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The Discriminant of a Dihedral Quintic
Field Defined by a Trinomial X5 + aX + b

Blair K. Spearman and Kenneth S. Williams

Abstract. Let X5 + aX + b ∈ Z[X] have Galois group D5. Let θ be a root of X5 + aX + b. An explicit
formula is given for the discriminant of Q(θ).

1 Introduction

Let f (X) = X5 + aX + b ∈ Z[X] have Galois group D5 (the dihedral group of order
10). Let θ be a root of f (X). Set K = Q(θ). If p is a prime such that p4|a and p5|b
then θ/p is a root of X5 + (a/p4)X + (b/p5) ∈ Z[X] and K = Q(θ/p). Hence we may
assume that

there does not exist a prime p such that p4|a and p5|b.(1.1)

Our objective in this paper is to give an explicit formula for the discriminant d(K)
of K in terms of a and b. We prove

Theorem With the notation of the first paragraph

d(K) = 2α5β
∏

p �=2,5
vp(b)>vp(a)=2

p2
∏

p �=2,5
1≤vp(b)≤vp(a)

p4,

where

α =

{
4, if 22 ‖ a,

6, if 2 � a,

and

β =




0, if 5 � a,

2, if 52 ‖ a, 53|b,

6, if 5 ‖ a, 5 � b or 52 ‖ a, 52 ‖ b,

8, if 54 ‖ a, 54 ‖ b.

Here and throughout p denotes a prime and if c is a nonzero integer with pm|c,
pm+1 � c we write pm ‖ c or vp(c) = m.
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The starting point of the proof of our theorem is a representation of a and b given
by Roland, Yui, and Zagier [4] (see Proposition 2.1). Then in Section 3 we determine
the 2-part of d(K), in Section 4 the 5-part of d(K), and in Section 5 the p-part of
d(K) for a prime p �= 2, 5. The proof of the Theorem is completed in Section 6.
In Section 7 two corollaries to the Theorem are given. In Section 8 a number of
numerical examples illustrating the Theorem are given.

2 Representation of a and b

Our first proposition is a formula of Roland, Yui, and Zagier [4, formula (2)]. We
remark that their proof needs a slight modification as their change of variable λ =
5(u + 1)/(u− 1) does not yield a rational u when λ = 5.

Proposition 2.1 There exist coprime integers m and n, and integers i, j = 0 or 1, such
that

a = 22−4i51−4 jd2(m2 −mn− n2)E2F,

b = 24−5i5−5 jd1(2m− n)(m + 2n)E3F,

where d2
1 is the largest square dividing m2 + n2, d5

2 is the largest fifth power dividing
m2 + mn− n2, and

E = (m2 + n2)/d2
1, F = (m2 + mn− n2)/d5

2.

Roland, Yui, and Zagier [4] do not give the values of i and j explicitly in terms
of m and n. As we shall need them we determine i and j explicitly in the next two
propositions. We recall that (m, n) = 1 so that m ≡ n ≡ 0 (mod 2) does not occur.

Proposition 2.2

i = 1⇐⇒ m ≡ n ≡ 1 (mod 2)⇐⇒ 2 � a, 22 ‖ b

i = 0⇐⇒ m ≡ n + 1 (mod 2)⇐⇒ 22 ‖ a, 25|b.

Proof As (m, n) = 1 we have

v2(m2 + n2) =

{
1, if m ≡ n ≡ 1 (mod 2),

0, if m ≡ n + 1 (mod 2),

v2(d1) = 0,

v2(E) =

{
1, if m ≡ n ≡ 1 (mod 2),

0, if m ≡ n + 1 (mod 2),

v2(m2 −mn− n2) = 0,

v2(m2 + mn− n2) = v2(d2) = v2(F) = 0,

v2

(
(2m− n)(m + 2n)

)
=

{
0, if m ≡ n ≡ 1 (mod 2),

≥ 1, if m ≡ n + 1 (mod 2),
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so that by Proposition 2.1, we see that

v2(a) =

{
4− 4i, if m ≡ n ≡ 1 (mod 2),

2− 4i, if m ≡ n + 1 (mod 2),

and

v2(b) =

{
7− 5i, if m ≡ n ≡ 1 (mod 2),

≥ 5− 5i, if m ≡ n + 1 (mod 2).

If m ≡ n ≡ 1 (mod 2) then i = 1 otherwise i = 0 and v2(a) = 4, v2(b) = 7, which
contradicts (1.1). In this case v2(a) = 0 and v2(b) = 2. If m ≡ n + 1 (mod 2) then
2− 4i = v2(a) ≥ 0 so that i = 0. In this case v2(a) = 2 and v2(b) ≥ 5.

Proposition 2.2 shows that either 2 � a or 22 ‖ a.

Proposition 2.3

j = 0, if m �≡ 2n, 3n (mod 5)
or

m ≡ 3n (mod 5), E �≡ 0 (mod 5)
or

m ≡ 2n (mod 5), m �≡ 57n (mod 125)
or

m ≡ 2n (mod 5), m ≡ 57n (mod 125), E �≡ 0 (mod 5),

j = 1, if m ≡ 3n (mod 5), E ≡ 0 (mod 5)
or

m ≡ 2n (mod 5), m ≡ 57n (mod 125), E ≡ 0 (mod 5).

Proof As (m, n) = 1 we have

v5(m2 + mn− n2) = v5

(
(2m + n)2 − 5n2

)
=

{
0, if m �≡ 2n (mod 5),

1, if m ≡ 2n (mod 5),

so that
v5(d2) = 0

and

v5(F) =

{
0, if m �≡ 2n (mod 5),

1, if m ≡ 2n (mod 5).

Similarly

v5(m2 −mn− n2) = v5

(
(2m− n)2 − 5n2

)
=

{
0, if m �≡ 3n (mod 5),

1, if m ≡ 3n (mod 5).
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Next, as E is squarefree, we have

v5(E) =

{
0, if E �≡ 0 (mod 5),

1, if E ≡ 0 (mod 5),

and a simple calculation shows that

v5(d1) =




0, if m �≡ 2n, 3n (mod 5)

or

m ≡ 2n (mod 5), m �≡ 57n (mod 125), E ≡ 0 (mod 5),

≥ 0, if m ≡ 3n (mod 5), E ≡ 0 (mod 5),

1, if m ≡ 2n (mod 5), m �≡ 57n (mod 125), E �≡ 0 (mod 5),

≥ 1, if m ≡ 2n (mod 5), m ≡ 57n (mod 125), E ≡ 0 (mod 5)

or

m ≡ 3n (mod 5), E �≡ 0 (mod 5),

≥ 2, if m ≡ 2n (mod 5), m ≡ 57n (mod 125), E �≡ 0 (mod 5).

Also

v5

(
(2m− n)(m + 2n)

)
=

{
0, if m �≡ 3n (mod 5),

≥ 2, if m ≡ 3n (mod 5).

We consider the following seven mutually exclusive and exhaustive cases.

(i) m �≡ 2n, 3n (mod 5). From Proposition 2.1 and the above remarks, we have

v5(a) = 1− 4 j, v5(b) = −5 j.

As v5(b) ≥ 0 and j = 0 or 1 we must have j = 0.
(ii) m ≡ 3n (mod 5), E ≡ 0 (mod 5). Here

v5(a) = 4− 4 j, v5(b) ≥ 5− 5 j.

If j = 0 then v5(a) = 4, v5(b) ≥ 5, contradicting (1.1). Hence j = 1.
(iii) m ≡ 3n (mod 5), E �≡ 0 (mod 5). Here

v5(a) = 2− 4 j, v5(b) ≥ 3− 5 j,

so that j = 0.
(iv) m ≡ 2n (mod 5), m ≡ 57n (mod 125), E ≡ 0 (mod 5). Here

v5(a) = 4− 4 j, v5(b) ≥ 5− 5 j.

If j = 0 then v5(a) = 4, v5(b) ≥ 5, contradicting (1.1). Hence j = 1.
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(v) m ≡ 2n (mod 5), m ≡ 57n (mod 125), E �≡ 0 (mod 5). Here

v5(a) = 2− 4 j, v5(b) ≥ 3− 5 j,

so that j = 0.
(vi) m ≡ 2n (mod 5), m �≡ 57n (mod 125), E ≡ 0 (mod 5). Here

v5(a) = 4− 4 j, v5(b) = 4− 5 j,

so that j = 0.
(vii) m ≡ 2n (mod 5), m �≡ 57n (mod 125), E �≡ 0 (mod 5). Here

v5(a) = 2− 4 j, v5(b) = 2− 5 j,

so that j = 0.

In the course of the proof of Proposition 2.3 we showed the following result.

Proposition 2.4

5 � a ⇐⇒ m ≡ 3n (mod 5), E ≡ 0 (mod 5)
or

m ≡ 2n (mod 5),m ≡ 57n (mod 125), E ≡ 0(mod 5),

5 ‖ a, 5 � b ⇐⇒ m �≡ 2n, 3n(mod 5),

52 ‖ a, 52 ‖ b ⇐⇒ m ≡ 2n (mod 5),m �≡ 57n (mod 125), E �≡ 0 (mod 5),

52 ‖ a, 53 | b ⇐⇒ m ≡ 3n (mod 5), E �≡ 0 (mod 5)
or

m ≡ 2n (mod 5),m ≡ 57n (mod 125), E �≡ 0 (mod 5),

54 ‖ a, 54 ‖ b ⇐⇒ m ≡ 2n (mod 5),m �≡ 57n (mod 125), E ≡ 0 (mod 5).

We denote by M the splitting field of f (X) and by k the unique quadratic subfield
of M. From [4, p. 139] we know that

k = Q
(√
−5(m2 + n2)

)
= Q(

√
−5E).

3 The 2-part of d(K)

By Proposition 2.2 we know that either 2 � a or 22 ‖ a. We prove

Proposition 3.1

26 ‖ d(K)⇐⇒ 2 � a,

24 ‖ d(K)⇐⇒ 22 ‖ a.
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Proof By a result of Roland, Yui, and Zagier [4, p. 139], we have

v2

(
d(K)
)
= 2v2

(
d(k)
)
.

If 2 � a then, by Proposition 2.2, m and n are both odd so that

v2

(
d(k)
)
= v2

(
d
(

Q
(√
−5(m2 + n2)

)))
= 3

and
v2

(
d(K)
)
= 6.

If 22 ‖ a then, by Proposition 2.2, m and n are of opposite parity so that

v2

(
d(k)
)
= v2

(
d
(

Q
(√
−5(m2 + n2)

)))
= 2

and
v2

(
d(K)
)
= 4.

4 The 5-Part of d(K)

From Proposition 2.4 we know that only the following possibilities can occur:

5 � a,

5 ‖ a, 5 � b,

52 ‖ a, 52 ‖ b,

52 ‖ a, 53 | b,

54 ‖ a, 54 ‖ b.

(4.1)

We determine the power of 5 in d(K) in each of these five cases in the following four
propositions.

Proposition 4.1 5|d(K)⇐⇒ 5|a.

Proof First suppose that 5|d(K). We have 5|d(K) =⇒ 5| disc
(

f (X)
)
=⇒ 5|44a5 +

55b4 =⇒ 5|a.
Now suppose that 5|a. We consider two cases according as 5|b or 5 � b.

Case (i): 5|b. Suppose that 5 � d(K). Then 〈5〉 = P1 · · ·Pt for distinct prime ideals
P1, . . . , Pt of OK with 1 ≤ t ≤ 5. Since a ∈ Pi and b ∈ Pi for 1 ≤ i ≤ t , we have
θ5 = −aθ − b ∈ Pi and therefore θ ∈ Pi , 1 ≤ i ≤ t . Hence

〈θ〉 = P1 · · ·Pt Q
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for some ideal Q in OK . Hence 5|θ and so θ = 5µ for some µ ∈ OK . Then

µ5 + (a/54)µ + (b/55) = f (θ)/55 = 0.

Since µ ∈ OK , a/54 ∈ Z and b/55 ∈ Z. This contradicts (1). Hence 5|d(K).

Case (ii): 5 � b. Suppose 5 � d(K). We have

g(y) = f (y − b) = (y − b)5 + a(y − b) + b

= y5 − 5by4 + 10b2 y3 − 10b3 y2 + (5b4 + a)y − (b5 + ab− b).

As 5 � d(K), we have 〈5〉 = P1 · · ·Pt , where P1, . . . , Pt are t (1 ≤ t ≤ 5) distinct
prime ideals in OK . Let γ = θ + b so that γ ∈ OK is a root of g(y). For 1 ≤ i ≤ t we
have 5 ∈ Pi so that 5b4 + a ∈ Pi and b5 + ab− b ∈ Pi . Thus

γ5 = 5bγ4 − 10b2γ3 + 10b3γ2 − (5b4 + a)γ + (b5 + ab− b) ∈ Pi

and so γ ∈ Pi (1 ≤ i ≤ t). Hence P1 · · ·Pt |〈γ〉 and so 5|γ, say γ = 5µ with µ ∈ OK

and

µ5 − bµ4 +
2b2

5
µ3 −

2b3

52
µ2 +

(5b4 + a)

54
µ−

(b5 + ab− b)

55
= 0.

Since µ ∈ OK we must have 2b2/5 ∈ Z. This contradicts that 5 � b. Hence 5|d(K).

Proposition 4.2 52 ‖ d(K)⇐⇒ 52 ‖ a, 53|b.

Proof Suppose that 52 ‖ d(K). Then, by [1, Theorem 4.2.6 (ii)], 5 ramifies in k but
not in M/k. Hence, by [1, Lemma 4.2.2], we have

〈5〉 = P1P2
2P2

3

for distinct prime ideals of OK . By Proposition 4.1 we have 5|a. We consider two
cases according as 5 � b or 5|b.

Case (i): 5 � b. Since 44a5 + 55b4 is a perfect square we have 5 ‖ a. We consider
g(y) = f (y − b) whose root γ = θ + b is such that Q(γ) = Q(θ) = K and

γ5 − 5bγ4 + 10b2γ3 − 10b3γ2 + (5b4 + a)γ − (b5 + ab− b) = 0.(4.2)

Since 5 divides −5b, 10b2, −10b3, 5b4 + a, and b5 + ab − b, we have 5|γ5 so that
P1P2P3|〈γ〉. If 5|γ then γ = 5µ where µ ∈ OK and

µ5 − bµ4 +
2b2

5
µ3 −

2b3

52
µ2 +

(5b4 + a)

54
µ−

(b5 + ab− b)

55
= 0.



Dihedral Quintic Fields 145

Thus 2b2/5 ∈ Z, contradicting 5 � b. Hence 5 � γ and so not both of P2
2 and

P2
3 can divide γ. Without loss of generality we may suppose that P2

2 � 〈γ〉. Now
NK/Q(P1P2P3)|NK/Q(〈γ〉) so that 53|b5 + ab− b and thus vP2 (b5 + ab− b) ≥ 6. Also

vP2 (γ5) = 5, vP2 (5bγ4) = 6, vP2 (10b2γ3) = 5, vP2 (10b3γ2) = 4,

and
vP2

(
(5b4 + a)γ

)
= 2t + 1

for some t ∈ Z with t ≥ 1. This clearly contradicts (4.2).

Case (ii): 5 | b. From θ5 + aθ + b = 0 we see that 5 � θ5 so that P1P2P3|〈θ〉. Now
NK/Q(P1P2P3) | NK/Q(〈θ〉) so that 53 | b. Since 44a5 + 55b4 is a perfect square, we
must have in view of (4.1) either 52 ‖ a or 54 ‖ a, 54 ‖ b. The latter case implies that
54 | d(K), see [3, question 28(c), p. 90], contradicting 52 ‖ d(K). Thus we must have
52 ‖ a, 53 | b.

Now suppose that 52 ‖ a, 53 | b. We show that 52 ‖ d(K). By Proposition 2.4 we
have E �≡ 0 (mod 5). Hence 5 ramifies in k = Q(

√
−5E), so that 〈5〉 = P2 for some

prime ideal P in Ok. We show next that P is unramified in M/k. Set φ = Eθ/
√
−5E.

Clearly φ ∈ M and satisfies

φ5 +
aE2

25
φ−

bE2

125

√
−5E = 0.

Since

X5 +
aE2

25
X −

bE2

125

√
−5E ∈ Ok[X],

any prime ideal of Ok ramifying in OM must divide the discriminant

44
( aE2

25

) 5
+ 55
( −bE2

√
−5E

125

) 4

of this polynomial. As 52 ‖ a and 5 � E we see that P does not divide this discrim-
inant and so is unramified in OM . Then, by [1, Theorem 4.2.6 (iii)], we must have
v5

(
d(K)
)
= 2.

Proposition 4.3 58 ‖ d(K)⇐⇒ 54 ‖ a, 54 ‖ b.

Proof We assume first that 58 ‖ d(K). By [1, Theorem 4.2.6 (iii)] either 5 is ramified
in M/k but not in k or is totally ramified in M. In either case we have 〈5〉 = P5 for
some prime ideal P of OK with NK/Q(P) = 5. By Proposition 4.1 we have 5|a. We
consider two cases according as 5 � b or 5|b.

Case (i): 5 � b. As 44a5 + 55b4 is a perfect square we have 5 ‖ a. We set g(y) =
f (y − b) and φ = θ + b so that g(φ) = 0 and Q(φ) = Q(θ) = K. Then

φ5 − 5bφ4 + 10b2φ3 − 10b3φ2 + (5b4 + a)φ− (b5 + ab− b) = 0.(4.3)
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Clearly 5b, 10b2, 10b3, 5b4 + a and b5 + ab− b are all divisible by 5, so that 5|φ5 and
P|〈φ〉. Suppose that P5|〈φ〉. Then 5|φ and we can write φ = 5µ, where µ ∈ OK , and

µ5 − bµ4 +
2b2

5
µ3 −

2b3

52
µ2 +

(5b4 + a)

54
µ−

(b5 + ab− b)

55
= 0.

Thus 2b2/5 ∈ Z, contradicting 5 � b. Hence Pt ‖ 〈φ〉, where 1 ≤ t ≤ 4. Thus
5t ‖ NK/Q(〈φ〉) = ±(b5 + ab− b), so that

vP(b5 + ab− b) = 5t.

Further

vP

(
(5b4 + a)φ

)
= 5l + t, l ∈ Z+,

vP(10b3φ2) = 5 + 2t,

vP(10b2φ3) = 5 + 3t,

vP(5bφ4) = 5 + 4t,

vP(φ5) = 5t.

The equation (4.3) implies that there are two values among 5t , 5l + t , 5 + 2t equal and
minimal. This is not the case if t = 2, 3 or 4 since

{5t, 5l + t, 5 + 2t} = {10, 7 or ≥ 12, 9, 10}, if t = 2,

= {15, 8 or ≥ 13, 11, 15}, if t = 3,

= {20, 9 or ≥ 14, 13, 20}, if t = 4.

Hence t = 1 and 5 ‖ b5 + ab− b. As 58 | d(K) we have 58 | 44a5 + 55b4 so that

44
( a

5

) 5
+ b4 ≡ 0 (mod 53).

Taking this congruence modulo 5, we see that a/5 ≡ −1 (mod 5), so that there is an
integer z such that a = 25z − 5. Hence

b4 + a− 1 ≡ −44
( a

5

) 5
+ a− 1 (mod 52)

≡ −44(5z − 1)5 + (25z − 6) (mod 52)

≡ 6− 6 ≡ 0 (mod 52)

and thus 52 | b5 + ab− b, contradicting 5 ‖ b5 + ab− b. Thus case (i) cannot occur.

Case (ii): 5 | b. As 5 | a and 5 | b, by (4.1), we have 52 ‖ a, 52 | b or 54 ‖ a, 54 ‖ b.
If 52 ‖ a, 53 | b, by Proposition 4.2, we have 52 ‖ d(K), contradicting 58 ‖ d(K). If
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52 ‖ a, 52 ‖ b, then P10 ‖ 〈a〉, P10 ‖ 〈b〉, and so from θ5 + aθ + b = 0, we see that
P2 ‖ 〈θ〉. Thus 1, θ, θ2, θ3/5 and θ4/5 ∈ OK , and their discriminant satisfies

v5

(
disc(1, θ, θ2, θ3/5, θ4/5)

)
= v5

(
disc(1, θ, θ2, θ3, θ4)

)
− 4

= v5(44a5 + 55b4)− 4 = 10− 4 = 6,

contradicting that v5

(
d(K)
)
= 8. Hence 54 ‖ a, 54 ‖ b as asserted.

Now we suppose that 54 ‖ a, 54 ‖ b. By Proposition 2.4 we have 5 ‖ E. Hence 5
does not ramify in k = Q(

√
−5E). As 5 | a, by Proposition 4.1, 5 | d(K), and so 5

ramifies in K and thus in M. Hence 5 ramifies in M/k. Then, by [1, Theorem 4.2.6
(iii)], we have v5

(
d(K)
)
= 8 as asserted.

Proposition 4.4 56 ‖ d(K)⇐⇒ 5 ‖ a, 5 � b or 52 ‖ a, 52 ‖ b.

Proof By [1, Theorem 4.2.6 (iii)] we have

v5

(
d(K)
)
= 0, 2, 6 or 8.

If 5 ‖ a, 5 � b or 52 ‖ a, 52 ‖ b, by Propositions 4.1–4.3, we have v5

(
d(K)
)
�= 0, 2 or 8.

Hence v5

(
d(K)
)
= 6. On the other hand if v5

(
d(K)
)
= 6 then by Propositions 4.1–

4.3, a and b do not satisfy any of

5 � a; 52 ‖ a, 53 | b; 54 ‖ a, 54 ‖ b.

Hence by (4.1) we have 5 ‖ a, 5 � b or 52 ‖ a, 52 ‖ b.

5 The p-Part of d(K), p �= 2, 5

Let p be a prime �= 2, 5. Clearly p falls into one and only one of the following cases:

(i) p � b,
(ii) p | b, p � a,
(iii) 1 ≤ vp(b) ≤ vp(a),
(iv) 1 ≤ vp(a) < vp(b).

By (1.1) we have

vp(b) < 5 in case (iii),

vp(a) < 4 in case (iv).

In the course of the proof of the next proposition we see that we must have vp(a) = 2
in case (iv).

Proposition 5.1 Let p be a prime �= 2, 5. Then

p4 ‖ d(K)⇐⇒ 1 ≤ vp(b) ≤ vp(a),

p2 ‖ d(K)⇐⇒ 2 = vp(a) < vp(b),

p � d(K)⇐⇒ vp(a) = 0 or vp(b) = 0.
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Proof By Llorente, Nart and Vila [2, Theorem 1] we have

vp

(
d(K)
)
=

{
4−
(

4, vp(a)
)
, if 5vp(a) < 4vp(b),

5−
(

5, vp(b)
)
, if 5vp(a) ≥ 4vp(b).

In case (i) we have vp

(
d(K)
)
= 5 − (5, 0) = 5 − 5 = 0. In case (ii) we have

vp

(
d(K)
)
= 4 − (4, 0) = 4 − 4 = 0. In case (iii) we have vp

(
d(K)
)
= 5 −(

5, vp(b)
)
= 5 − 1 = 4, as vp(b) = 1, 2, 3 or 4. In case (iv) we show that 5vp(a) <

4vp(b). Suppose not. Then 5vp(a) ≥ 4vp(b) and so

vp(b)− 1 ≥ vp(a) ≥
4

5
vp(b),

so that vp(b) ≥ 5. Thus vp(a) ≥ 4vp(b)/5 ≥ 4, contradicting (1.1). Hence 5vp(a) <
4vp(b) and so

vp(44a5 + 55b4) = 5vp(a) ≡ 0 (mod 2),

as 44a5 + 55b4 is a perfect square. Thus vp(a) ≡ 0 (mod 2). As 1 ≤ vp(a) < 4 we
must have vp(a) = 2. Then vp

(
d(K)
)
= 4− (4, 2) = 4− 2 = 2.

We close this section by proving the following result.

Proposition 5.2 Let p �= 2, 5 be a prime. Then

p | E⇐⇒ 2 = vp(a) < vp(b), (case (iv))

p | F ⇐⇒ 1 ≤ vp(b) ≤ vp(a), (case (iii))

p � E, p � F ⇐⇒ vp(a) = 0 or vp(b) = 0 (cases (i), (ii)).

Proof As m and n are coprime, p cannot divide both E and F.

If p|E then p ‖ E, p � m2 ±mn− n2, p � 2m− n, p � m + 2n, p � F, p � d2 so that,
by Proposition 2.1, we have

vp(a) = 2, vp(b) = vp(d1) + 3,

and thus
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2 = vp(a) < vp(b).

If p|F then p � m2 −mn− n2, p � m2 + n2, p � d1, p � E, p � 2m− n, p � m + 2n so
that, by Proposition 2.1, we have

vp(a) = vp(d2) + vp(F), vp(b) = vp(F),

and thus
vp(a) ≥ vp(b) ≥ 1.

If p � E, p � F then, by Proposition 2.1, we have

vp(a) = vp(d2) + vp(m2 −mn− n2),

vp(b) = vp(d1) + vp(2m− n) + vp(m + 2n).

As m and n are coprime at most one of vp(d1), vp(d2), vp(m2−mn−n2), vp(2m−n),
vp(m + 2n) can be nonzero so that either vp(a) = 0 or vp(b) = 0.

From Propositions 5.1 and 5.2 we have

Proposition 5.3 If p is a prime �= 2, 5 then

p4 ‖ d(K)⇐⇒ p | F,

p2 ‖ d(K)⇐⇒ p | E,

p � d(K)⇐⇒ p � E and p � F.

6 Proof of Theorem

The Theorem now follows from Propositions 3.1, 4.1, 4.2, 4.3, 4.4 and 5.1 as d(K) >
0.

7 Two Corollaries

From the Theorem, Proposition 2.2, Proposition 2.4 and Proposition 5.3, we obtain
the formulation of d(K) in terms of m and n.

Corollary 1

d(K) = 2α5β
∏

p �=2,5
p|E

p2
∏

p �=2,5
p|F

p4,

where

α =

{
4, if m ≡ n + 1 (mod 2),

6, if m ≡ n ≡ 1 (mod 2),
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and

β =




0, if m ≡ 3n (mod 5), E ≡ 0 (mod 5)

or

m ≡ 2n (mod 5), m ≡ 57n (mod 125), E ≡ 0 (mod 5),

2, if m ≡ 3n (mod 5), E �≡ 0 (mod 5)

or

m ≡ 2n (mod 5), m ≡ 57n (mod 125), E �≡ 0 (mod 5),

6, if m �≡ 2n, 3n (mod 5)

or

m ≡ 2n (mod 5), m �≡ 57n (mod 125), E �≡ 0 (mod 5),

8, if m ≡ 2n (mod 5), m �≡ 57n (mod 125), E ≡ 0 (mod 5).

Corollary 2 d(K) = d(k)2 f 4, where

f = 5θ
∏

1≤vp(b)≤vp(a)

p,

and

θ =




0, if 5 � a or 52 ‖ a, 53 | b,

1, if 5 ‖ a, 5 � b or 52 ‖ a, 52 ‖ b,

2, if 54 ‖ a, 54 ‖ b.

Proof From the proof of Proposition 3.1 we have

v2

(
d(k)
)
= α/2.

As k = Q(
√
−5E) we have

v5

(
d(k)
)
=

{
0, if 5 ‖ E,

1, if 5 � E.

Thus, by Proposition 2.4, we obtain v5

(
d(k)
)
= γ, where

γ =

{
0, if 5 � a or 54 ‖ a, 54 ‖ b,

1, if 5 ‖ a, 5 � b or 52 ‖ a, 52 | b.
(7.1)

For p �= 2, 5 we have

vp

(
d(k)
)
=

{
0, if p | E,

1, if p � E.
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Hence, since d(k) < 0, we have

d(k) = −2α/25γ
∏

p �=2,5
p|E

p.

Thus, by Corollary 1, we obtain

d(K)

d(k)2
= 5β−2γ

∏
p �=2,5

p|F

p4.

From the Theorem and (7.1) we deduce that

β − 2γ =




0, if 5 � a or 52 ‖ a, 53 | b,

4, if 5 ‖ a, 5 � b or 52 ‖ a, 52 ‖ b,

8, if 54 ‖ a, 54 ‖ b,

so that
β − 2γ = 4θ.

Finally, by Proposition 5.2, we have

d(K) = d(k)2 f 4,

where
f = 5θ

∏
p �=2,5

p|F

p = 5θ
∏

p �=2,5
1≤vp(b)≤vp(a)

p.

8 Some Numerical Examples

We close with a few examples illustrating the Theorem.

X5 + aX + b d(K)

a = −22 × 52 × 19
b = 25 × 52 × 11

24 × 56

a = −22 × 52 × 19
b = 25 × 53 × 19

24 × 52 × 194

a = 22 × 54

b = 26 × 3× 54
24 × 58
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X5 + aX + b d(K)

a = 22 × 5× 113 × 59× 3150376609
×2557181437212

b = 25 × 11× 37× 972 × 890957
×2557181437213

24 × 56 × 114

×2557181437212

a = 5× 112 × 172 × 1492 × 1699
×19732 × 5821

b = −22 × 11× 173 × 73× 1493

×19733 × 7069

26 × 56 × 114 × 172

×1492 × 19732

a = 22 × 5× 112 × 61× 1092

b = 28 × 112 × 17× 1093
24 × 56 × 114 × 1092

a = −22 × 5× 113 × 29× 41× 25212

b = 25 × 113 × 37× 53× 25213
24 × 56 × 114 × 25212

a = −22 × 5× 113 × 29× 331
×9479× 1161167172

b = 26 × 112 × 991× 23767
×1161167173

24 × 56 × 114 × 1161167172

a = −52 × 114 × 131× 8081
×257111845279
×310581679672082812

b = 22 × 53 × 11× 37× 59× 197× 293
×1289× 195869
×310581679672082813

26 × 52 × 114

×310581679672082812

a = 22 × 114 × 865661× 28602901
×272677023680572

b = −27 × 112 × 137× 379× 1301
×4001× 272677023680573

24 × 56 × 114

×272677023680572

a = 5× 114 × 132 × 661691092

×1657799551
b = −22 × 113 × 133 × 29× 109

×92693× 661691093

26 × 56 × 114 × 132

×661691092

a = −5× 114 × 532 × 1572 × 401
b = 22 × 114 × 13× 19× 533

×149× 1573

26 × 56 × 114 × 532 × 1572
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