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Abstract

An asymptotic formula is given for the number of integers < x which

are discriminants of cyclic cubic fields.

Let n be a positive integer. It is known that n is the discriminant of a

cyclic cubic field if and only if

n=81 (q--q) or 81(q -q,)7, (1)

where r is a positive integer and g, .., q, are distinct primes
= 1(mod 3), see for example [2], [3]. Let A denote the set of positive
integers which are the product of distinct primes = 1(mod 3) including

the empty product =1. Then the number K(x) of n < x which are

discriminants of cyclic cubic fields is for x > 81 x 72,
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K(x)=1+ Zl + Zl

1<n<xl/? 1<nsx1/2/9
neA neA

so that
K(x) = QxY?)+ QY2/9) -1, ®)

where

Q)= D 1. @)
rek

Our purpose is to determine the behaviour of K(x) for large x. To do this

we make use of a theorem of Wirsing [5], the prime number theorem for
the arithmetic progression {3k + 1 : k € N}, and Mertens’ theorem for the

arithmetic progression {3k +1:k e N} [4]. Throughout this paper p

denotes a prime number.

Wirsing’s theorem. Let f(n) be a multiplicative function such that

fn)>0, forn=1213, .., 4)

f(p*) < clc?f, for constants ¢y and cg with ¢g <2 and k =1, 2,3, ..., (5)

2 () =+ o) oy, asx >, G)

p<x

then

o 2
nZ(;cf(n):[?(—i)+o(1)jlogxg[l+@+—fg;)+---j, @)

as x — oo, whereyis Euler’'s constant.

Prime number theorem for primes p = 1(mod 3). As x — oo,

1;1 = & + o(l))@. )

p=1(mod 3)
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Mertens’ theorem for primes p = 1(mod 3). As x — oo,

e~V/291/2 1 1/2

[ (-2 ] (3 e
P 31/4 o2

p=<x b
p=1(mod 3) p=1(mod 3)

+ O((log x)—3/ 4, 9

We are now ready to prove

Theorem 1. As x — o,

e =2 TJ | [1 1 T/z O |-
x)=| S ~-=| +o _
21/2“ p=1(mod 3) p2 log x

Proof. We let

1, ifneA,
f(n) =
0, if neA.
Clearly f(n) is a multiplicative function satisfying (4), (5) (with ¢; = cg
=1) and (6) (with 1 = % by (8)). Hence, by Wirsing’s theorem, we obtain

as T(1/2) = V=,

Q(x)—zl— H (1-1——11;), as x — .

n<x D=x
neA p_l(mod 3)

Next for x — o, we have

where

r= [] [1—;12—j:(1+o(1)) [1__12—j
p=1(mod 3)

p<Xx
p=1(mod 3)
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and by (9)
s= T1 (1 - l)
p<x p
p=1(mod 3)

e~1/29Y/2.1/2
31/4

1 e 1
1-— 1+ o(1)) ———
p=1(mod 3) [ p2 J log x

so that

7/2451/4 12
I1 (H%j:ﬁ I (1—%] (1 +o(1)Jlog x.

p=f(fnxod n p=1(mod 3) p

Finally

1/2
Qw - 2t I [1—%] (L +o(1))

1/2
B / T p=I(mod 3) p

x
—=——, as x —> o,
Vlog x

From Theorem 1 and (2), we obtain

Theorem 2. As x — o,

1/2
1
K(x) = =~ J@pﬂgdg)[l—p_z] (1 + o(1)).

H. Cohn [1] has shown that the number N(x) of cyclic cubic fields of

discriminant < x satisfies

1/2 _
Nw=3"1 (p+2(p-1) 2 ff’l) D 21 4 o),
T p=1(mod 3) PP
as x — oo,
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