(a) = 0, \ b \equiv 6(9) \ and \ a^4 \equiv 4b + 1(9) \\ & or \ v_3(a) = 0, \ b \equiv 3(9), \ a^4 \equiv 4b + 1(27) \ and \ s_3 \ odd, \\ 2 & if \ v_3(a) \geq 2 \ and \ v_3(b) = 2, \\ 3 & if \ v_3(a) \geq 1 \ and \ v_3(b) = 1 \\ & or \ v_3(a) = 0, \ a^2 \not\equiv 1(9) \ and \ v_3(b) \geq 2 \\ & or \ v_3(a) \geq 2 \ and \ v_3(b) = 3 \\ & or \ v_3(a) = 0, \ b \equiv 6(9) \ and \ a^4 \not\equiv 4b + 1(9) \\ & or \ v_3(a) = 0, \ b \equiv 3(9), \ a^4 \equiv 4b + 1(9) \ and \ a^4 \not\equiv 4b + 1(27), \\ 4 & if \ v_3(a) = 1 \ and \ v_3(b) = 2 \\ & or \ v_3(a) = 0, \ b \equiv 3(9), \ a^4 \not\equiv 4b + 1(9), \\ 5 & if \ v_3(a) = 1 \ and \ v_3(b) = 3 \\ & or \ v_3(a) = 1, \ 2 \ and \ v_3(b) \geq 4. \end{cases}$$

Remark 3.1. Llorente, Nart and Vila [4] determined the discriminant of a number field defined by an irreducible trinomial

$$x^n + ax^s + b$$
, $a, b \in Z$

in terms of n, s, a, b except for some cases. When n=4 and s=1, the work of Llorente, Nart and Vila [4] does not cover the cases given in the following theorem which is a special case of Theorem 3.1.

Theorem 3.2. Let $K = \mathbb{Q}(\theta)$ be a quartic field, where θ is a root of the irreducible trinomial (1.1).

(i) If
$$v_2(a) \ge 1$$
 and $v_2(b) = 0$, then

$$\begin{cases}
2 & if \ v_2(a) = 1 \ and \ b \equiv 1(4) \\
& or \ v_2(a) \geq 3 \ and \ b \equiv 7(8), \\
3 & if \ v_2(a) = 2, \ b \equiv 3(16), \ \Delta_2 \equiv 3(4) \ and \ s_2 \ odd \\
& or \ v_2(a) = 2, \ b \equiv 11(16) \ and \ \Delta_2 \equiv 1(4), \\
4 & if \ v_2(a) = 1 \ and \ b \equiv 3(4) \\
& or \ v_2(a) \geq 3 \ and \ b \equiv 3(8), \\
5 & if \ v_2(a) = 2, \ b \equiv 11(16) \ and \ \Delta_2 \equiv 3(4) \\
& or \ v_2(a) = 2, \ b \equiv 3(16), \ \Delta_2 \equiv 1(4) \ and \ s_2 \ odd, \\
6 & if \ v_2(a) = 2 \ and \ b \equiv 7(8) \\
& or \ v_2(a) = 2, \ b \equiv 3(16) \ and \ s_2 \ even, \\
8 & if \ v_2(a) \geq 3 \ and \ b \equiv 1(4), \\
9 & if \ v_2(a) = 2 \ and \ b \equiv 1(4).
\end{cases}$$

(ii) If $v_2(a) \ge 3$ and $v_2(b) = 2$, then

$$v_2(d(K)) = \begin{cases} 4 & \text{if } a = 16A, \ b = 4 + 16B \ and \ A + B \equiv 0(2), \\ 6 & \text{if } v_2(a) = 3 \ and \ v_2(b) = 2 \\ & \text{or } v_2(a) \ge 4 \ and \ b \equiv 12(16) \\ & \text{or } a = 16A, \ b = 4 + 16B \ and \ A + B \equiv 1(2). \end{cases}$$

(iii) If
$$v_3(a) = 0$$
 and $v_3(b) \ge 1$, then

$$v_{3}(d(K)) = \begin{cases} 0 & \text{if } v_{3}(a) = 0, \ b \equiv 3(9), \ a^{4} \equiv 4b + 1(27) \ and \ s_{3} \ even, \\ 1 & \text{if } v_{3}(a) = 0, \ v_{3}(b) \geq 2 \ and \ a^{2} \equiv 1(9) \\ & \text{or } v_{3}(a) = 0, \ b \equiv 6(9) \ and \ a^{4} \equiv 4b + 1(9) \\ & \text{or } v_{3}(a) = 0, \ b \equiv 3(9), \ a^{4} \equiv 4b + 1(27) \ and \ s_{3} \ odd, \\ 3 & \text{if } v_{3}(a) = 0, \ v_{3}(b) \geq 2 \ and \ a^{2} \not\equiv 1(9) \\ & \text{or } v_{3}(a) = 0, \ b \equiv 6(9) \ and \ a^{4} \not\equiv 4b + 1(9) \\ & \text{or } v_{3}(a) = 0, \ b \equiv 3(9), \ a^{4} \equiv 4b + 1(9) \ and \ a^{4} \not\equiv 4b + 1(27), \\ 4 & \text{if } v_{3}(a) = 0, \ b \equiv 3(9), \ a^{4} \not\equiv 4b + 1(9). \end{cases}$$

In the remaining cases the evaluation of d(K) by Llorente, Nart and Vila [4] agrees with that in Theorem 3.1.

Remark 3.2. Llorente, Nart and Vila [5] determined the discriminant of a number field defined by an irreducible trinomial

$$x^{p^m} + ax + b$$
, $a, b \in \mathbb{Z}$.

When p=2 and m=2, the work of Llorente, Nart and Vila [5] does not cover part (iii) in Theorem 3.2. In the remaining cases the evaluation of d(K) by Llorente, Nart and Vila [5] agrees with that in Theorem 3.2.

Remark 3.3. The discriminant of a cubic field was completely determined in [3] by Llorente and Nart, and then in [1] by Alaca using *p*-integral bases.

Example 3.1. Let $K = \mathbb{Q}(\theta)$, where $\theta^4 + a\theta + b = 0$. Let $a = 48 = 2^4 \cdot 3$ and $b = 188 = 2^2 \cdot 47$. Since $v_2(a) = 4$ and $b = 12 \pmod{16}$, by case A16, a 2-integral basis for K is

$$\left\{1, \, \theta, \, \frac{2+\theta^2}{2^2}, \, \frac{2\theta+\theta^3}{2^2}\right\}.$$

Since $v_3(b) = 0$, by case B1, a 3-integral basis for K is

$$\{1, \theta, \theta^2, \theta^3\}.$$

Since $v_{47}(a) = 0$ and $v_{47}(b) = 1$, by case C1, a 47-integral basis is

$$\{1, \theta, \theta^2, \theta^3\}.$$

Since $v_5(ab) = 0$, we find a 5-integral basis for K using case C7. Note that

$$\Delta = 2^8 b^3 - 3^3 a^4 = 2^{14} \cdot 5^2 \cdot 3803.$$

So, $s_5 = 2$ and $m = s_5/2 = 2/2 = 1$. We need to solve the congruences

$$4x \equiv 3a \pmod{5}, \quad 9a^2y \equiv 16b^2 \pmod{5}, \quad 3az \equiv -4b \pmod{5}.$$

A solution is x = 1, y = 4 and z = 2. So, a 5-integral basis for K is

$$\left\{1, \, \theta, \, \theta^2, \, \frac{1+4\theta+2\theta^2+\theta^3}{5}\right\}.$$

For $p \neq 2$, 3, 5, 47, by case C7, a p-integral basis for K is

$$\{1, \theta, \theta^2, \theta^3\}.$$

Then, by Theorem 3.1, an integral basis for K is

$$\left\{1, \ \theta, \ \frac{2+\theta^2}{2^2}, \ \frac{x+y\theta+z\theta^2+\theta^3}{2^2\cdot 5}\right\},\,$$

where

$$x \equiv 0 \pmod{4}$$
, $y \equiv 2 \pmod{4}$, $z \equiv 0 \pmod{4}$,

$$x \equiv 1 \pmod{5}$$
, $y \equiv 4 \pmod{5}$, $z \equiv 2 \pmod{5}$.

A solution is given by x = 16, y = 14 and z = 12. Thus an integral basis for K is

$$\left\{1,\ \theta,\ \frac{2+\theta^2}{2^2}\ ,\ \frac{16+14\theta+12\theta^2+\theta^3}{2^2\cdot 5}\right\}$$

and the discriminant of K is

$$d(K) = 2^6 \cdot 3803.$$

Example 3.2. Let $K = \mathbb{Q}(\theta)$, where $\theta^4 + a\theta + b = 0$. Let $a = 360 = 2^3 \cdot 3^2 \cdot 5$ and $b = 360 = 2^3 \cdot 3^2 \cdot 5$. Since $v_2(a) = 3$ and $v_2(b) = 3$, by case A17, a 2-integral basis for K is

$$\left\{1,\,\theta,\,\frac{\theta^2}{2}\,,\,\frac{\theta^3}{2^2}\right\}.$$

Since $v_3(a) = 2$ and $v_3(b) = 2$, by case B6, a 3-integral basis for K is

$$\left\{1,\,\theta,\,\frac{\theta^2}{3}\,,\,\frac{\theta^3}{3}\right\}.$$

Since $v_5(a) = 1$ and $v_5(b) = 1$, by case C2, a 5-integral basis for K is

$$\{1, \theta, \theta^2, \theta^3\}.$$

Since $v_{13}(ab) = 0$, we find a 13-integral basis for K using case C7. Note that

$$\Delta = 2^8 b^3 - 3^3 a^4 = -2^{12} \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 13^2.$$

So, $s_{13}=2$ and $m=s_{13}/2=2/2=1$. We need to solve the congruences

$$4x \equiv 3a \pmod{13}, \quad 9a^2y \equiv 16b^2 \pmod{13}, \quad 3az \equiv -4b \pmod{13}.$$

A solution is x = 10, y = 9 and z = 3. So, a 13-integral basis of K is

$$\left\{1, \ \theta, \ \theta^2, \ \frac{10 + 9\theta + 3\theta^2 + \theta^3}{13}\right\}.$$

Since $v_p(ab) = 0$ for $p \neq 2, 3, 5, 13$, by case C7, a p-integral basis for K is

$$\{1, \theta, \theta^2, \theta^3\}.$$

Then, by Theorem 3.1, an integral basis for K is

$$\left\{1, \, \theta, \, \frac{\theta^2}{2 \cdot 3}, \, \frac{x + y\theta + z\theta^2 + \theta^3}{2^2 \cdot 3 \cdot 13}\right\},\,$$

where

$$x \equiv 0 \pmod{4}$$
, $y \equiv 0 \pmod{4}$, $z \equiv 0 \pmod{4}$,

$$x \equiv 0 \pmod{3}$$
, $y \equiv 0 \pmod{3}$, $z \equiv 0 \pmod{3}$,

$$x \equiv 10 \pmod{13}$$
, $y \equiv 9 \pmod{13}$, $z \equiv 3 \pmod{13}$.

A solution is given by x = 36, y = 48 and z = 120. Thus an integral basis for K is

$$\left\{1,\ \theta,\ \frac{\theta^2}{6}\,,\ \frac{36+48\theta+120\theta^2+\theta^3}{2^2\cdot 3\cdot 13}\right\}$$

and the discriminant of K is

$$d(K) = -2^6 \cdot 3^2 \cdot 5^3 \cdot 7.$$

Example 3.3. Let $K = \mathbb{Q}(\theta)$, where $\theta^4 + a\theta + b = 0$. Let $a = 28 = 2^2 \cdot 7$ and $b = 189 = 3^3 \cdot 7$. Then

$$\Delta = 2^8 b^3 - 3^3 a^4 = 2^9 \cdot 3^3 \cdot 7^3 \cdot 19^2.$$

Since $v_2(a) = 2$ and $b \equiv 1 \pmod{4}$, by case A20, a 2-integral basis for K is

$$\{1, \theta, \theta^2, \theta^3\}.$$

Since $v_3(a) = 0$, $v_3(b) = 3$ and $a^2 \equiv 1 \pmod{9}$, by case B8, a 3-integral basis for K is

$$\left\{1, \, \theta, \, \theta^2, \, \frac{\theta + 2\theta^2 + \theta^3}{3}\right\}.$$

Since $v_7(a) = 1$ and $v_7(b) = 1$, by case C2, a 7-integral basis for K is

$$\{1, \theta, \theta^2, \theta^3\}.$$

Since $v_{19}(ab) = 0$, using case C7, we find that a 19-integral basis for K is

$$\left\{1, \ \theta, \ \theta^2, \ \frac{2+5\theta+10\theta^2+\theta^3}{19}\right\}.$$

Since $v_p(ab) = 0$ for $p \neq 2, 3, 7, 19$, by case C7, a p-integral basis for K is

$$\{1, \theta, \theta^2, \theta^3\}.$$

Then, by Theorem 3.1, we find that an integral basis for K is

$$\left\{1, \ \theta, \ \theta^2, \ \frac{21+43\theta+29\theta^2+\theta^3}{3\cdot 19}\right\}$$

and the discriminant of K is

$$d(K) = 2^9 \cdot 3 \cdot 7^3.$$

In the following example we illustrate how to combine the cases from Table A, Table B and Table C in general.

Example 3.4. Let $K = \mathbb{Q}(\theta)$, where $\theta^4 + a\theta + b = 0$. We consider the cases A7, B19 and C7.

Case A7. $v_2(a) = 2$ and $v_2(b) = 2$.

Case B19. $v_3(a) = 0$, $b \equiv 3 \pmod{9}$ and $a^4 \equiv 4b + 1 \pmod{27}$.

Case C7. $v_p(ab) = 0$.

A 2-integral basis of K is $\left\{1, \ \theta, \ \frac{\theta^2}{2}, \ \frac{\theta^3}{2}\right\}$.

A 3-integral basis of K is

$$\left\{1, \, \theta, \, \frac{a\theta + \theta^2}{3}, \, \frac{x + y\theta + z\theta^2 + \theta^3}{3^m}\right\},\,$$

where the integers x, y, z, m are given by

$$m = [(s_3 - 2)/2],$$

$$4x \equiv 3a \pmod{3^m},$$

$$9a^2y\equiv 16b^2\,(\mathrm{mod}\,3^{m+2}),$$

$$3az \equiv -4b \pmod{3^{m+1}}.$$

A p(>3)-integral basis of K is

$$\left\{1, \, \theta, \, \theta^2, \, \frac{x + y\theta + z\theta^2 + \theta^3}{p^m}\right\},\,$$

where the integers x, y, z, m are given by

$$m = [s_p/2],$$

(3.1)

$$4x \equiv 3a \pmod{p^m},$$

$$9a^2y \equiv 16b^2 \pmod{p^m},$$

$$3az \equiv -4b \pmod{p^m}.$$

Then an integral basis of K is

$$\left\{1,\;\theta,\;\frac{\alpha\theta+\theta^2}{6}\,,\;\frac{x+y\theta+z\theta^2+\theta^3}{T}\right\},$$

where

$$T = 2 \cdot 3^{[(s_3-2)/2]} \prod_{p>3} p^{[s_p/2]},$$

and the integers x, y and z are given by

$$x, y, z \equiv 0 \pmod{2},$$

$$4x \equiv 3a \left(\mod 3^{[(s_3 - 2)/2]} \prod_{p>3} p^{[s_p/2]} \right),$$

$$9a^2y \equiv 16b^2 \left(\mod 3^{[(s_3 + 2)/2]} \prod_{p>3} p^{[s_p/2]} \right),$$

$$3az \equiv -4b \left(\mod 3^{[s_3/2]} \prod_{p>3} p^{[s_p/2]} \right).$$
(3.1)

The discriminant of K is

$$d(K) = 2^4 \prod_{p \neq 2} p^{s_p - 2[s_p/2]}.$$

We illustrate this example with some numerical values. Let $K = \mathbb{Q}(\theta), \ \theta^4 + 76\theta + 2748 = 0.$ Then

$$a = 76$$
, $b = 2748$, $\Delta = 2^8 \cdot 3^8 \cdot 5^2 \cdot 126493$ and $T = 2 \cdot 3^3 \cdot 5$.

The system of congruences (3.1) becomes

$$x, y, z \equiv 0 \pmod{2},$$

$$4x \equiv 3a \pmod{3^3 \cdot 5},$$

$$9a^2y \equiv 16b^2 \pmod{3^5 \cdot 5},$$

$$3az \equiv -4b \pmod{3^4 \cdot 5}.$$
(3.2)

By solving the system of congruences (3.2) we find that

$$\left\{1, \ \theta, \ \frac{4\theta + \theta^2}{6}, \ \frac{-78 + 76\theta - 34\theta^2 + \theta^3}{2 \cdot 3^3 \cdot 5}\right\}$$

is an integral basis of K and the discriminant of K is $d(K) = 2^4 \cdot 126493$.

Note that the last two examples are not covered by the results of [5].

References

- S. Alaca, p-integral bases of a cubic field, Proc. Amer. Math. Soc. 126(7) (1998), 1949-1953.
- [2] Ş. Alaca, p-integral bases of algebraic number fields, Utilitas Math. 56 (1999), 97-106.
- [3] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.
- [4] P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined by trinomials, Acta Arith. 43 (1984), 367-373.
- [5] P. Llorente, E. Nart and N. Vila, Decomposition of primes in number fields defined by trinomials, Séminare de Théorie des Nombres, Bordeaux 3 (1991), 27-41.

Centre for Research in Algebra and Number Theory School of Mathematics and Statistics Carleton University Ottawa, Ontario, Canada K1S 5B6 e-mail: salaca@math.carleton.ca

williams@math.carleton.ca