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Congruences for Quadratic Units of Norm −1
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Abstract. Let D ≡ 1 (mod 4) be a positive integer. Let R be the ring {x + y(1 + √
D)/2 : x, y ∈ Z}. Suppose

that R contains a unit ε of norm −1 as well as an element π of norm 2, and thus an element λ of norm −2. It is not
hard to see that ε ≡ ±1 (mod π2). In this paper we determine ε modulo π3 and modulo λ3 using only elementary
techniques. This determination extends a recent result of Mastropietro, which was proved using class field theory.
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1. Introduction

Mastropietro [3, p. 65] has proved the following result.

Proposition. Let p be a prime with p ≡ 1 (mod 8) for which the real quadratic field Q(
√

p)
contains an integer π of norm 2. The integer π is necessarily of the form 1

2 (A + B
√

p),
where A and B are odd integers; replacing π by −π, if necessary, we may suppose that
A ≡ −1 (mod 4). Let ε be a unit of Q(

√
p) of norm −1. Then

ε ≡
{±1 (mod π3), if π > 0,

±3 (mod π3), if π < 0.

We note that a classical theorem going back to Legendre [2, pp. 64–65] guarantees that
the real quadratic field Q(

√
p) contains units of norm −1 whenever p is a prime ≡ 1

(mod 4). For a more modern reference, see for example [5, pp. 98–99]. We also note that
there are primes p ≡ 1 (mod 8) for which Q(

√
p) does not contain an integer of norm 2,

∗Research of the third author was supported by Natural Sciences and Engineering Research Council of Canada
grant A-7233.



450 EVANS, KAPLAN AND WILLIAMS

for example p = 257. However, if Q(
√

p) has class number 1, then it always contains an
integer of norm 2, since then 2 splits into a product of prime elements.

An interesting feature of the congruence in the Proposition is that ε (mod π3) depends
on the sign of π . Mastropietro proved his congruence using class field theory. Recently he
asked the first author for a simpler proof. In Section 2, we provide an elementary proof of
an extension of Mastropietro’s result in which the prime p is replaced by a positive integer
D ≡ 1 (mod 4), which is not necessarily squarefree. The proof of our theorem requires
nothing deeper than the law of quadratic reciprocity. We prove

Theorem. Let D ≡ 1 (mod 4) be a positive integer for which the ring R = {x + y(1 +√
D)/2 : x, y ∈ Z} contains a unit ε of norm −1 as well as an element π of norm 2,

and thus an element λ of norm −2. The elements π and λ must necessarily be of the forms
π = 1

2 (A + B
√

D) and λ = 1
2 (E + F

√
D), where A, B, E, and F are odd integers. Then

we have the following congruences in R:

ε ≡
{±1 (mod π3), if sgn π = (−1)(A+1)/2,

±3 (mod π3), if sgn π = (−1)(A−1)/2,

and

ε ≡
{±1 (mod λ3), if sgn λ = (−1)(F+1)/2,

±3 (mod λ3), if sgn λ = (−1)(F−1)/2.

The following are twenty examples of composite positive integers D ≡ 1 (mod 4) for
which the ring R = {x + y(1 + √

D)/2 : x, y ∈ Z} contains both a unit of norm −1 and
an element of norm 2: D = 17 · 73, 17 · 113, 17 · 233, 17 · 313, 17 · 673, 17 · 41 · 233,

17 ·97 ·433, 17 ·41 ·89 ·97, 41 ·137, 41 ·193, 41 ·601, 41 ·113 ·281, 113 ·409, 193 ·457,

401 ·641, 641 ·937, 17 ·732, 17 ·412 ·113, 172 ·137 ·241, and 233 ·4012. We conjecture
that there are infinitely many such D. Dirichlet [1, pp. 656–662; Werke I, pp. 228–234] and
Tano [4] have given classes of odd composite squarefree positive integers D for which units
of norm −1 exist in Q(

√
D). For example, if p and q are primes congruent to 1 modulo

4 and ( p
q ) = −1 then there is a unit in Q(

√
pq) of norm −1. By Dirichlet’s theorem on

primes in an arithmetic progression, there are infinitely many such pairs p, q.

2. Proof of Theorem

Let D ≡ 1 (mod 4) be a positive integer for which the ring R = {x + y(1 + √
D)/2 :

x, y ∈ Z} contains a unit ε of norm −1 and an element π of norm 2. As R contains a unit
of norm −1, every prime dividing D is congruent to 1 modulo 4. Moreover, as R contains
an element of norm 2, each such prime must in fact be congruent to 1 modulo 8. Thus

D ≡ 1 (mod 8). (1)

As ε is a unit of R of norm −1, we have

ε = T + U
√

D, (2)
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where T and U are integers such that

T 2 − DU 2 = −1, T ≡ 0 (mod 4), U ≡ 1 (mod 2). (3)

From (3) we deduce that (T, U ) = 1 and that every prime divisor of U is congruent to 1
modulo 4, so that sgn U = (−1)(U−1)/2. As |U√

D| > |T |, we have

sgn ε = sgn U = (−1)(U−1)/2. (4)

As π is an element of R of norm 2, we have

π = A + B
√

D

2
, (5)

where A and B are integers such that

A2 − DB2 = 8, A ≡ B ≡ 1 (mod 2). (6)

From (6) we deduce that (A, B) = 1. As |A| > |B√
D|, we have

sgn π = sgn A. (7)

Next
(

2

|B|
)

=
(

8

|B|
)

=
(

A2 − DB2

|B|
)

=
(

A2

|B|
)

= 1,

and thus

B ≡ ±1 (mod 8). (8)

Now let λ be an element of R of norm −2. Then λ = επ for some unit ε of norm −1
and some element π of norm 2. From (2) and (5) we have

επ = E + F
√

D

2
, (9)

where the integers E and F are given by

E = AT + DBU, F = AU + BT . (10)

From (3) and (6) we see that

E2 − DF2 = −8, E ≡ F ≡ 1 (mod 2). (11)

From (11) we deduce that (E, F) = 1. From (10), (3), and (6), we obtain

F ≡ AU ≡ AU − (A − 1)(U − 1) ≡ A + U − 1 (mod 4). (12)
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Next, by the law of quadratic reciprocity, we have

(
A

D

)
=

(
D

|A|
)

=
(

DB2

|A|
)

=
(

A2 − 8

|A|
)

=
(−8

|A|
)

=
(−2

|A|
)

(13)

and
(

E

D

)
=

(
D

|E |
)

=
(

DF2

|E |
)

=
(

E2 + 8

|E |
)

=
(

8

|E |
)

=
(

2

|E |
)

. (14)

Further, by (6), (8), and (3), we obtain

(AU )2 ≡ (DB2 + 8)U 2 ≡ DU 2 + 8 ≡ T 2 + 9 ≡ 9 (mod 16)

so that

AU ≡ ±3 (mod 8). (15)

Set T = 2eT1, where T1 is odd. By the law of quadratic reciprocity, we deduce that

(
T

D

)
=

(
2eT1

D

)
=

(
T1

D

)
=

(
D

|T1|
)

=
(

DU 2

|T1|
)

=
(

T 2 + 1

|T1|
)

=
(

1

|T1|
)

= 1. (16)

From (10) we have E ≡ AT (mod D), so that appealing to (14), (16), and (13), we obtain
(

2

|E |
)

=
(

E

D

)
=

(
AT

D

)
=

(
A

D

)
=

(−2

|A|
)

.

Hence (
2

|E A|
)

=
(−1

|A|
)

= (−1)(|A|−1)/2 = (sgn A)(−1)(A−1)/2. (17)

By (10), (6), (1), (8), and (15), we have

E A = A2T + DB AU ≡ T + (±1)(±3) ≡ T ± 3 (mod 8)

so that (
2

|EA|
)

= (−1)
T
4 +1. (18)

From (7), (17), and (18) we obtain

sgn π = (−1)
A+1

2 + T
4 . (19)

From (4), (19), and (12) we have

sgn λ = sgn επ = (−1)
U−1

2 + A+1
2 + T

4 = (−1)
F+1

2 + T
4 . (20)
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Cubing (5), we obtain

π3 = G + H
√

D

2
, (21)

where

4G = A3 + 3AB2 D ≡ A + 3A ≡ 4A ≡ 4 (mod 8),

4H = 3A2 B + B3 D ≡ 3B + B ≡ 4B ≡ 4 (mod 8),

so that G ≡ H ≡ 1 (mod 2). From (21) we have H
√

D ≡ −G (mod π3). Thus, as π3 | 8,
we have using (6)

√
D ≡ H 2

√
D ≡ −G H ≡ − AB

16
(A2 + 3B2 D)(3A2 + B2 D)

≡ −AB(A2 − 6)(A2 − 2) ≡ −AB(1 − 6)(1 − 2) (mod π3),

so that
√

D ≡ 3AB (mod π3). (22)

Hence, by (22), (15), and (8), we obtain

U
√

D ≡ 3(AU )B ≡ 3(±3)(±1) ≡ ±1 (mod π3),

and so

ε = T + U
√

D ≡ T ± 1 ≡
{±1 (mod π3), if T ≡ 0 (mod 8),

±3 (mod π3), if T ≡ 4 (mod 8).
(23)

The first assertion of our theorem follows from (19) and (23), and the second from (20) and
(23).
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