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probability p is. This result not only conforms to our intuition, but our explicit formula
for p, . allows us to check how quickly p,.; converges to 1 for various values of p.
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Perhaps the reader has noticed that when solving a consistent system of linear equa-
tions (linear system) it can happen that some unknowns are uniquely determined, while
others are not?

EXAMPLE. Consider the linear system

6x;+ 12x, + x3+ 6x4+ x5= 7
Sx;+10x, + x5+ Sx4+ x5= 6,
13X1 +26)C2 +2X3 + 13X4 + 3)65 =18

over the field R of real numbers. The solution set is
x1=1—-2s—t, x,=8, x3=-2, x4=1t, x5s=23, wheres,teR,

and in this case x3, x5 are uniquely determined while x;, x», x4 can take infinitely many
values.
This example suggests the following three questions.

QUESTION 1. What is a necessary and sufficient condition for an unknown to be
uniquely determined by a consistent linear system?

QUESTION 2. How many of the unknowns are uniquely determined by a linear
system?

QUESTION 3. Ifan unknown is uniquely determined by a linear system, is there an
explicit formula for it?
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In this paper we answer these questions for linear systems defined over an arbitrary
field F.
We will write a linear system in its matrix form

AX = B, (1)
where the coefficient matrix is
ayp dp - Ay
dzy dxp - Ay
A= . . . . S Mm,n (IF) s
am1 Aam?2 ccr Omn

the column vectors of unknowns and constant terms are respectively

—_

X1 bl
X=| : |eM, (F) and B=| : |e€ M, ([,

Xn by,

and the augmented matrix is

T an ap - ai b
a) an - Gy b

[A | B] - : : .. : € Mm,n+1 (]F) .
L am1 am? ccc Amn bm

The linear system defined by (1) is consistent if and only if
rank A = rank[A | B]. 2)

From this point on, we assume that (2) holds and so (1) has at least one solution
X eM,, (F).

Let AY) denote the m x (n — 1) matrix obtained by removing the jth column of A.
Clearly, removing the jth column of A from A decreases the rank of A by at most 1.
We can therefore classify the columns of the matrix A as either “rank-preserving” or
“rank-decreasing.”

DEFINITION 1. The jth column of A is said to be “rank-preserving” ifrank AV =
rank A and to be “rank-decreasing” ifrank AY) =rank A — 1.

For example the matrix

1 2 4 i
A=| 1 2+4i 4+i 2i € My, (C),
1+i 3 542 1-3i

where C denotes the field of complex numbers, has three rank-preserving columns and
one rank-decreasing column because

rank A = rank AV = rank A® =rank A® =3, rank A® =2.

We are now ready to answer Question 1.

THEOREM 1. Suppose that the linear system defined by (1) is consistent. Then the
unknown x; (j = 1,2, ..., n) is uniquely determined if and only if the jth column of
A is rank-decreasing.
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Proof. We denote the columns of A by Cy, C,, ..., C,. Suppose that the jth col-
umn of A is rank-decreasing. Then rank AY) = rank A — 1. Hence C; is not a linear
combination of the other columns. Thus every solution of

AX =x,Ci -+ 2,C 4+ xuCo = 0

has x; = 0, and so every solution of AX = B has the same value for x;. Hence x; is
uniquely determined.

Now suppose that the jth column of A is rank-preserving. Then rank A = rank A.
Hence C; is a linear combination of the other columns in A and so there are solutions of

AX=xCi+--+x;C;i+---+x,C, =0

with x; # 0. Hence AX = B has solutions with different values of x;. Thus x; is not
uniquely determined. |

The linear system in the example has coefficient matrix

6 12 1 6 1
A= 5101 5 1
13 26 2 13 3

3

and it is routine to check that rank A = rank A" = rank A = rank A® = 3 and

that rank A® = rank A® = 2 so that only the third and fifth columns of A are rank-

decreasing. Theorem 1 confirms that only x; and xs are uniquely determined.
Theorem 1 can now be applied to answer Question 2.

THEOREM 2. Suppose that the linear system defined by (1) is consistent and that
r = rank A. Then the number of unknowns that are uniquely determined by the sys-
tem is

nr— Y rank AV,

n
j=1

Proof. By Theorem 1, the number N of the x; uniquely determined by (1) is pre-
cisely the number of rank-decreasing columns of A, and because

1, if the jth column of A is rank-decreasing,

_ 0 —
r —rank AV = { 0, if the jth column of A is rank-preserving,

we have

n n
N = Z(r—rankA(j)) =nr—ZrankA(j). »
j=1 j=1

Applying Theorem 2 to the system in the example, we have
N=5x3-03+3+2+3+2)=15-13=2.
DEFINITION 2. Fori =1,2,...,n the matrix E; € M, , (F) is defined by
Ei=[0 --- 010 --- 0],
where 1 occurs in the ith place and 0 elsewhere.

We are now ready to answer Question 3. By eliminating any equations from the
system (1) that are linear combinations of other equations, we may suppose without
loss of generality that m = r = rank A.
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THEOREM 3. Suppose that the linear system defined by (1) is consistent, and
that m = r (=rank A). Let A; (i = 1,2,...,m) denote the ith row of A. Integers
kiy... knp_pwithl <k, <ky <--+ < ky_, <nmay be chosen so that

span(Ay, ..., A, Ey, ..., By, ) =TF".

Let A%v-kn-r) e M__(F) be formed from A by deleting columns ki, ..., k,_,. Let
Jj €{1,2,...,n} be such that x; is a uniquely determined unknown in (1). Let
Akvkn=r)(j B) € M,, (F) be formed from A by replacing the jth column by B
and deleting columns ki, . .., k,_,. Then

_ det(A(kl““’kn—r)(j’ B))
T T fet(AR k)

Proof. As{Ey, ..., E,}spanF" and {A,, ..., A,} are linearly independent over F,
by the Steinitz Exchange Theorem [2, p. 276], r of {E}, ..., E,} can be replaced by
{Aq, ..., A} sothat

span(Ay, ..., A, Ey, ..., Ey,_ ) =TF",

where 1l <k <k, <---<k,_, <n.

We note that as x; is uniquely determined, E; belongs to the row space of A so that
J#ki, ..., k... Let A* € M, , (F) be formed from A by adjoining E , ..., E,_, as
rows r +1,...,n. Clearly the set {Ay, ..., A,, Ey, ..., Ei,_,} is a basis for " and
so det A* # 0. Moreover, using the Laplace expansion theorem (see, for example, [1,
p. 21]) to expand det A* by its last n — r rows, we obtain

det A* = (_1)(r+1)+---+n+k1+---+k,,_, det A(k' ..... kn—r)‘

Hence
det A1-kn=r) 22, 3)
Let X* € M,,(F) be the column matrix formed from X by removing xy,, ..., Xk,_, .
Set
B* =B —x A% — ... —x, Ak,

Then the linear system defined by (1) can be rewritten as
Atk X% — B*, )

From (3) and (4) we see that all the x,, with v # k4, ..., k,_, are uniquely determined
in terms of the n — r free variables x;, ..., x,_,. Thus x; is independent of the choice
of xg,, ..., Xx,_, and so we may choose x;, = -+ = x;,_, = 0 in (4) to determine x;.
The matrix form of the linear system becomes

Ak kn-r) y* — B
and Cramer’s rule gives

_ det(akn(j, B))

= de[(A(klw-,k,,_,)) -

We close by revisiting the example to compute the uniquely determined unknowns
x3 and xs. Wehave m =3, n =5,r =3 =rank A and n — r = 2 in this case. It is
easy to check that
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span(A, Ay, As, E1, Ey) = RS

so that we can take k; = 1, k, = 2 here. By Theorem 3, we obtain

7 6 1
6 5 1
_de(A"?G,B) |18 13 3] 2
BT 4@y 1 6 1] 1
1 5 1
2 13 3
and
1 6 7
1 5 6
. _det(A"2(5,B)) |2 13 18 __3_3
YT det(ATy T 1 6 1] -1 T
1 5 1
2 13 3
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A study of the curvature of a plane curve of the form y = f(x) leads to some coun-
terintuitive results. For instance, the curvature of a function whose graph is concave
up may not approach 0 as x approaches oo, and the curvature of a function with a
vertical asymptote at x = ¢ may not approach 0 as x approaches c. In addition, scaling
a function affects its curvature qualitatively as well as quantitatively. A discussion of
the limit properties of curvature involves ideas from elementary real analysis, while
the impact of scaling can be used to create some exploratory exercises for calculus
students using a computer algebra system.

Let f be a real-valued twice differentiable function defined on an interval /. The
curvature « of f, which is a measure of the rate at which the graph of y = f(x) is
turning, is given by

f//(x)
(14 (f'(x))*)*?

k(x) =





