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THE DISCRIMINANT OF A CYCLIC FIELD
OF ODD PRIME DEGREE

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

ABSTRACT. Let p be an odd prime. Let f(x) ∈ Z[x]
be a defining polynomial for a cyclic extension field K of
the rational number field Q with [K : Q] = p. An explicit
formula for the discriminant d(K) of K is given in terms of
the coefficients of f(x).

1. Introduction. Throughout this paper p denotes an odd prime.
LetK be a cyclic extension field of the rational field Q with [K : Q] = p.
In this paper we give an explicit formula for the discriminant d(K) of
K in terms of the coefficients of a defining polynomial for K. We prove

Theorem 1. Let f(X) = Xp + ap−2X
p−2 + · · · + a1X + a0 ∈ Z[X]

be such that

(1) Gal (f) � Z/pZ

and

(2) there does not exist a prime q such that

qp−i|ai, i = 0, 1, . . . , p− 2.

Let θ ∈ C be a root of f(X) and set K = Q(θ) so that K is a cyclic
extension of Q with [K : Q] = p. Then

(3) d(K) = f(K)p−1,

where the conductor f(K) of K is given by

(4) f(K) = pα
∏

q≡1 (mod p)
q|ai,i=0,1,... ,p−2

q,
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where q runs through primes, and

α =




0, if pp(p−1) � disc (f) and p | ai, i = 1, . . . , p− 2
does not hold,
or

pp(p−1) | disc (f) and pp−1‖a0, p
p−1 | a1, p

p+1−i|ai,
i = 2, . . . , p− 2,
does not hold,

2, if pp(p−1) � disc (f) and p | ai, i = 1, . . . , p− 2 holds
or

pp(p−1) | disc (f) and pp−1‖a0, p
p−1|ai, p

p+1−i|ai

i = 2, . . . , p− 2 holds.

This theorem will follow from a number of lemmas proved in Sec-
tion 2. In Section 3 Theorem 1 is applied to some quintic polynomials
introduced by Lehmer [5] in 1988. In Section 4 some numerical exam-
ples illustrating Theorem 1 are given.

2. Results on the ramification of a prime in a cyclic field of
odd prime degree. We begin with the following result.

Lemma 1. Let g(X) ∈ Z[X] be a monic polynomial of degree p
having Gal (g) � Z/pZ. Let θ ∈ C be a root of g(X) and set K = Q(θ).
Let q be a prime. If q ramifies in K, then there exists an integer r such
that

g(X) ≡ (X − r)p (mod q).

Proof. Suppose that the prime q ramifies in K. As K is a cyclic
extension of Q, it is a normal extension, and so

q = Qp

for some prime ideal Q of K. Thus,

|OK/Q| = N(Q) = q,
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and so, as θ ∈ OK , there exists r ∈ Z such that

(5) θ ≡ r (mod Q).

Let θ = θ1, . . . , θp ∈ C be the roots of g(X). Taking conjugates of (5),
we obtain

θi ≡ r (mod Q), i = 1, 2, . . . , p.

Hence,

g(X) =
p∏

i=1

(X − θi) ≡
p∏

i=1

(X − r) ≡ (X − r)p (mod Q).

Since g(X) ∈ Z[X], (X − r)p ∈ Z[X] and q = Qp, we deduce that

g(X) ≡ (X − r)p (mod q),

as asserted.

From this point on, we assume that f(X) = Xp + ap−2X
p−2 +

· · · + a1X + a0 ∈ Z[X] is such that (1) and (2) hold. We let
θ = θ1, . . . , θp ∈ C be the roots of f(X) and we set K = Q(θ) so
that K is a cyclic extension of degree p.

Lemma 2. Let q be a prime �= p. Then q ramifies in K ⇔ q | ai,
i = 0, 1, . . . , p− 2.

Proof. (a) Suppose that q ramifies in K. Then, by Lemma 1, there
exists an integer r such that

f(X) ≡ (X − r)p (mod q),

that is,
Xp + ap−2X

p−2 + · · ·+ a1X + a0

≡ Xp − prXp−1 +
(
p
2

)
r2Xp−2

− · · · − rp (mod q).
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Equating the coefficients of Xp−1 (mod q), we see that 0 ≡ −pr
(mod q). As p �= q we must have q | r. From the coefficients of Xi,
i = 0, 1, . . . , p− 2, we deduce that

ai ≡ (−1)i+1

(
p
i

)
rp−i (mod q),

so that
q | ai, i = 0, 1, . . . , p− 2.

(b) Now suppose that

q | ai, i = 0, 1, . . . , p− 2,

but that q does not ramify in K. Then

q = Q1 · · ·Qt, t = 1 or p,

where the Qi are distinct prime ideals in K. We have

0 = f(θ) = θp + ap−2θ
p−2 + · · ·+ a1θ + a0 ≡ θp (mod q),

so that Qi | θp for i = 1, . . . , t. As Qi is a prime ideal, we deduce that
Qi | θ for i = 1, . . . , t, and so q | θ. This shows that θ/q ∈ OK . The
minimal polynomial of θ/q over Q is

Xp +
ap−2

q2
Xp−2 + · · ·+ a1

qp−1
X +

a0

qp
,

which must belong in Z[X]. Hence we have

qp−i | ai, i = 0, 1, . . . , p− 2,

contradicting (2). Hence q ramifies in K.

Lemma 3. If

p | ai, i = 1, 2, . . . , p− 2 does not hold

then p does not ramify in K.
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Proof. Suppose on the contrary that p ramifies in K. By Lemma 1
there exists an integer r such that

f(X) ≡ (X − r)p (mod p)

so that

Xp + ap−2X
p−2 + · · ·+ a1X + a0 ≡ Xp − r (mod p)

and thus
p | ai, i = 1, 2, . . . , p− 2,

which is a contradiction. Hence p does not ramify in K.

Lemma 4. If
pp(p−1) � disc (f)

and
p | ai, i = 1, 2, . . . , p− 2,

then p ramifies in K.

Proof. Suppose p does not ramify in K. Then

p = Q1 · · ·Qt, t = 1 or p

for distinct prime ideals Qi, i = 1, . . . , t, of K. Now

0 = f(θ) = θp + ap−2θ
p−2 + · · ·+ a0 ≡ θp + a0

≡ θp + ap
0 ≡ (θ + a0)p (mod p)

so that Qi | (θ + a0)p and thus Qi | θ + a0 for i = 1, . . . , t. Hence
Q1Q2 · · ·Qt | θ+a0 and so p | θ+a0. By conjugation, as K is a normal
extension of Q, we deduce that

p | θi + a0, i = 1, 2, . . . , p.

Hence
p | θi − θj , 1 ≤ i < j ≤ p,
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and so
pp(p−1)

∣∣∣ ∏
1≤i<j≤p

(θi − θj)2,

that is,
pp(p−1) | disc (f),

contradicting pp(p−1) � disc (f). This proves that p ramifies in K.

Lemma 5. If

pp−1‖a0, p
p−1 | a1, p

p+1−i|ai, i = 2, . . . , p− 2,

then

(a) p ramifies in K

and

(b) pp(p−1) | disc (f).

Proof. We define b0, . . . , bp−2 ∈ Z by

b0 = a0/p
p−1, b1 = a1/p

p−1, bi = ai/p
p+1−i, i = 2, . . . , p− 2.

Clearly p � b0. We set

h(X) = Xp + pb1Xp−1 +
p−2∑
i=2

p2bi−1
0 biX

p−i + pbp−1
0 ∈ Z[X].

Then

h(b0pX)

= bp0p
pXp + bp−1

0 b1p
pXp−1 +

p−2∑
i=2

bp−1
0 bip

p+2−iXp−i + pbp−1
0

= bp−1
0 pXp

(
b0p

p−1 + b1
pp−1

X
+

p−2∑
i=2

bi
pp+1−i

Xi
+

1
Xp

)

= bp−1
0 pXp

(
a0 +

a1

X
+

p−2∑
i=2

ai

Xi
+

1
Xp

)

= bp−1
0 pXpf

(
1
X

)
.
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Hence h(X) can be taken as the defining polynomial for the field K.
Since h(X) is p-Eisenstein we have p = ℘p for some prime ideal ℘ of
K, see, for example, [7, Proposition 4.18, p. 181]. Thus p ramifies in
K.

Next we define the nonnegative integer k by ℘k‖θ. Then by conjuga-
tion we have ℘k‖θi, i = 1, 2, . . . , p. Hence,

℘pk‖θ1 · · · θp = −a0.

But pp−1‖a0 so that ℘p(p−1)‖a0. Hence pk = p(p−1), that is, k = p−1
and ℘p−1‖θ.

Further,

f ′(θ) = pθp−1 +
p−2∑
i=2

iaiθ
i−1 + a1.

We have

℘p+(p−1)2 ‖ pθp−1,

℘p(p+1−i)+(p−1)(i−1) | iaiθ
i−1, i = 2, . . . , p− 2,

℘p(p−1) | a1.

As
p+ (p− 1)2 = p2 − p+ 1 > p(p− 1)

and

p(p+ 1 − i) + (p− 1)(i− 1) = p2 − i+ 1 ≥ p2 − (p− 2) + 1
= p2 − p+ 3 > p(p− 1),

we see that
℘p(p−1) | f ′(θ).

By conjugation we deduce that

℘p(p−1) | f ′(θi), i = 1, . . . , p,

so that

℘p2(p−1)
∣∣∣

p∏
i=1

f ′(θi),
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that is,
pp(p−1) | disc (f).

This completes the proof of Lemma 5.

Lemma 6. If
pp(p−1) | disc (f)

and

pp−1‖a0, p
p−1|a1, p

p+1−i|ai, i = 2, . . . , p− 2, does not hold,

then p does not ramify in K.

Proof. Suppose p ramifies in K. Then p = ℘p for some prime ideal ℘
in K. As N(℘) = p there exists r ∈ Z with 0 ≤ r ≤ p− 1 such that

θ ≡ r (mod ℘).

We consider two cases.

Case (i): r = 0. In this case ℘ | θ so that ℘k‖θ for some positive
integer k. Suppose that k ≥ p. Then p | θ and thus θ/p ∈ OK . The
minimal polynomial of θ/p over Q is

Xp +
ap−2

p2
Xp−2 + · · ·+ a1

pp−1
X +

a0

pp
,

which must belong in Z[X]. Hence we have

pp−i | ai, i = 0, 1, . . . , p− 2,

contradicting (2). Thus 1 ≤ k ≤ p− 1.

Next we define the nonnegative integer l by ℘l‖f ′(θ). By conjugation
we have ℘l‖f ′(θi), i = 1, 2, . . . , p. Hence

℘pl
∥∥∥

p∏
i=1

f ′(θi) = ±disc (f).
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But ℘p2(p−1) = pp(p−1) | disc (f), so we must have pl ≥ p2(p− 1), that
is, l ≥ p(p− 1). Hence

(6) ℘p(p−1) | f ′(θ).

Now

(7) f ′(θ) = pθp−1 +
p−1∑
i=2

(p− i)ap−iθ
p−i−1,

where
v℘(pθp−1) = p+ (p− 1)k

and

v℘((p− i)ap−iθ
p−i−1) = v℘(ap−i) + (p− i− 1)k, i = 2, . . . , p− 1.

Clearly,
v℘(pθp−1) ≡ −k (mod p)

and

v℘((p− i)ap−iθ
p−i−1) ≡ −ik − k (mod p), i = 2, . . . , p− 1.

Since {−ik−k | i = 0, 1, . . . , p−1} is a complete residue system modulo
p, v℘(pθp−1) and v℘((p−i)ap−iθ

p−i−1), i = 2, . . . , p−1, are all distinct.
Hence, by (6) and (7), we have

v℘(pθp−1) ≥ p(p− 1)

and
v℘((p− i)ap−iθ

p−i−1) ≥ p(p− 1), i = 2, . . . , p− 1.

Thus

(8) p+ (p− 1)k ≥ p(p− 1)

and

(9) v℘(ap−i) + (p− i− 1)k ≥ p(p− 1), i = 2, . . . , p− 1.
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From (8) we deduce that k ≥ p − 1. As 1 ≤ k ≤ p − 1, we must have
k = p− 1 so ℘p−1‖θ. From (9), we obtain

v℘(ap−i) ≥ (i+ 1)(p− i),

so that
vp(ap−i) ≥ (i+ 1)(p− 1)

p
, i = 2, . . . , p− 1.

Hence
vp(ap−i) ≥ i+ 1, if i = 2, . . . , p− 2,

and
vp(a1) ≥ p− 1.

Thus
℘p(p−1) | θp

℘p(i+1)+(p−i)(p−1) | ap−iθ
p−i, i = 2, . . . , p− 2,

℘p(p−1)+(p−1) | a1θ,

so that

℘p2−p | θp +
p−1∑
i=2

ap−iθ
p−i = −a0.

Hence,
pp−1 | a0.

Since pp−1 | a1, pp−2 | a2, . . . , p
2 | ap−2, we must have by (2) that

pp � a0. This proves that pp−1‖a0, contradicting the second assumption
of the lemma.

Case (ii): r = 1, 2, . . . , p− 1. We set

g(X) = f(X + r) =
p∑

j=0

bjX
j ∈ Z[X]

so that, with ap−1 = 0, ap = 1,

bj =
p∑

i=j

ai

(
i
j

)
ri−j , j = 0, 1, . . . , p.
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In particular, we have bp−1 = rp, bp = 1. Further, we set α = θ − r so
that α ≡ 0 (mod ℘). Moreover, g(α) = f(α+ r) = f(θ) = 0 so that α
is a root of g(X). Define the positive integer k by ℘k‖α. If k ≥ p then
α/p ∈ OK and, as the minimal polynomial of α/p is

g∗(X) =
p∑

j=0

bj
pp−j

Xj ,

we must have
bj
pp−j

∈ Z, j = 0, 1, . . . , p.

By Lemma 1 there exists an integer s such that

g∗(X) ≡ (X − s)p (mod p).

Thus

r = bp−1/p = coefficient of Xp−1 in g∗(X) ≡ −ps ≡ 0 (mod p),

contradicting 1 ≤ r ≤ p− 1. Hence, k = 1, 2, . . . , p− 1.

Now let α = α1, . . . , αp ∈ C be the roots of g(X), so that

℘p2(p−1) = pp(p−1) | disc (f) = disc (g) = ±
p∏

i=1

g′(αi).

Suppose that ℘t‖g′(α). By conjugation we have ℘t‖g′(αi), i =
1, 2, . . . , p. Hence,

(10) ℘pt
∥∥∥

p∏
i=1

g′(αi).

Further

(11) g′(α) = pαp−1 + rp(p− 1)αp−2 +
p−2∑
i=1

ibiα
i−1

and

v℘(pαp−1) = p+ (p− 1)k,
v℘(rp(p− 1)αp−2) = p+ (p− 2)k,

v℘(ibiαi−1) = v℘(bi) + (i− 1)k, i = 1, . . . , p− 2.
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Since

v℘(pαp−1), v℘(rp(p− 1)αp−2), v℘(ibiαi−1), i = 1, . . . , p− 2,

are all distinct modulo p, they must all be different. From (10) and
(11), we deduce

(12)
{
℘p(p−1) | pαp−1, ℘p(p−1) | rp(p− 1)αp−2,

℘p(p−1) | ibiαi−1, i = 1, . . . , p− 2.

From the first of these, we have

p(p− 1) ≤ p+ (p− 1)k

so that

k ≥ p2 − 2p
p− 1

.

As k ∈ Z we must have k ≥ p − 1. Since k ∈ {1, 2, . . . , p − 1}, we
deduce that k = p− 1. Then, from the second divisibility condition in
(12), we deduce that

p(p− 1) ≤ p+ (p− 2)k = p+ (p− 2)(p− 1) = p2 − 2p+ 2,

which is impossible.

In both cases we have been led to a contradiction. Thus p does not
ramify in K.

3. Proof of Theorem 1. It is well known, see, for example, [6,
p. 831], that

d(K) = f(K)p−1

and
f(K) = pα

∏
q≡1 (mod p)

q ramifies in K

q,

where q runs through primes and

α =
{

0 if p does not ramify in K,
2 if p ramifies in K.
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Clearly, by Lemma 2, we have

∏
q≡1 (mod p)

q ramifies in K

=
∏

q≡1 (mod p)
q|ai,i=0,1,... ,p−2

q.

Finally we treat the prime p. We consider four cases.

(I) pp(p−1) � disc (f), p | ai, i = 1, . . . , p− 2, does not hold,

(II) pp(p−1) � disc (f), p | ai, i = 1, . . . , p− 2, holds,

(III) pp(p−1) | disc (f), pp−1‖a0, pp−1 | a1, pp+1−i | ai, i = 2, . . . , p−2,
holds,

(IV) pp(p−1) | disc (f), pp−1‖a0, pp−1 | a1, pp+1−i | ai, i = 2, . . . , p−2,
does not hold.

In Case (I), by Lemma 3, p does not ramify in K, and so α = 0. In
Case (II), by Lemma 4, p ramifies in K, and so α = 2. In Case (III), by
Lemma 5, p ramifies in K, and so α = 2. In Case (IV), by Lemma 6,
p does not ramify in K, and so α = 0.

This completes the proof of Theorem 1.

We conclude this section by looking at the case p = 3 in some detail.
Let f(X) = X3 + aX + b ∈ Z[X] be such that Gal (f) � Z/3Z and
suppose that there does not exist a prime q such that q2 | a and q3 | b.
Here disc (f) = −4a3 − 27b2. As Gal (f) � Z/3Z, we have

−4a3 − 27b2 = c2

for some positive integer c. Since 32 | a, 33 | b cannot occur, we deduce
as in [4, p. 4] that exactly one of the following four possibilities occurs:

(i) 3 � a, 3 � c,

(ii) 3‖a, 3 � b, 32‖c,
(iii) 3‖a, 3 � b, 33 | c,
(iv) 32‖a, 32‖b, 33‖c.

Clearly (i) is equivalent to

(i)′ 36 � disc (f), 3 � a;
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(ii) is equivalent to

(ii)′ 36 � disc (f), 3 | a;
(iii) is equivalent to

(iii)′ 36 | disc (f), 3‖a;
(iv) is equivalent to

(iv)′ 36 | disc (f), 32 | a, 32‖b.
By Theorem 1, we have

f(K) = 3α
∏

q≡1 (mod 3)
q|a, q|b

q,

where q runs through primes, and

α =
{

0 in cases (i)′, (iii)′,
2 in cases (ii)′, (iv)′,

that is,

α =
{

0 in cases (i), (iii),
2 in cases (ii), (iv),

in agreement with [4].

3. Emma Lehmer’s quintics. Let t ∈ Q and set

(13) ft(X) = X5 + a4(t)X4 + a3(t)X3 + a2(t)X2 + a1(t)X + a0(t),

where

(14)

a4(t) = t2,

a3(t) = −(2t3 + 6t2 + 10t+ 10),
a2(t) = t4 + 5t3 + 11t2 + 15t+ 5,
a1(t) = t3 + 4t2 + 10t+ 10,
a0(t) = 1.

These polynomials were introduced by Lehmer [5] in 1988 and have
been discussed by Schoof and Washington [8], Darmon [2] and Gaál
and Pohst [3]. We set

(15) t = u/v, u ∈ Z, v ∈ Z, (u, v) = 1, v > 0.
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It is convenient to define

(16)

E = E(u, v) = u4 + 5u3v + 15u2v2 + 25uv3 + 25v4,
F = F (u, v) = 4u2 + 10uv + 5v2,
G = G(u, v) = 3u4 + 15u3v + 20u2v2 − 50v4,
H = H(u, v) = 4u6 + 30u5v + 65u4v2 − 200u2v4

− 125uv5 + 125v6,
I = I(u, v) = u3 + 5u2v + 10uv2 + 7v3,
J = J(u, v) = 12u5 + 58u4v + 15u3v2 − 130u2v3

− 175uv4 + 200v5,
L = L(u, v) = 3u3 + 7u2v + 20uv2 + 15v3.

Let θ be a root of ft(x) and set K = Q(θ). As an application of
Theorem 1, we prove the following result.

Theorem 2. With the above notation, if K is a cyclic quintic field,
then its conductor f(K) is given by

f(K) = 5α
∏

q≡1 (mod 5)
q|E

vq(E) �≡0 (mod 5)

q,

where q runs through primes, and

α =
{

0 if 5 � u,
2 if 5 | u.

We remark that when t ∈ Z, equivalently v = 1, it is known that K
is a cyclic quintic field [8]. The special case of Theorem 2 when E(u, 1)
is squarefree is given in [3].

Proof. We have

(17) gt(X) = 55ft((X − t2)/5) = X5 + g3X3 + g2X2 + g1X + g0,
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where

(18)

g3 = −10t4 − 50t3 − 150t2 − 250t− 250,
g2 = 20t6 + 150t5 + 575t4 + 1375t3 + 2125t2

+ 1875t+ 625,
g1 = −15t8 − 150t7 − 700t6 − 2000t5 − 3500t4

− 3125t3 + 1250t2 + 6250t+ 6250,
g0 = 4t10 + 50t9 + 275t8 + 875t7 + 1625t6 + 1250t5

− 1875t4 − 6250t3 − 6250t2 + 3125.

Next we set

(19) hu,v(X) = v10gu/v(X/v2) = X5 + h3X
3 + h2X

2 + h1X + h0,

where

h3 = −10u4 − 50u3v − 150u2v2 − 250uv3 − 250v4

= −10(u4 + 5u3v + 15u2v2 + 25uv3 + 25v4);
h2 = 20u6 + 150u5v + 575u4v2 + 1375u3v3 + 2125u2v4

+ 1875uv5 + 625v6

= 5(u4 + 5u3v + 15u2v2 + 25uv3 + 25v4)(4u2 + 10uv + 5v2);
h1 = −15u8 − 150u7v − 700u6v2 − 2000u5v3 − 3500u4v4

− 3125u3v5 + 1250u2v6 + 6250uv7 + 6250v8

= −5(u4 + 5u3v + 15u2v2 + 25uv3 + 25v4)
× (3u4 + 15u3v + 20u2v2 − 50v4);

h0 = 4u10 + 50u9v + 275u8v2 + 875u7v3 + 1625u6v4

+ 1250u5v5 − 1875u4v6 − 6250u3v7 − 6250u2v8 + 3125v10

= (u4 + 5u3v + 15u2v2 + 25uv3 + 25v4)
× (4u6 + 30u5v + 65u4v2 − 200u2v4 − 125uv5 + 125v6);

so that by (16) we have

(20) h3 = −10E, h2 = 5EF, h1 = −5EG, h0 = EH.

Next let m denote the largest positive integer such that

(21) m2|h3, m
3|h2, m

4|h1, m
5|h0,
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and set

(22) ku,v(X) = hu,v(mX)/m5 = X5 + k3X3 + k2X2 + k1X + k0,

where

(23) k3 = h3/m
2, k2 = h2/m

3, k1 = h1/m
4, k0 = h0/m

5.

Appealing to MAPLE, we find

(24) disc (ku,v) = 520E4I2v18/m20

and

(25) EJ −HL = 55v9.

Clearly ku,v(X) is a defining polynomial for the cyclic quintic field
K. Hence, by Theorem 1, we have

(26) f(K) = 5α
∏

q≡1 (mod 5)
q|k0, q|k1, q|k2, q|k3

q,

where q runs through primes, and

(27)




0 if 520 � disc (ku,v) and 5 | k1, 5 | k2, 5 | k3
does not hold, or
520 | disc (ku,v) and 54‖k0, 54 | k1, 54 | k2, 53 | k3

does not hold,
2 if 520 � disc (ku,v) and 5 | k1, 5 | k2, 5 | k3,

or 520 | disc (ku,v) and 54‖k0, 54 | k1, 54 | k2, 53 | k3.

Let q be a prime with

q ≡ 1 (mod 5), q | k3, q | k2, q | k1, q | k0.

We show that
q | E, vq(E) �≡ 0 (mod 5).
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By (23) we have
q | h3, q | h2, q | h1, q | h0.

As q ≡ 1 (mod 5), we have q �= 2, 5. Thus, from (20), we deduce that
q | E. Suppose next that q | v. Then, from the definition of E in (16)
we see that q | u, contradicting (u, v) = 1. Hence q � v. Then, from
(25), we deduce that q � H. If vq(E) ≡ 0 (mod 5), say vq(E) = 5w,
w ≥ 1, then by (20) we have

q5w‖h3, q
5w | h2, q

5w | h1, q
5w‖h0,

so that by (21) we have
qw‖m.

Thus by (23),
q � h0/m

5 = k0,

a contradiction. Hence vq(E) �≡ 0 (mod 5).

Conversely, let q be a prime with

q ≡ 1 (mod 5), q | E, vq(E) �≡ 0 (mod 5).

We show that
q | k3, q | k2, q | k1, q | k0.

Suppose that q | v. Then, by the definition of E in (16), we have q | u,
contradicting (u, v) = 1. Hence q � v. Thus, by (25), we see that q � H.
As vq(E) �≡ 0 (mod 5), we have q5z+r‖E, where z is a nonnegative
integer and r = 1, 2, 3, 4. Thus by (20) we have

q5z+r‖h3, q
5z+r | h2, q

5z+r | h1, q
5z+r‖h0.

This shows by (21) that
qz‖m

so that by (23)

q3z+r‖k3, q2z+r | k2, qz+r | k1, qr‖k0,

proving
q | k3, q | k2, q | k1, q | k0.
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We have shown that

(28)
∏

q≡1 (mod 5)
q|k0, q|k1, q|k2, q|k3

q =
∏

q≡1 (mod 5)
q|E

vq(E) �≡0 (mod 5)

q.

Finally, to complete the proof of Theorem 2, we show that

(29) α =
{

0 if 5 � u,
2 if 5 | u.

If 5 | u, then by (15), 5 � v and, by (16),

52‖E, 5‖F, 52‖G, 53‖H, 5 � I.

Hence, by (20),
53‖h3, 54‖h2, 55‖h1, 55‖h0,

so that, by (21),
5‖m.

This shows by (23) that

5‖k3, 5‖k2, 5‖k1, 5 � k0,

and by (24) that
58‖disc (ku,v).

Thus by (27) α = 2.

If 5 � u, then by (16)

5 � E, 5 � F, 5 � G, 5 � H.

Hence by (20)
5‖h3, 5‖h2, 5‖h1, 5 � h0,

so that by (21)
5 � m.

This shows by (23) that

5‖k3, 5‖k2, 5‖k1, 5 � k0,



1120 B.K. SPEARMAN AND K.S. WILLIAMS

and, by (24), that
520|disc (ku,v).

Thus, by (27), α = 0.

Theorem 2 now follows from (26), (27), (28) and (29).

We conclude this section with a numerical example to illustrate
Theorem 2. We choose u = 5, v = 6, so that t = 5/6 and

f5/6(X) = X5 +
25
36
X4 − 2555

108
X3 +

36955
1296

X2 +
4685
216

X + 1.

MAPLE confirms that

Gal (f5/6) � Z/5Z.

Now E = 52 × 11 × 281, so that by Theorem 2,

f(K) = 52 × 11 × 281, d(K) = 58 × 114 × 2814

in agreement with PARI.

4. Numerical examples. We conclude with six numerical exam-
ples.

Example 1. f(X) = X5−110X3−55X2+2310X+979. a0 = 11×89,
a1 = 2×3×5×7×11, a2 = −5×11, a3 = −2×5×11. Gal (f) � Z/5Z,
disc (f) = 520 × 114. [MAPLE, PARI] 520 | disc (f), 5 � a0, so that
α = 0. Theorem 1 gives f(K) = 11, d(K) = 114, in agreement with
PARI.

Example 2. f(X) = X5 − 25X3 + 50X2 − 25. a0 = −52, a1 = 0,
a2 = 2× 52, a3 = −52. Gal (f) � Z/5Z, disc (f) = 512 × 72. [MAPLE,
PARI] 520 � disc (f), 5 | a1, 5 | a2, 5 | a3, so that α = 2. Theorem 1
gives f(K) = 52, d(K) = 58, in agreement with PARI.

Example 3. f(X) = X5−375X3−3750X2−10000X−625. a0 = −54,
a1 = −24 × 54, a2 = −2 × 3 × 54, a3 = −3 × 53. Gal (f) � Z/5Z,
disc (f) = 520 × 76 [MAPLE, PARI] 520 | disc (f), 54‖a0, 54 | a1,
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54 | a2, 53 | a3, so that α = 2. Theorem 1 gives f(K) = 52, d(K) = 58,
in agreement with PARI.

Example 4. f(X) = X5−2483X3−7449X2+3247X−191. a0 = 191,
a1 = 17 × 191, a2 = −3 × 13 × 191, a3 = −13 × 191. Gal (f) � Z/5Z,
disc (f) = 510 × 412 × 1914 × 10392 [MAPLE, PARI] 520 � disc (f),
5 � a1, so that α = 0. Theorem 1 gives f(K) = 191, d(K) = 1914, in
agreement with PARI.

Example 5. f(X) = X7 − 609X5 + 609X4 + 70847X3 + 25172X2 −
1321124X + 2048647. a0 = 29 × 41 × 1723, a1 = −22 × 7 × 29 × 1627,
a2 = 22×7×29×31, a3 = 7×29×349, a4 = 3×7×29, a5 = −3×7×29.
Gal (f) � Z/7Z, disc (f) = 742 × 172 × 296 [MAPLE] 742 | disc (f),
� a0, so that α = 0. Theorem 1 now gives f(K) = 29, d(K) = 296, in
agreement with PARI.

Example 6. f(X) = X13 − 78X11 − 65X10 + 2080X9 + 2457X8 −
24128X7−27027X6+137683X5+110214X4−376064X3−128206X2+
363883X−12167. a0 = −233, a1 = 13×23×2717, a2 = −2×13×4931,
a3 = −28 × 13 × 113, a4 = 2 × 33 × 13 × 157, a5 = 7 × 13 × 17 × 89,
a6 = −33 × 7 × 11 × 13, a7 = −26 × 13 × 29, a8 = 33 × 7 × 13,
a9 = 25 × 5 × 13, a10 = −5 × 13, a11 = −2 × 3 × 13. disc (f) =
1324×196×2310×3372×8232×71212×213172 [MAPLE] 13156 � disc (f),
13 | ai, i = 1, 2, . . . , 11, so that α = 2. Theorem 1 gives f(K) = 132,
d(K) = 1324 in agreement with [1].
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