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A RELATIVE INTEGRAL BASIS OVER Q(
√−3)
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Let K be a pure cubic field. Let L be the normal closure of K. A relative integral
basis (RIB) for L over Q(

√−3) is given. This RIB simplifies and completes the one
given by Haghighi (1986).
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1. Introduction. LetK be the pure cubic fieldQ(d1/3), whered is a cube-free

integer, and let L be the normal closure of K so thatQ⊂K ⊂ L, [L :K]= 2, and

[K :Q] = 3. Let k be the imaginary quadratic field Q(
√−3) so that Q ⊂ k ⊂ L,

[L : k] = 3, and [k : Q] = 2. The ring of all algebraic integers is denoted by

Ω. The rings of integers of K, k, L are OK = K∩Ω, Ok = k∩Ω, OL = L∩Ω,

respectively. AsOk is a principal ideal domain, L/k possesses a relative integral

basis (RIB) [3, Corollary 3, page 401]. Haghighi [2, Theorems 5.1, 5.3, 5.6] has

given a RIB for L/k. However, Haghighi’s RIB for L/k contains two difficulties.

The first is that in certain cases the RIB makes use of an element of norm 3 in a

pure cubic field, a quantity which is not easy to determine, see [2, Theorem 5.1].

The second problem is that the RIB is not completely general, see [2, Theorem

5.3]. In this note, we give a simple and completely general RIB for L/k.

2. Preliminary remarks. As d is a cube-free integer, we can define integers

a and b by

d= ab2, (a,b)= 1, a,b square-free. (2.1)

If a2 �≡ b2(mod9), an integral basis for K is

{
1,
(
ab2)1/3,

(
a2b

)1/3
}
, (2.2)

and if a2 ≡ b2(mod9), an integral basis is

{
1,
(
ab2)1/3,

b+ab(ab2
)1/3+(a2b

)1/3

3

}
. (2.3)
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These integral bases are due to Dedekind [1]. From (2.2) and (2.3), we deduce

that the discriminant d(K) of K is given by

d(K)=−3f 2, (2.4)

where

f =



3ab, if a2 �≡ b2(mod9),

ab, if a2 ≡ b2(mod9).
(2.5)

The relative discriminant d(L/k) of L/k is given by

d(L/k)= f 2 =



9a2b2, if a2 �≡ b2(mod9),

a2b2, if a2 ≡ b2(mod9),
(2.6)

see [1]. We note that if α,β∈OL are such that

dL/k(1,α,β)= d(L/k), (2.7)

then {1,α,β} is a RIB for L/k.

3. RIB for L/k. We show that {1,α,β} is a RIB for L/k, where α and β are

given in Table 3.1.

Table 3.1

Case Condition α β

(i) 3 | a, 3 � b
(
ab2

)1/3 (
a2b

)1/3
√−3

(ii) 3 � a, 3 | b
(
ab2

)1/3
√−3

(
a2b

)1/3

(iii) 3 � a, 3 � b, 9 � a2−b2
(
ab2

)1/3 b+ab(ab2
)1/3+(a2b

)1/3
√−3

(iv) 3 � a, 3 � b, 9 | a2−b2

(
ab2

)1/3−a√−3

b+ab(ab2
)1/3+(a2b

)1/3
3

An easy calculation making use of (2.2), (2.3), (2.4), and (2.5) shows that

dL/k(1,α,β)=



9a2b2, if a2 �≡ b2(mod9),

a2b2, if a2 ≡ b2(mod9),
(3.1)

so that (2.7) holds in view of (2.6). Clearly, α∈ L and β∈ L. We now show that

α∈Ω and β∈Ω so that α∈OL and β∈OL, proving that {1,α,β} is a RIB for

L/k. Clearly, α∈Ω in Cases (i) and (iii), and β∈Ω in Cases (ii) and (iv), see (2.3)
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for the latter. In the remaining cases, it suffices to give a monic polynomial

fα(x)∈ Z[x] of which α is a root in Cases (ii) and (iv), and a monic polynomial

fβ(x)∈ Z[x] of which β is a root in Cases (i) and (iii).

Case (i). Here,

fβ(x)= x6+3a4
1b

2, a1 = a
3
∈ Z. (3.2)

Case (ii). Here,

fα(x)= x6+3a2b4
1, b1 = b

3
∈ Z. (3.3)

Case (iii). We have

a2 ≡ b2 ≡ 1(mod3), a2−b2 ≡ 0(mod3), (3.4)

so that

a4b4−3a2b2+a2+b2 = (a2−b2)2+(a2−1
)(
b2−1

)(
a2b2+a2+b2)

≡ 0(mod9),
(3.5)

and we define m∈ Z by

m=
(
a4b4−3a2b2+a2+b2

)
9

. (3.6)

In this case,

fβ(x)= x6+(2a2+1
)
b2x4+((a2−1

)2b2−6m
)
b2x2+3b2m2. (3.7)

Case (iv). We have

a2 ≡ b2 ≡ 1(mod3), a2−b2 ≡ 0(mod9), a2+2b2 ≡ 0(mod3) (3.8)

so that we can define r ,s ∈ Z by

r =
(
a2+2b2

)
3

, s =
(
a2−b2

)
9

. (3.9)

Here,

fα(x)= x6+a2x4+a2rx2+3a2s2. (3.10)

This completes the proof that {1,α,β} is a RIB for L/k.

We conclude with four examples.

Example 3.1 (cf. [2, Illustration 5.2]). A RIB forQ( 3√213,
√−3) overQ(

√−3)
is (see Case (i)) {

1,2131/3,
2132/3
√−3

}
. (3.11)
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Example 3.2. A RIB for Q( 3√9,
√−3) over Q(

√−3) is (see Case (ii))

{
1,

91/3
√−3

,31/3
}
. (3.12)

Example 3.3 (cf. [2, Illustration 5.5]). A RIB for Q( 3√2,
√−3) over Q(

√−3)
is (see Case (iii))

{
1,21/3,

1+2·21/3+22/3
√−3

}
. (3.13)

Example 3.4 (cf. [2, Illustration 5.7]). A RIB forQ( 3√10,
√−3) overQ(

√−3)
is (see Case (iv))

{
1,

101/3−10√−3
,
1+10·101/3+102/3

3

}
. (3.14)
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