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The Discriminant of a Dihedral Quintic
Field Defined by a Trinomial X° + aX + b

Blair K. Spearman and Kenneth S. Williams

Abstract. Let X° + aX + b € Z[X] have Galois group Ds. Let 6 be a root of X> + aX + b. An explicit
formula is given for the discriminant of Q(0).

Introduction

Let f(X) = X° + aX + b € Z[X] have Galois group D; (the dihedral group of order
10). Let 6 be a root of f(X). Set K = Q(6). If p is a prime such that p*|a and p°|b
then 8/p isaroot of X° + (a/p*)X + (b/p°) € Z[X] and K = Q(#/p). Hence we may
assume that

(1.1) there does not exist a prime p such that p*|a and p°|b.

Our objective in this paper is to give an explicit formula for the discriminant d(K)
of K in terms of a and b. We prove

Theorem With the notation of the first paragraph

aky=205" [ » J] »"

p#25 p#2,5
vp(b)>v,(a)=2 1<v,(b)<v,(a)
where
a= 47 If 22 || a,
6, if21a,
and
9 If 5 J( a,

, if 5% | a, 5°|b,
, if5)a5tbor5*| a5 | b
, if 5% a 5| b

)
Il
© N O

Here and throughout p denotes a prime and if ¢ is a nonzero integer with p™|c,
Pt c we write p™ || cor v,(c) = m.
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The starting point of the proof of our theorem is a representation of 4 and b given
by Roland, Yui, and Zagier [4] (see Proposition 2.1). Then in Section 3 we determine
the 2-part of d(K), in Section 4 the 5-part of d(K), and in Section 5 the p-part of
d(K) for a prime p # 2,5. The proof of the Theorem is completed in Section 6.
In Section 7 two corollaries to the Theorem are given. In Section 8 a number of
numerical examples illustrating the Theorem are given.

2 Representation of a and b

Our first proposition is a formula of Roland, Yui, and Zagier [4, formula (2)]. We
remark that their proof needs a slight modification as their change of variable A =
5(u+1)/(u — 1) does not yield a rational u when A = 5.

Proposition 2.1 There exist coprime integers m and n, and integers i, j = 0 or 1, such
that

a = 22745174, (m> — mn — n*)E*F,
b =2*"%57%d,(2m — n)(m + 2n)E’F,

where d? is the largest square dividing m* + n®, d5 is the largest fifth power dividing
m* +mn — n?, and

E=m*+n?)/d2, F=m*+mn—n*)/d.

Roland, Yui, and Zagier [4] do not give the values of i and j explicitly in terms
of m and n. As we shall need them we determine i and j explicitly in the next two
propositions. We recall that (m, n) = 1 so that m = n = 0 (mod 2) does not occur.

Proposition 2.2
i=l<=>m=n=1(mod2) <= 2ta,2* || b
i=0<+<=m=n+1(mod2) < 2% | a,2°|b.
Proof As (m,n) = 1 we have

1, ifm=n=1(mod2),

v(m* +n*) = .
0, ifm=n+1(mod?2),

va(dy) =0,

1, ifm=n=1(mod2),
v (E) = . _
0, ifm=n+1(mod?2),
v(m* —mn —n*) =0,
v (m? + mn — n?) = v(d,) = v, (F) =0,

0, ifm=n=1(mod?2),

vz((Zm—”)(m+2n)) = {> 1, ifm=n+1(mod2)
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so that by Proposition 2.1, we see that

4—4i, ifm=n=1(mod?2),
n(a) = D
2—4i, ifm=n+1(mod2),

and
7 — 5i, ifm=mn=1 (mod?2),
va(b) = L _
>5—5i, ifm=n+1(mod?2).

Ifm =n =1 (mod?2)theni = 1 otherwise i = 0 and v,(a) = 4, v,(b) = 7, which
contradicts (1.1). In this case v,(a) = 0 and v,(b) = 2. If m = n + 1 (mod 2) then
2 — 4i = v,(a) > 0 so that i = 0. In this case v,(a) = 2 and v,(b) > 5. [ |

Proposition 2.2 shows that either 2 { a or 2% || a.

Proposition 2.3

j=0,ifm % 2n,3n (mod 5)

or
m = 3n (mod 5), E # 0 (mod 5)
or
m = 2n (mod 5), m # 57n (mod 125)
or

m = 2n (mod 5), m = 57n (mod 125), E # 0 (mod 5),

j=1,ifm=3n(mod5), E= 0 (mod5)
or
m = 2n (mod 5), m = 57n (mod 125), E = 0 (mod 5).

Proof As (m,n) = 1 we have

0, ifm # 2n (mod>5),

2+ mn—n*) =vs((2m+n)? —5n*) =
vs(nr” o+ mn = %) VS((m ") n) {1, if m = 2n (mod 5),

so that
vs(dy) =0
and
0, ifm # 2n (mod>5),
vs(F) = . % :
1, ifm = 2n (mod>5).
Similarly

0, ifm # 3n (mod>5),

2 N dm—n)? —5n2) —
vs(m” = mn = n’) VS((m ") n) {1, if m = 3n (mod 5).
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Next, as E is squarefree, we have

0, ifE# 0 (mod5),
vs(E) = .
1, ifE=0(mod5),

and a simple calculation shows that

0, if m # 2n,3n (mod 5)
or
m = 2n (mod 5), m # 57n (mod 125), E = 0 (mod 5),

>0, ifm=3n(mod5),E =0 (mod5),
vs(di) = . _
1, if m = 2n (mod 5), m % 57n (mod 125), E # 0 (mod 5),
> 1, ifm=2n(mod5), m = 57n (mod 125), E = 0 (mod 5)
or
m = 3n (mod 5), E # 0 (mod 5),
> 2, ifm = 2n(mod5), m = 57n (mod 125), E # 0 (mod 5).
Also

0, if m # 3n (mod 5),

vs((2m — n)(m +2n)) = {> 2, ifm=3n(mod5).

We consider the following seven mutually exclusive and exhaustive cases.
(1)  m # 2n,3n (mod 5). From Proposition 2.1 and the above remarks, we have
vs(a) =1—4j, wvs(b) =—5j.

Asvs(b) > 0and j = 0 or 1 we must have j = 0.
(ii) m = 3n (mod>5), E =0 (mod 5). Here

vs(a) =4 —4j, wvs(b) >5—5j.

If j = 0 then v5(a) = 4, vs(b) > 5, contradicting (1.1). Hence j = 1.
(iii) m = 3n (mod 5), E # 0 (mod 5). Here

vs(a) =2 —4j, wvs(b) >3 —5j,

so that j = 0.
(iv) m = 2n (mod 5), m = 57n (mod 125), E = 0 (mod 5). Here

vs(a) =4 —4j, wvs(b) >5—5]j.

If j = 0 then vs(a) = 4, vs(b) > 5, contradicting (1.1). Hence j = 1.
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(v) m=2n(mod5), m=57n(mod 125), E # 0 (mod 5). Here
vs(a) =2 —4j, vs5(b) >3 —5]j,

so that j = 0.
(vi) m =2n(mod5), m # 57n (mod 125), E = 0 (mod 5). Here

vs(a) = 4 —4j, vs(b) = 4— 57,

so that j = 0.
(vii) m = 2n (mod 5), m #Z 57n (mod 125), E # 0 (mod 5). Here

vs(a) =2 —4j, wvs5(b)=2—5j,
so that j = 0. ]

In the course of the proof of Proposition 2.3 we showed the following result.

Proposition 2.4
5ta <= m=3n(mod5),E=0(mod5)
or

m = 2n (mod 5), m = 57n (mod 125), E = 0(mod 5),

5| a,5t{b < m#2n,3n(mod>5),

!

52 a,5% || b m = 2n (mod 5), m % 57n (mod 125), E # 0 (mod 5),

52 a,5° | b

!

m = 3n (mod 5), E #Z 0 (mod 5)
or
m = 2n (mod 5), m = 57n (mod 125), E # 0 (mod 5),

5% a,5* || b <= m=2n(mod5),m# 57n (mod 125),E = 0 (mod 5).

We denote by M the splitting field of f(X) and by k the unique quadratic subfield
of M. From [4, p. 139] we know that

k=Q(+/—=5(m*+n?) = Q(V—5E).

3 The 2-part of d(K)
By Proposition 2.2 we know that either 2 { a or 22 || a. We prove
Proposition 3.1
2° | d(K) <= 21 a,

24 | d(K) <= 2% || a.
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Proof By a result of Roland, Yui, and Zagier [4, p. 139], we have
v (d(K)) = 2v,(d(k)).

If 2 t a then, by Proposition 2.2, m and n are both odd so that

v (d(K) v2<d(Q(\/W))> o

and
v (d(K)) = 6.

If 2% || a then, by Proposition 2.2, m and 1 are of opposite parity so that

(i) = d(Q(vS0rTm) ) ) =2
and

v (d(K)) = 4. n

4 The 5-Part of d(K)

From Proposition 2.4 we know that only the following possibilities can occur:

51a,
5la, 510,
(4.1) 5 a, 50,
5% |la, 5°|b,
5*|a, 50

We determine the power of 5 in d(K) in each of these five cases in the following four
propositions.

Proposition 4.1 5|d(K) <= 5|a.

Proof First suppose that 5/d(K). We have 5|d(K) => 5|disc( f(X)) = 5[4*a +
5°b* = 5|a.
Now suppose that 5|a. We consider two cases according as 5|b or 5 1 b.

Case (i): 5|b. Suppose that 5 d(K). Then (5) = P; - - - P, for distinct prime ideals
Py,...,P,of Ox with1 <t < 5. Sincea € P;and b € P; for1 < i < t, we have
0> = —af — b € P; and therefore § € P;, 1 < i < t. Hence

<0> =P ---PQ
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for some ideal Q in Ok. Hence 5|6 and so 8 = 5u for some p € Ok. Then
w+(a/5Hp+ (b/5°) = f(8)/5 = 0.

Since p1 € Ok, a/5* € Zand b/5° € Z. This contradicts (1). Hence 5|d(K).

Case (ii): 51 b. Suppose 51 d(K). We have

gy =fly—b)=(—b’+aly—b)+b
= y° — 5by* + 10b%y° — 10b°y* + (5b* + a)y — (b° +ab — D).
As 5 t d(K), we have (5) = P;---P,, where P,...,Paret (1 <t < 5) distinct

prime ideals in Ok. Lety = 6 + b so that v € Ok isaroot of g(y). For 1 <i <t we
have 5 € P; so that 5b* + a € P;and b° + ab — b € P;. Thus

v = 5by* — 10b*y° + 10b°+* — (5b* + a)y + (b° + ab — b) € P,

andsoy € P; (1 <i < ). Hence P; - - - P,|{y) and so 5|7, say v = 5u with u € Ok
and

2% 207 (5b* + a) (> +ab—b)
5 4 3 2
—but+ —p — —pt+ — = 0.
2 ! 5 M 5 P 5 P 5
Since p € Og we must have 2b?/5 € Z. This contradicts that 5 { b. Hence 5|d(K).

Proposition 4.2 5° || d(K) <= 5* || a, 5°|b.

Proof Suppose that 5% || d(K). Then, by [1, Theorem 4.2.6 (ii)], 5 ramifies in k but
not in M /k. Hence, by [1, Lemma 4.2.2], we have

(5) = P,PiP;

for distinct prime ideals of Og. By Proposition 4.1 we have 5|a. We consider two
cases according as 5 1 b or 5|b.

Case (i): 51 b. Since 4*a®> + 5°b* is a perfect square we have 5 || a. We consider
g(y) = f(y — b) whose root v = 6 + b is such that Q(y) = Q(f) = K and

(4.2) v — 50yt + 106*y° — 106°~? + (5b* + a)y — (b° +ab — b) = 0.

Since 5 divides —5b, 10b%, —10b°, 5b* + a, and b° + ab — b, we have 5|y° so that
PP, Ps| (7). If 5|y then v = 54 where o € Ok and

20 2b° (5b* + a)
Wbt T = S

(P +ab—b)

= 0.

I
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Thus 2b*/5 € Z, contradicting 5 f b. Hence 5 { v and so not both of P and
P35 can divide . Without loss of generality we may suppose that P3 1 (7). Now
Nx/o(P1P2P3)|Ng/o((7)) so that 5°|b> + ab — b and thus vp, (b° + ab — b) > 6. Also

sz(’ys) =5, VP2(5b'y4) =6, vP2(10b273) =5, VP2(10b3'yz) =4,

and
sz((5b4 + a)'y) =2t+1

for some t € Z witht > 1. This clearly contradicts (4.2).

Case (ii): 5 | b. From 6° + af + b = 0 we see that 5 { 6° so that P,P,P;|(f). Now
Ni/o(P1P2Ps) | Ngjo((6)) so that 5° | b. Since 4*a> + 5°b* is a perfect square, we
must have in view of (4.1) either 5% || a or 5* || a, 5* || b. The latter case implies that
5% | d(K), see [3, question 28(c), p. 90], contradicting 5° || d(K). Thus we must have
52 a,5° | b.

Now suppose that 5% || a, 5° | b. We show that 5 || d(K). By Proposition 2.4 we
have E # 0 (mod 5). Hence 5 ramifies in k = Q(v/—5E), so that (5) = P? for some
prime ideal P in Oy. We show next that P is unramified in M /k. Set ¢ = Ef/+/—5E.
Clearly ¢ € M and satisfies

aE*  bE*
Since R -
aE E
XS + TSX - ?5\/ 75E € Ok[X],

any prime ideal of Oy ramifying in Oy must divide the discriminant

44<aE2)5 +55( —bE%/ﬁ)“

25 125

of this polynomial. As 5% || a and 5 { E we see that P does not divide this discrim-
inant and so is unramified in Oys. Then, by [1, Theorem 4.2.6 (iii)], we must have
vs(d(K )) = 2. n

Proposition 4.3 5° || d(K) <= 5* | a,5* || b.

Proof We assume first that 58 || d(K). By [1, Theorem 4.2.6 (iii)] either 5 is ramified
in M /k but not in k or is totally ramified in M. In either case we have (5) = P° for
some prime ideal P of Og with Ng,o(P) = 5. By Proposition 4.1 we have 5/a. We
consider two cases according as 5 1 b or 5|b.

Case (i): 51 b. As 4'a® + 5°b* is a perfect square we have 5 || a. We set g(y) =
f(y —b) and ¢ = 0 + b so that g(¢) = 0 and Q(¢) = Q(f) = K. Then

(4.3) @ — 5bp* + 10b*¢° — 10b°¢* + (5b* + a)p — (b° + ab — b) = 0.
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Clearly 5b, 10b?, 10b°, 5b* + a and b° + ab — b are all divisible by 5, so that 5|¢° and
P|{(¢). Suppose that P3|{¢). Then 5|¢ and we can write ¢) = 5u, where p € O, and

usfbu4+2fb2u372—b3 2, B0 +a)

(b5 + ab — b)
5 52 H ¢ M -

= 0.

I

Thus 2b*/5 € Z, contradicting 5 1 b. Hence P' || (¢), where 1 < t < 4. Thus
5 || Ngjo((¢)) = £(b° + ab — b), so that

vp(b® + ab — b) = 5t.
Further
VP((5b4 + a)¢) =5l+t, leZ",
vp(10b°¢*) = 5 + 2t,
vp(100%¢*) = 5 + 3t,
vp(5bg*) = 5 + 4t,
Vp((bs) = 5¢.

The equation (4.3) implies that there are two values among 5¢, 5/+t, 5+ 2t equal and
minimal. This is not the case if t = 2, 3 or 4 since

{5¢t,51+¢t,5+2t} = {10,70or >12,9,10}, ift =2,
={15,80r > 13,11,15}, ift =23,

={20,90r > 14,13,20}, ift = 4.

Hencet = 1and 5 || b° + ab — b. As 5* | d(K) we have 5% | 4*a® + 5°b* so that
N
44(§> +b* =0 (mod 5%).

Taking this congruence modulo 5, we see that a/5 = —1 (mod 5), so that there is an
integer z such that a = 25z — 5. Hence

5
b4+a715744(g> +a—1(mod 5?)

= —4%(52 — 1)° + (252 — 6) (mod 5°%)
=6—6=0(mod5?)

and thus 5% | b° + ab — b, contradicting 5 || b° + ab — b. Thus case (i) cannot occur.

Case (ii): 5 | b. As5|aand5 | b, by (4.1), we have 5% || a, 5% | bor 5 || a, 5* || b.
If 5% || a, 5° | b, by Proposition 4.2, we have 5% || d(K), contradicting 5° || d(K). If
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52 || a, 5% || b, then P'° || {(a), P'° || (b), and so from 6 + af + b = 0, we see that
P? || (#). Thus 1,0, 0% 6°/5and 6*/5 € Ok, and their discriminant satisfies

v5(disc(1, 6,0%,6°/5, 94/5)) = vS(disc(l,O, 6,6, 94)) —4
=vs(4*'a® +5b") —4=10—4 =6,
contradicting that vs (d(K)) = 8. Hence 5* || a, 5* || b as asserted.
Now we suppose that 5* || a, 5* || b. By Proposition 2.4 we have 5 || E. Hence 5
does not ramify in k = Q(v/—5E). As 5 | a, by Proposition 4.1, 5 | d(K), and so 5

ramifies in K and thus in M. Hence 5 ramifies in M /k. Then, by [1, Theorem 4.2.6
(iii)], we have vs ( d(K)) = 8 as asserted. |

Proposition 4.4 5° || d(K) <= 5| a,51bor5* | a, 5% || b.

Proof By [1, Theorem 4.2.6 (iii)] we have
vs(d(K)) =0,2,60r8.
If5 || a,51 bor5? || a,5% || b, by Propositions 4.1-4.3, we have vs (d(K)) # 0,2 or 8.

Hence vs ( d(K)) = 6. On the other hand if v (d(K)) = 6 then by Propositions 4.1-
4.3, a and b do not satisfy any of

5ta; 5% a, 5 |b; 5| a 5|0

Hence by (4.1) we have 5 || a,51 bor 5% || a, 5% || b. [

5 The p-Part of d(K), p # 2,5
Let p be a prime # 2, 5. Clearly p falls into one and only one of the following cases:

@) ptb

(i) plbpta,

(iii) 1 < vp(b) < vyla),
(iv) 1< vp(a) <vy(b).

By (1.1) we have
vp(b) <5 in case (iii),
vp(a) < 4 incase (iv).

In the course of the proof of the next proposition we see that we must have v,(a) = 2
in case (iv).

Proposition 5.1 Let p be a prime # 2,5. Then
P AK) <=1 < vp(b) < wy(a),
p* 1 d(K) <= 2 = vy(a) < vy(b),
p1d(K) <= vp(a) =0orv,(b) =0.
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Proof By Llorente, Nart and Vila [2, Theorem 1] we have

vy (d(K)) = 4:(4,vp(a)), if5v(a) < 4v,(b)
5— (5,,(b)), if5vy(a) > 4v,(b).

In case (i) we have vp(d(K)) =5—(5,00) =5—5 = 0. In case (ii) we have
vp(d(K)) = 4—(4,0) = 4 — 4 = 0. In case (iii) we have vp(d(K)) = 5—
(57vp(b)) =5—1=4,asv,(b) = 1,2,3 or 4. In case (iv) we show that 5v,(a) <
4v,(b). Suppose not. Then 5v,(a) > 4v,(b) and so

vp(b) — 1> vyla) > gvpaa),

so that v,(b) > 5. Thus v,(a) > 4v,(b)/5 > 4, contradicting (1.1). Hence 5v,(a) <
4v,(b) and so

vp(44a5 +5°0%) = 5v,(a) = 0 (mod 2),
as 4'a> + 5°b" is a perfect square. Thus v,(a) = 0 (mod2). As 1 < v,(a) < 4 we

must have v,(a) = 2. Then vp(d(K)) =4—(4,2)=4—-2=2. [ |

We close this section by proving the following result.

Proposition 5.2 Let p # 2,5 be a prime. Then

PlE<=2=vy(a) <vy(b), (case(iv))
p|F<=1<v,(b) <vpla), (case(iii))

P1E,p{F < vy(a) =0o0rv,(b) =0 (cases (i), (ii)).

Proof As m and n are coprime, p cannot divide both E and F.

Ifp|Ethenp | E,ptm? =mn—n*, pt2m—n,ptm+2n,ptF ptd,sothat,
by Proposition 2.1, we have

vp(a) =2, vy(b) = vp(di) + 3,

and thus
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2 =vp(a) < vy(b).
If p|Fthen ptm?* —mn—n?, ptm*>+n*, ptd, ptE, pt2m—n,pfm+2nso
that, by Proposition 2.1, we have
vp(a) = vp(da) +vp(F),  vp(b) = v, (F),
and thus
vp(a) > vp(b) > 1.

If p t E, p 1 F then, by Proposition 2.1, we have

vp(a) = vy (dy) + vp(m2 — mn —n?),
vp(b) = vy (d1) +v,(2m — n) + v, (m + 2n).
As m and n are coprime at most one of v,,(d,), v, (d2), Vp(m2 —mn—n?), vp(2m—n),
vp(m + 2n) can be nonzero so that either v,(a) = 0 or v, (b) = 0. [ |
From Propositions 5.1 and 5.2 we have

Proposition 5.3 If p is a prime # 2,5 then

p* | dK) <= p|F
p? || d(K) <= p | E,
ptdK) <= ptEandp{F

6 Proof of Theorem

The Theorem now follows from Propositions 3.1, 4.1, 4.2, 4.3, 4.4 and 5.1 as d(K) >
0.

7 Two Corollaries

From the Theorem, Proposition 2.2, Proposition 2.4 and Proposition 5.3, we obtain
the formulation of d(K) in terms of m and n.

Corollary 1
dK)=2"5" [[ »* I »*.
pA25 P25
plE pIF
where

o 4, if m=n+1(mod2),
e, if m=n=1(mod?2),
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and

0, if m=3n(mod5), E=0(mod5)
or
m = 2n (mod 5), m = 57n (mod 125), E = 0 (mod 5),

2, if m=3n(mod5), E# 0 (mod>5)
or
8= m = 2n (mod 5), m = 57n (mod 125), E # 0 (mod 5),

6, if m# 2n,3n(mod>5)
or
m = 2n (mod 5), m # 57n (mod 125), E # 0 (mod 5),

8, if m=2n(mod5), m # 57n (mod 125), E = 0 (mod 5).

Corollary 2 d(K) = d(k)? f*, where

f:59 H p,

1<y, (b)<vp(a)

and

0, if5ftaor5?| a5 |b
, if5]a5tbor5® | a 5% b
st la s b

9:

N =

Proof From the proof of Proposition 3.1 we have
vz(d(k)) =a/2.
As k = Q(+/—5E) we have

0, if 5| E,
1, if 51E.

vs (d(k)) = {

Thus, by Proposition 2.4, we obtain v (d(k)) = ~, where

7.1) _ {0, if 5taor5*| a5 b,

1, if 5| a5fbor5*| a5 |b.

For p # 2,5 we have
0, if p|E,
1, if ptE.

vp(d(k)) = {
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Hence, since d(k) < 0, we have

d(k) = 225" [ p-
p#2,5
pIE

Thus, by Corollary 1, we obtain

dK) 5., 4
— 507 :
(k)2 pl;[.,s P

pIF
From the Theorem and (7.1) we deduce that
0, if 5faor5?| a5 |b,

B—2y=<S4, if5|a5fbor5*| a5 | b,
8, if 5* | a, 5| b,

so that
0B — 2y =46.

Finally, by Proposition 5.2, we have
d(K) = d(k)* f*,

where

r=5"11r=5" 11 »

P25 P25
pIF 1<, (b)<vp(a)

8 Some Numerical Examples

We close with a few examples illustrating the Theorem.

X +aX+b d(K)
a = —22x5x19 | 54 56
b = 2°x5x11
a = 722X52X19 24X52X194
b = 2°x5x19
a = 22><54 24X58
b = 2°x3x5*
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X +aX+b d(K)

a = 2°x5x11°x 59 x 3150376609 . \
x2557181437212 2% x 5% x 11 ,

b = 25x 11 x 37 x 97% x 890957 X255718143721
x2557181437213

a = 5x11° x 172 x 1492 x 1699
%1973% x 5821 26 x 5% x 11* x 172

b = —22x11x 173 x 73 x 1493 x 1497 x 1973
% 19733 x 7069

a = 22X5X112X61X1092 24X56X114X1092

b = 28x112x17 x 109°

a = —2"x5x11°x29 x 41 x 2521 24 5 56 % 114 x 25212

b = 2°x11%x37x53x25213

a = —2>x5x11°x29x331
%9479 x 116116717* 4 6 4 5

114 x 11611671

b = 26x11% x 991 x 23767 2 xSt 1 L16116717
x 1161167173

a = —5%x11% x 131 x 8081
x257111845279 c \
%310581679672082812 2% x 5" x 11 )

b = 22x5 x11x37x59x 197 x 293 x31058167967208281
%1289 x 195869
%x310581679672082813

a = 2% x 11 x 865661 x 28602901 . \
x272677023680572 27 x 5% x 11 )

b = —27x11? x 137 x 379 x 1301 x27267702368057
x4001 x 27267702368057°

a = 5x11*x 13% x 66169109>
% 1657799551 26 x 5% x 11* x 13

b = —22x11%x 13% x 29 x 109 X 66169109
%x92693 X 66169109°

a = —5x11* x 532 x 1572 x 401

b = 22x11*x 13 x 19 x 53° 20 % 50 x 11* x 53% x 157°

x 149 x 1573
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