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THE DISCRIMINANT OF A CYCLIC FIELD
OF ODD PRIME DEGREE

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

ABSTRACT. Let p be an odd prime. Let f(z) € Z[z]
be a defining polynomial for a cyclic extension field K of
the rational number field Q with [K : Q] = p. An explicit
formula for the discriminant d(K) of K is given in terms of
the coefficients of f(x).

1. Introduction. Throughout this paper p denotes an odd prime.
Let K be a cyclic extension field of the rational field Q with [K : Q] = p.
In this paper we give an explicit formula for the discriminant d(K) of
K in terms of the coefficients of a defining polynomial for K. We prove

Theorem 1. Let f(X) = XP +a, oXP 2>+ -+ a1 X +ag € Z[X]
be such that

1) Gal (f) = Z/vZ
and
(2) there does not exist a prime q such that
¢ Ha;, i=0,1,...,p—2.

Let 0 € C be a root of f(X) and set K = Q(0) so that K is a cyclic
extension of Q with [K : Q] =p. Then

(3) d(K) = f(K)"~",

where the conductor f(K) of K is given by

(4) f(K) =p* 11 7

g=1 (mod p)
qlai,i=0,1,... ,p—2
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where q runs through primes, and

0, ifpP®=Yydisc(f) andp|a;, i=1,...,p—2
does not hold,

or
pP®P=) | disc (f)  and pP~ | ag, p?~ ' | ay, PP ay,
1=2,...,p—2,

does not hold,
2, if pP®=Y tdisc(f) and p|a;, i=1,...,p—2 holds
or
pPe=) | disc(f)  and p*~*||ag, p*~*|as, pPH
1=2,...,p—2 holds.

This theorem will follow from a number of lemmas proved in Sec-
tion 2. In Section 3 Theorem 1 is applied to some quintic polynomials
introduced by Lehmer [5] in 1988. In Section 4 some numerical exam-
ples illustrating Theorem 1 are given.

2. Results on the ramification of a prime in a cyclic field of
odd prime degree. We begin with the following result.

Lemma 1. Let g(X) € Z[X] be a monic polynomial of degree p
having Gal (g) ~ Z/pZ. Let 6 € C be a root of g(X) and set K = Q(6).
Let q be a prime. If g ramifies in K, then there exists an integer r such
that

g(X)= (X =) (mod g).

Proof. Suppose that the prime ¢ ramifies in K. As K is a cyclic
extension of Q, it is a normal extension, and so

q=Q"
for some prime ideal ) of K. Thus,

0k /Ql = N(Q) =g,
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and so, as 6 € Og, there exists r € Z such that
(5) 6=r (mod Q).

Let 6 = 04,...,60, € C be the roots of g(X). Taking conjugates of (5),
we obtain
0;=r (modQ), i=1,2,...,p.

Hence,
g(X) = H(X —0;) = H(X —7) = (X —r)? (mod Q).
Since g(X) € Z[X], (X —r)? € Z[X] and ¢ = QP, we deduce that
9(X)= (X —-r)? (mod q),

as asserted. m|

From this point on, we assume that f(X) = X? 4 a, o XP72? +
oo+ a1 X + ag € Z[X] is such that (1) and (2) hold. We let
0 = 61,...,0, € C be the roots of f(X) and we set K = Q(f) so
that K is a cyclic extension of degree p.

Lemma 2. Let q be a prime # p. Then q ramifies in K < q | a;,
1=0,1,...,p—2.

Proof. (a) Suppose that ¢ ramifies in K. Then, by Lemma 1, there
exists an integer r such that

f(X)=(X —r)’ (mod q),

that is,
XP+ap o XP 24+ a1 X + ag

= XP —prX?7t 4+ (’2’) r?Xp2

—+--—7rP (mod q).
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Equating the coefficients of XP~! (mod ¢), we see that 0 = —pr
(mod ¢q). As p # q we must have ¢ | 7. From the coefficients of X,
1=0,1,...,p— 2, we deduce that

]

a; = (—1)*1 <P> P71 (mod g),

so that
qla;, i=0,1,...,p—2.

(b) Now suppose that
qlai, i=0,1,...,p—2,
but that ¢ does not ramify in K. Then
q=Q1--Qi, t=1lorp,
where the @; are distinct prime ideals in K. We have
0=f(0)=0"+ap 20"+ -+ a0 +ap=6" (mod q),
so that Q; | 6P for i =1,... ,t. As Q; is a prime ideal, we deduce that

Q; |6 fori=1,...,t, and so q | #. This shows that /g € Og. The
minimal polynomial of §/¢ over Q is

aq ap
qp—! q*

X4 2 yrr gy
q
which must belong in Z[X]. Hence we have
¢ a;, i=0,1,...,p—2,
contradicting (2). Hence ¢ ramifies in K. O
Lemma 3. If
plai, ©1=1,2,...,p—2 does not hold

then p does not ramify in K.
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Proof. Suppose on the contrary that p ramifies in K. By Lemma 1
there exists an integer r such that

f(X)= (X —r)" (mod p)
so that

XPt+ap, o XP 2+ +a1X +ag=XP —r (mod p)

and thus
p|ai7 i:172a"'7p_27
which is a contradiction. Hence p does not ramify in K. m
Lemma 4. If
PPt disc (f)
and

pla, 1=1,2,...,p—2,

then p ramifies in K.

Proof. Suppose p does not ramify in K. Then
p:Ql"'Qt7 t:lorp
for distinct prime ideals @Q;, i =1,... ,t, of K. Now

0=f(0)=0"+a, 20" >+ +ag=0"+aq
=60P +af = (0 + ap)? (mod p)

so that Q; | (0 + ao)? and thus Q; | @ + ap for ¢ = 1,...,¢. Hence

Q1Q2---Qt | 0+ag and so p | 04 ag. By conjugation, as K is a normal
extension of Q, we deduce that

pl0;+ay, i=1,2...,p.

Hence
pl0;—06;, 1<i<j<p,
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and so

po| TT 00

1<i<j<p
that is,
pP® Y | dise (f),

contradicting pP(P~Y) f disc (f). This proves that p ramifies in K.

Lemma 5. If

PP Yao, pP 7 | an, pP  as, i=2,...,p—2,
then

(a) p ramifies in K
and

(b) p*®= 1 | disc (f).

Proof. We define by, ... ,b,—2 € Z by
bo = ao/p" ! by = ar/pP T b = ai/pP T i=2,0 p -2,
Clearly p 1 bg. We set

p—2
h(X) = XP+pby XP~1 + 3 " p?bi ' XP + phh ! € Z]X].
=2
Then
h(prX)
p—2
= BhpPXP 4 bE o pP X+ Y b ipP T X 4 pbf

=2

-1 P2 +1—i 1
= bhlpX? (bopp_l + blpp—X + Zbipp - —)
=2

X Xp
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Hence h(X) can be taken as the defining polynomial for the field K.
Since h(X) is p-Eisenstein we have p = P for some prime ideal p of
K, see, for example, [7, Proposition 4.18, p. 181]. Thus p ramifies in
K.

Next we define the nonnegative integer k by ©*||#. Then by conjuga-
tion we have *||6;, i = 1,2,... ,p. Hence,

ppk\ll% 0, = —ap.

But pP~!{|ag so that PP~ D||ag. Hence pk = p(p—1), that is, k = p—1
and pP~1||6.

Further,
p—2
F1O)=ptP~ "+ i + .
i=2
We have
pp+(p—1)2 | pP—,
pp(p+1—i)—~-(p—1)(1'—1) | migi—l’ i=2,...,p—2,
EP(P—1) | ay.
As
p+(p—12=p"—p+1>plp-1)
and

plp+1—i)+(p-1)(i-1)=p*—i+1>p°—(p—2)+1
=p>—p+3>p(p-1),

we see that
e" P | ().
By conjugation we deduce that

pp(p—l) ‘ f/(ei)a 1= 17' -5 Dy

so that ,
o' | T] 1660,
i=1
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that is,
pPP=Y | disc (f).

This completes the proof of Lemma 5. |

Lemma 6. If
PP [ dise (f)

and
pP " Y|ao, PP Hag, PP " ay, i=2,...,p—2, does not hold,

then p does not ramify in K.

Proof. Suppose p ramifies in K. Then p = pP for some prime ideal p
in K. As N(p) = p there exists r € Z with 0 < r < p — 1 such that

0=r (mod p).

We consider two cases.

Case (i): 7 = 0. In this case p | § so that p¥||6 for some positive
integer k. Suppose that k > p. Then p | 6 and thus 0/p € Ok. The
minimal polynomial of 6/p over Q is

aq X—F@,

p W=2yp-2,
X0 DX ek SR X

p2

which must belong in Z[X]. Hence we have
P a;, i=0,1,...,p—2,

contradicting (2). Thus 1 <k <p—1.

Next we define the nonnegative integer I by ©!||f/(6). By conjugation
we have p!||f(6;),i=1,2,...,p. Hence

o f[f’(en = disc (/).
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But ppz(pfl) = pP®P=1 | disc (f), so we must have pl > p?(p — 1), that

is, I > p(p — 1). Hence

(6) PP~V | f(6).

Now
p—1

(7) F1(0) =p0" "+ (p —i)ap-iP ",
i=2

where

v,(p0* ") =p+ (p— Dk
and
ve((p — i)ap—iop_i_l) =vp(ap—;) + (p—i— 1)k,

Clearly,
v, (p#P~1) = -k (mod p)

and

1=2,...,p—1.

vo((p—i)ap—i0P~" 1) = —ik —k (modp), i=2,...,p—1.

Since {—ik—k | i =0,1,...,p—1} is a complete residue system modulo
P, v (pOP~1) and v, ((p—i)a,—i0P =" 1), i = 2,... ,p—1, are all distinct.

Hence, by (6) and (7), we have

v (PP~ > p(p— 1)

and 4
vo((p—i)ap—i? 1) = p(p—1), i=2,...
Thus
(8) pt+(—-1k>plp-1)
and

,p— 1.

.,p— 1.
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From (8) we deduce that k > p—1. As 1 <k <p— 1, we must have
k=p—1so pP~t0. From (9), we obtain

vp(ap—i) > (i +1)(p — i),

so that - )
vp(ap_i) > w7 i=2,...,p—1.
p
Hence
vplap—;) >i+1, fi=2,...,p—2,
and
vpla;) >p—1.
Thus )
EP(P=1) | o7
P+ —1) | ap_ 0P =2, ,p—2,
EPP=D+(p—1) | a6,
so that
p—1
2 .
el TP o7 + Zap,ﬂp_l = —ayp.
i=2
Hence,
PP | ao.
Since pP~! | a1, pP7% | ag,...,p* | ap—2, we must have by (2) that

pP t ag. This proves that pP~1||ag, contradicting the second assumption
of the lemma.

Case (ii): r=1,2,... ,p— 1. We set
g X)=f(X+r)= ZbXJez

so that, with a,_1 =0, a, = 1,

P .
b= ai (j.)r”’, i=01....p.

i=j
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In particular, we have b,_; = rp, b, = 1. Further, we set o = 6 —r so
that & =0 (mod p). Moreover, g(a) = f(a+r) = f(f) = 0 so that «
is a root of g(X). Define the positive integer k by ©*||a. If k > p then
a/p € Ok and, as the minimal polynomial of «/p is

p
g (X)_pr,JX7
Jj=0

we must have b
J s
ppijEZ, 7=0,1,...,p.

By Lemma 1 there exists an integer s such that

9" (X) = (X —s)” (mod p).
Thus
r=by_1/p= coefficient of X?~! in g*(X)=-ps=0 (mod p),
contradicting 1 <r <p—1. Hence, k=1,2,... ,p— 1.
Now let o = ay, ... ,a, € C be the roots of g(X), so that

P
pr 01 = pre= D | dise (f) = disc (g) = £ [ o' (e0).
i=1
Suppose that @'[|¢g’(c). By conjugation we have ef|g'(c;), i =
1,2,...,p. Hence,

p
10 e
i=1
Further
p—2
(11) g'(a) =paP' +rp(p— 1)+ ibja’!
i=1
and

ve(pa? ') =p+ (p— 1k,
ve(rp(p — 1)a?~?) = p+ (p — 2)k,
v (ibia ™) = v, (b)) + (i — )k, i=1,...,p—2.
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Since
Up(pap_1>7 ’Up(rp(p - 1)ap_2)7 Up(ibiai_1)7 i = 17 SRRy 2 2)

are all distinct modulo p, they must all be different. From (10) and
(11), we deduce

1) {Wl) [par™t, P [rp(p — D2,

eP@=D) | bt~ i=1,...,p—2.
From the first of these, we have
plp—1) <p+ -1k
so that )
)
-
As k € Z we must have £ > p — 1. Since k € {1,2,... ,p — 1}, we

deduce that k = p — 1. Then, from the second divisibility condition in
(12), we deduce that

k

plp—1) <p+(p-2k=p+(p-2)(p-1)=p*—2p+2,

which is impossible.
In both cases we have been led to a contradiction. Thus p does not
ramify in K. O

3. Proof of Theorem 1. It is well known, see, for example, [6,
p. 831], that

and
g=1 (mod p)
q ramifies in K

where ¢ runs through primes and

~ [0 if p does not ramify in K,
2 if p ramifies in K.
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Clearly, by Lemma 2, we have

M - I

g=1 (mod p) g=1 (mod p)
g ramifies in K qla;,i=0,1,... ,p—2
Finally we treat the prime p. We consider four cases.
(1) pP®=1 ydisc (f), p | as, i = 1,... ,p — 2, does not hold,
(I1) pP®=1) tdisc (f), p | as, i = 1,... ,p — 2, holds,
(1) pr®=1) | disc (f), pP~Hlag, P~ | a1, PP [ ag i = 2,0 p=2,
holds,

(IV> pp(p—l) | disc (f)7pp—1‘|a07pp—1 ‘ a’l7pp+1_i ‘ g, 1= 2) ER 7p_27
does not hold.

In Case (I), by Lemma 3, p does not ramify in K, and so « = 0. In
Case (II), by Lemma 4, p ramifies in K, and so a = 2. In Case (III), by
Lemma 5, p ramifies in K, and so a = 2. In Case (IV), by Lemma 6,
p does not ramify in K, and so a = 0.

This completes the proof of Theorem 1. O

We conclude this section by looking at the case p = 3 in some detail.
Let f(X) = X3 +aX +b € Z[X] be such that Gal(f) ~ Z/3Z and
suppose that there does not exist a prime g such that ¢? | @ and ¢> | b.
Here disc (f) = —4a® — 27b%. As Gal(f) ~ Z/3Z, we have

—4a® =27 = 2

for some positive integer c. Since 32 | a, 3% | b cannot occur, we deduce
as in [4, p. 4] that exactly one of the following four possibilities occurs:

(i) 31a, 31c,
(ii) 3lla, 310, 32||c,

(iii) 3||a, 31 b, 3% | c,
(iv) 32||a, 3%||b, 33||c.
Clearly (i) is equivalent to
(1)’ 3% tdisc (f), 31 a;
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(ii) is equivalent to

(i) 35 f disc (f), 3 | a;
(i) is equivalent to

(iii)’ 36 | disc (f), 3||a;
(iv) is equivalent to

(iv)’ 3¢ | disc (f), 32 | a, 3%|b.
By Theorem 1, we have

f=3 I

g=1 (mod 3)
qla, qlb

where ¢ runs through primes, and
0 in cases (i)', (iii)’,
o =
2 in cases (ii)’, (iv)’,
that is,
0 in cases (i), (iii),
o =
2 in cases (ii), (iv),

in agreement with [4].

3. Emma Lehmer’s quintics. Let ¢t € Q and set
(13)  f1(X) = X5 + as() X* + az(t) X2 + ag(t) X2 + a1 () X + ao(t),

where
ag(t) = 12,
az(t) = (2t3 + 6t% 4 10t + 10),
(14) as(t) = t* 4+ 5t3 + 11¢* + 15t + 5,
ay(t) = t3 4+ 4¢2 + 10t + 10,
ap(t) = 1.

These polynomials were introduced by Lehmer [5] in 1988 and have
been discussed by Schoof and Washington [8], Darmon [2] and Gaél
and Pohst [3]. We set

(15) t=u/v, ueZ veld, (uv)=1 v>0.



DISCRIMINANT OF A CYCLIC FIELD 1115

It is convenient to define

E = E(u,v) = u* 4 5uv + 15u0? + 25uv® + 2504,
F = F(u,v) = 4u* + 10uv + 50,

G = G(u,v) = 3u® + 15u3v + 20uv? — 500*,

H = H(u,v) = 4u® + 30u°v + 65u*v? — 200u?v*

(16) — 125un® + 1250°,
I = I(u,v) = v+ 5uv + 10uv? + 7v°,
J = J(u,v) = 12u® + 58u'v + 15u3v? — 130u*v?
— 175uv* + 2000°,
L = L(u,v) = 3u® 4+ Tu?v + 20uv? + 150°.

Let 6 be a root of fi(z) and set K = Q(#). As an application of
Theorem 1, we prove the following result.

Theorem 2. With the above notation, if K is a cyclic quintic field,
then its conductor f(K) is given by

fK) = 5" 11 4,
g=1 (mod 5)
qlE
vq(E)Z£0 (mod 5)

where q runs through primes, and

[0 if 51w,
_{2 if 5| u.

We remark that when t € Z, equivalently v = 1, it is known that K
is a cyclic quintic field [8]. The special case of Theorem 2 when E(u, 1)
is squarefree is given in [3].

Proof. We have

(17) (X)) =5"fi((X —17)/5) = X° + g3X° + 2 X + 1 X + g0,



1116 B.K. SPEARMAN AND K.S. WILLIAMS

where

g3 = —10t* — 50t3 — 150t2 — 250t — 250,
go = 20t° + 150> + 575t + 1375t 4 2125t
+ 1875t + 625,
(18) g1 = —15t% — 1507 — 700t° — 2000¢> — 3500t
— 3125¢3 4+ 12502 + 6250t + 6250,
go = 410 + 50t + 275¢% + 8757 4 1625t5 + 125065
— 1875t* — 6250t% — 62502 + 3125.

Next we set
(19)  huo(X) =0"g,/0(X/0*) = X° + h3 X® + ho X? 4+ h1 X + hy,
where

hs = —10u* — 50u3v — 150uv? — 250uv® — 2500%
= —10(u* + 5uPv + 15uv? + 25uv® + 25v%);
ho = 20uS + 150u’v 4 575u*v? + 1375u30® + 2125u%0*
+ 1875uv® + 6250°
= 5(u* + 5ulv + 15u%v? + 25uv® + 25v%) (4u? + 10uv + 50°);
hy = —15u® — 150u"v — 700u5v? — 2000u°v3 — 3500utv?
— 3125u0° 4+ 1250u%0° + 6250uv” + 625008
= —5(ut 4 5ulv + 15002 + 25uv® + 250%)
x (3u + 15uv + 20u*v? — 500%);
ho = 4u'® + 50t v + 275u®v? + 875u"v® + 1625u5v*
+1250u°v® — 1875u*v® — 6250u3v™ — 6250u>0® + 312501°
= (u* + 5udv + 15u0? + 25uv® + 250)
x (4u8 + 30u’v + 65u*v? — 200uv? — 125uv® + 1250°);

so that by (16) we have
(20) hs = —10F, ho =5FEF, hy = =5EG, hy = EH.
Next let m denote the largest positive integer such that

(21) m2|h3, m3|h2, m4|h1, m5‘ho,
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and set

(22)  kyo(X) = hyo(mX)/m® = X° + ks X3 + ko X2 + k1 X + ko,
where

(23) k3 = ha/m?, ky = hy/m?3, ki = hy/m?, ko = ho/m’.

Appealing to MAPLE, we find

(24) disc (ky ) = 52°E* %08 /m?°
and
(25) EJ - HL = 5%°,

Clearly k, ,(X) is a defining polynomial for the cyclic quintic field
K. Hence, by Theorem 1, we have

(26) f(K) = 5° 11 q,
g=1 (mod 5)
qlko, qlk1, qlk2, qlks

where ¢ runs through primes, and

0 if 5% tdisc(ky,») and 5 | k1, 5| k2, 5| k3
does not hold, or
520 | disc (ky,) and 5%||ko, 5% | k1,54 | k2,53 | k3
does not hold,
2 if 520 tdisc (ky») and 5 | k1,5 | ko, 5 | ks,
or 520 | disc (ky ) and 5%| ko, 5% | k1,5 | ko, 53 | k.

Let ¢ be a prime with
qu (m0d5)7 Q‘k‘3aq‘kQaQ|k17q|k0-

‘We show that
¢ E, v,(B)£0 (mod 5).
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By (23) we have
q|hs, q|h2, q|h1, q]|ho.

As ¢ =1 (mod 5), we have g # 2,5. Thus, from (20), we deduce that
q | E. Suppose next that ¢ | v. Then, from the definition of E in (16)
we see that ¢ | u, contradicting (u,v) = 1. Hence ¢ f v. Then, from
(25), we deduce that ¢ t H. If v,(E) = 0 (mod 5), say v,(E) = bw,
w > 1, then by (20) we have

qsth?n q5w ‘ h27 q5w | hla q5w||h0a
so that by (21) we have
q*|[m.

Thus by (23),
q1ho/m® = ko,

a contradiction. Hence vy(E) # 0 (mod 5).

Conversely, let ¢ be a prime with
g=1 (mod5), q|E, v,(E)Z0 (mod?5).
We show that

q| ks, qlke, qlki, qlko.

Suppose that ¢ | v. Then, by the definition of F in (16), we have ¢ | u,
contradicting (u,v) = 1. Hence ¢ t v. Thus, by (25), we see that ¢t H.
As v,(E) # 0 (mod 5), we have ¢°**"||E, where 2 is a nonnegative
integer and r = 1,2,3,4. Thus by (20) we have

(]5Z+TH}L3, q5z+r | hg, q5z+r | hla q5Z+T||h0.

This shows by (21) that
¢ lm

so that by (23)
¢ ks, ¢ k2, 1 | Ry (o,

proving
Q‘k‘?)a Q‘k‘Qa Q|k17 CI|]€0



DISCRIMINANT OF A CYCLIC FIELD

We have shown that

(28) 11 q= I «

g=1 (mod 5) g=1 (mod 5)
qlko, alk1, qlkz2, qlks q|E
vq(E)#0 (mod 5)

Finally, to complete the proof of Theorem 2, we show that

0 if5
a:{ if 51 u,

(29) 2 if 5| u

If 5 | u, then by (15), 51 v and, by (16),
5%(|E, 5||F, 5%||G, 5°(|H, 5¢1.
Hence, by (20),
5%||hs, 5%(|h2, 5°(h1, 5°|ho,

so that, by (21),
5|lm.

This shows by (23) that
5||ks, 5|lk2, 5|lk1, 51 ko,

and by (24) that
58| disc (Ky.0)-

Thus by (27) o = 2.
If 5 { u, then by (16)
5{E, 51F, 5/G, 51 H.
Hence by (20)
5||hs, 5|lhe, 5]lh1, 51 ho,

so that by (21)
51 m.

This shows by (23) that

5|k, 5l[k2, 5llk1, 51 ko,

1119
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and, by (24), that
520|disc (K )-
Thus, by (27), a = 0.
Theorem 2 now follows from (26), (27), (28) and (29). O

We conclude this section with a numerical example to illustrate
Theorem 2. We choose u = 5, v = 6, so that t = 5/6 and

25 2555 36955 4685
X)=X"+ x4 """x3 X? X +1.
Fs/6(X) *36 108 T 1206 Tae T

MAPLE confirms that
Gal (fs5/6) ~ Z/5Z.
Now E = 52 x 11 x 281, so that by Theorem 2,
fK)=5% x 11 x 281, d(K)=>5% x 11* x 281*

in agreement with PARI.

4. Numerical examples. We conclude with six numerical exam-
ples.

Ezample 1. f(X) = X°—110X3—55X242310X +979. ap = 11 x 89,
a1 =2x3x5x7x11, a9 = =5x11,a3 = —2x5x11. Gal(f) ~ Z/5Z,
disc (f) = 5%Y x 11%. [MAPLE, PARI] 5% | disc (f), 5 { ao, so that
a = 0. Theorem 1 gives f(K) = 11, d(K) = 11%, in agreement with
PARIL

Example 2. f(X) = X® — 25X +50X2 — 25. ap = =52, a1 = 0,
a4z =2 x 5%, a3 = —52. Gal(f) ~ Z/5Z, disc (f) = 5% x 72. [MAPLE,
PARI] 5% ¢ disc (f), 5 | a1, 5 | a2, 5 | as, so that & = 2. Theorem 1
gives f(K) =52, d(K) = 58, in agreement with PARI.

Example 3. f(X) = X®—375X3—3750X2—-10000X —625. ap = —5%,
a; = =24 x 5% a3 = =2 x 3 x 5% a3 = -3 x 53. Gal(f) ~ Z/5Z,
disc (f) = 52° x 7% [MAPLE, PARI] 5%° | disc(f), 5*||lao, 5* | a1,



DISCRIMINANT OF A CYCLIC FIELD 1121

5% | ag, 5% | a3, so that a = 2. Theorem 1 gives f(K) = 52, d(K) = 5%,
in agreement with PARI.

Ezample 4. f(X) = X°—2483X3 —7449X?+3247X —191. ao = 191,
ap =17 %191, ag = =3 x 13 x 191, a3 = —13 x 191. Gal(f) ~ Z/5Z,
disc (f) = 519 x 412 x 191* x 1039? [MAPLE, PARI] 5% { disc (f),
51 a1, so that o = 0. Theorem 1 gives f(K) = 191, d(K) = 1914, in
agreement with PARI.

Ezample 5. f(X) = X7 — 609X° + 609X* + 70847X3 + 25172X? —
1321124X + 2048647. ap = 29 x 41 x 1723, a3 = —22 x 7 x 29 x 1627,
g = 22xTx29%x31, a3 = Tx29%x349, ay = 3x7x29, a5 = —3x7x29.
Gal (f) ~ Z/7Z, disc (f) = 72 x 172 x 296 [MAPLE] 74 | disc (f),
f ag, so that a = 0. Theorem 1 now gives f(K) = 29, d(K) = 29%, in
agreement with PARI.

Example 6. f(X) = X138 — 78X — 65X10 4 2080X7 + 2457X5 —
24128 X7 —27027X % +137683X° +110214X* — 376064 X > — 128206 X 2 +
363883X —12167. ag = —23%, a; = 13x 23 x 2717, ay = —2x 13 x 4931,
a3 = —28 x 13 x 113, ay = 2 x 3% x 13 x 157, a5 = 7 x 13 x 17 x 89,
ag = -3 x Tx11x 13, a7 = —26 x 13 x 29, ag = 3% x 7 x 13,
ag = 2° x5 x 13, ajgp = —5 x 13, a;; = —2 x 3 x 13. disc(f) =
1324 %199 x 2310 % 3372 x 8232 x 71212 x 213172 [MAPLE] 131°6 4 disc (f),
13 | a;, i = 1,2,...,11, so that a = 2. Theorem 1 gives f(K) = 132,
d(K) = 13* in agreement with [1].
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