
BRUCE C. BERNDT, BLAIR K. SPEARMAN, KENNETH S. WILLIAMS 

Commentary on an 
Unpublished Lecture 
by G, N, Watson on 
Solving the Quintic 

~ fessor Watson stored in the Rare Book 

he following notes are from a lecture on solving quintic equations given by the late 

Professor George Neville Watson (1886-1965) at Cambridge University in 1948. They 

were discovered by the first author in 1995 in one of two boxes of papers of Pro- 

Room of the Library at the University of 

Birmingham,  England. Some pages that had become sep- 
arated f r o m  the notes were found  by the third author in  
one of  the boxes during a vis i t  to B i rmingham in 1999. 

"Solving the quintic" is one of  the f ew  topics in mathe- 
matics which has been of enduring and widespread inter- 
est for  centuries. The history of  this subject is beautifully 
illustrated in the poster produced by MATHEMATICA. 
Many  attempts have been made to solve quintic equations; 
see, f o r  example, [6]-[14], [17]-[21], [28]-[32], [34]-[36], 
[58]-[60]. Galois was the f i r s t  mathematic ian to deter- 
m ine  which quintic polynomials have roots expressible 
in terms of  radicals, and in 1991 D u m m i t  [24] gave for- 
mulae fo r  the roots of  such solvable quintics. A quintic is 
solvable by means of  radicals ~f and only i f  its Galois 
group is the cyclic group 77/5W_ of  order 5, the dihedral 
group D5 of order 10, or the Frobenius group F2o of order 

20. In view of  the current interest (both theoretical and 
computational) in  solvable quintic equations [24], [33], 
[43]-[46], i t  seemed to the duthors to be of  interest to pub- 
lish Professor Watson's notes on his lecture, wi th  com- 
mentary  explaining some of  the ideas in more current 
mathematical language. For those having a practical need 
for  solving quintic equations, Watson's step-by-step pro- 
cedure will be especially valuable. Watson's method ap- 
plies to any solvable quintic polynomial, that is, any 
quintic polynomial  whose Galois group is one of  Z/5~, D5 

or F2o. 
Watson's interest in solving quintics was undoubtedly 

motivated by his keen interest in veri fying Srinivasa 
Ramanujan 's  determinations of  class invariants, or 
equivalently, singular moduli. Ramanujan  computed the 
values of  over 100 class invariants, which he recorded 
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G. N. Watson 

without  proofs in  his paper [37] and at scattered places 
throughout his notebooks, especially in  his f i r s t  notebook 
[39]. Although m a n y  of  Ramanujan 's  class invariants  had 
been also calculated by Heinrich Weber [57], most  had not 
been verified. Class invariants  are certain algebraic num- 
bers which are normally very difficult to calculate, and 
their determinations often require solving a polynomial 
equation of degree greater than 2; and, in particular, 5. 

Watson [52] used modular equations in  calculating 
some of  Ramanujan 's  class invariants; solving polyno- 
mial  equations of  degree exceeding 2 was often needed. 
In a series of  s ix  fur ther  papers [50]-[51], [53]-[56], he de- 
veloped an empirical process for  calculating class in- 
variants, which also depended heavily on solving poly- 
nomial  equations of  high degree. He not only verified 
several of  Ramanujan ' s  class invariants but also found  
m a n y  new ones. For these reasons, Watson proclaimed in 
his lecture that he had solved more quintic equations than 
any other person. Despite Watson's gargantuan efforts in 
calculating Ramanujan 's  class invariants, eighteen re- 
mained unproven unti l  recent times. The remaining  ones 

were verified in two papers by Berndt, Chan, and Zhang 
[2], [3]; see also Berndt's book [1, Part V, Chapter 34]. Chan 
[16] has used class f ield theory to put  Watson's determi- 
nations on a f i r m  foundation, and Zhang [61], [62] has 
used Kronecker's l imi t  formula  to verify Watson's calcu- 
lations. 

Professor Watson held the Mason Chair of  Mathemat- 
ics at the University of B i rmingham f rom 1918 to 1951. 
He was educated at Cambridge University (1904-1908), 
where he was a student of  E d m u n d  Taylor Whittaker 
(1873-1956). He became a Fellow of Trinity College, 
Cambridge, in 1910. From 1914 to 1918 he held aca- 
demic posit ions at University College, London. Watson 
devoted a great deal of  his research to extending and pro- 
viding proofs for  results contained in Ramanujan's  Note- 
books [39]. He wrote more than thirty papers related to 
Ramanujan 's  work, including the aforementioned papers 
on class invariants  or singular moduli. 

Most mathematicians know Watson as the co-author 
wi th  E. T. Whittaker of  the classic book A Course of Mod- 
em Analysis, f i rs t  published in  1915, and author of  the 
monumenta l  treatise Theory of Bessel Functions, f i r s t  
published in 1922. For more details of Watson's life, the 
reader m a y  wish to consult [22], [41], [48]. 

We now give the text of Watson 's lecture wi th  our com- 
mentary  in italics. In the course of  the text we give the 
contents of  three sheets which presumably Watson handed 
out to his audience. The f i r s t  of  these gives the basic quan- 
tities associated wi th  a quintic equation, the second gives 
twenty-four pentagrams used in  showing that permuta- 
tions of  the suffixes of 

(XlX 2 + X2X 3 + X3X4 + X4X 5 + X5Xl 

- -  XlX  3 -- X3X5 - -  X5X 2 - -  X2X 4 - -  X4Xl) 2 

yield s i x  distinct expressions, and the third gives Wat- 
son's method of solving a solvable quintic equation in  
radicals. 

I am going to begin by frankly admitting that my subject 
this evening is definitely old-fashioned and is rather stodgy; 
you will not fend anything exciting or thrilling about it. 
When the subject of quintic equations was first seriously 
investigated by Lagrange it really was a "live" topic; the ex- 
tent of the possibility of solving equations of various de- 
grees by means of radicals was of general interest until it 
was realized that numbers represented by radicals and 
roots of algebraic equations were about what one nowa- 
days calls algebraic numbers. 

It is difficult to know quite how much to assume that 
you already know about solutions of algebraic equations 
but I am going to take for g r a n t e d . . .  

Watson's notes do not state the prerequisites for  the lecture! 

I cannot begin without saying how much I value the com- 
pliment which you have paid me by inviting me to come 
from a provincial University to lecture to you in Cambridge; 
and now I am going to claim an 01d man's privilege of in- 
dulging in a few reminiscences. In order to make my lec- 
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S H E E T  1 

The denumera te  form of  the  quintic equation is 

P o Y  5 + P l Y  4 § P 2 Y  3 + P 3 Y  2 + P 4 Y  + P5 = O. 

The s tandard  form of  the quintic equation is 

a x  5 + 5 b x  4 + 10cx 3 + 10dx 2 § 5 e x  + f =  0. (x  -- 10y) 

The reduced  form of  the  quintic equation is 

z 5 +  10Cz 3 +  10Dz 2 + 5 E z + F = 0 . ( z = a x + b )  

The sext ic  resolvent  is 

whe re  

a6~b 6 - 100Ka4~b 4 + 2000La2r 2 - 800a2~b~/-~ + 40000M = 0, 

g ~ 

L =  

M =  

a e  - 4 b d  + 3c 2, 
- 2 a 2 d f  + 3a2e 2 + 6 a b c f  - 1 4 a b d e  - 2ac2e  + 8 a c d  2 - 4 b 3 f  

+ lOb2ce + 20b2d 2 - 4 0 b c 2 d  + 15c 4, 
a 3 c f 2  - 2 a 3 d e f  + a3e  3 _ a2b2 f2  - 4 a 2 b c e f  + 8 a 2 b d 2 f  - 2 a 2 b d e  2 

- 2 a 2 c 2 d f  - l l a 2 c 2 e  2 + 2 8 a 2 c d 2 e  - 16a2d 4 + 6 a b 3 e f  

- 1 2 a b 2 c d f  + 35ab2ce  2 - 4 0 a b 2 d 2 e  + 6 a b c 3 f -  7 0 a b c 2 d e  

+ 8 0 a b c d  3 + 3 5 a c 4 e  - 4 0 a c 3 d  2 - 25b4e 2 + lOOb3cde  

- 5 0 b 2 c 3 e  - lOOb2c2d 2 § lOObc4d - 25c 6. 

ture effective, I mus t  endeavour  to pic ture  to mysel f  wha t  
is pass ing  in the  mind of  John Brown who is sit t ing some-  
where  in the middle  of this r o o m  and who came up to Trin- 

ity las t  October;  and  I suppose  that, in view of  the r ecen t  
dec is ion  about  women ' s  membersh ip  of  the University,  
wi th  the  name of  John Brown I mus t  couple  the name  of  
his cous in  Mary Smith who came  up to Newnham at  the  

same time. To try to read  the i r  thoughts  I must  cas t  my  
mind  b a c k  43 years  to the Lent Term of  1905 which was  in 
my  first  year. If I had then a t t ended  a lecture  by a mathe-  
mat ic ian  43 years  my senior  who  was visiting Cambridge,  

Watson Building, University of Birmingham. (Photo from 1995.) 

an inspect ion  of  the  Tripos lists would  show tha t  the mos t  
l ikely pe r son  to sat isfy  the requisi te condi t ions  would  have 

been  the late Lord Rayleigh, who was  subsequent ly  Chan- 
cellor. P robab ly  to  you he seems  quite prehis tor ic ;  to me  
he was  an e lder ly  and  venerable  figure whose  acquaintance  
I made  in 1912, and  with whom I subsequent ly  had some  
cor respondence  abou t  e lectr ic  waves. You cannot  help re- 

garding me as  equally elderly, but  I hope  that, for  a num- 
be r  of  reasons  you  do not  cons ider  me  equally venerable,  
and that  you will  bel ieve me when I say  that  I still  have a 
good deal  of  the  menta l i ty  of  the undergradua te  about  me. 

However, so far as  I know, Lord Rayleigh did not  visit Cam- 

bridge in the Lent te rm of 1905, and so my  a t tempt  at  an anal- 
ogy rather  breaks  down. On the other hand  a visit was paid  
to Cambridge at  the  end of  that  term by a much more emi- 
nent personage, namely the Sultan of  Zanzibar. For  the ben- 
efit of  those of  you who have not  heard that  story, I mention 
briefly that  on the last day of  term the Mayor of  Cambridge 
received a te legram to the effect that the Sultan and his suite 
would be arriving by  the mid-day train from King's Cross and 

would be glad if the Mayor would give them lunch and arrange 
for them to be shown over Cambridge in the course of  the 
afternoon. The program was duly carried out, and during the 
next  few weeks  it gradually emerged that  the so-called Sul- 
tan was W. H. de Vere Cole, a third-year Trinity undergradu- 
ate. It was the mos t  successful pract ical  j oke  of  an age in 
which pract ical  joking was more popular  than it is to-day. 
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If you could be t ransported back to the Cambridge of  
1905, you would find that  it was not so very different from 
the Cambridge of  1948. One of  the differences which would 
strike you most  would probably be the fact that  there were 
very few University lectures (and those most ly professor- 
ial lectures which were  not  much at tended by undergrad- 
uates); other  lectures were College lectures, open only to 
members  of  the College in which they were given, or, in 
the case of  some of  the smaller Colleges, they were open 
to members  of  two or  three colleges which had associated 
themselves for that  purpose. Thus most  of  the teaching 
which I received was  f rom the four members  of  the Trin- 
ity mathematical staff; the senior of  them was Herman, who 
died prematurely twenty  years ago; in addition to teaching 
me solid geometry, rigid dynamics and hydrodynamics,  he 
infected me with a quality of  perseverance and tenacity of  
purpose which I think was less uncommon in the nine- 
teenth century than it is to-day when mathematics  is tend- 
ing to be less concrete  and more abstract. Whitehead was 
still alive when I started collecting material for  this lecture. 
Whittaker, who lectured on Electricity and Geometric Op- 
tics, whose name is sometimes associated with mine, is liv- 
ing in retirement in Edinburgh; and Barnes is Bishop of  
Birmingham. Outside the College I at tended lectures by 
Baker on Theory of  Functions, Berry of  King's who taught 
me nearly all of  what  I know of elliptic functions, and Hob- 
son on Spherical Harmonics  and Integral Equations; also 
two of  the Professors of  that time that were Trinity men, 
Forsyth and Sir George Darwin, whom I r emember  lectur- 
ing on curvature of  surfaces and the problem of  three bod- 
ies, respectively. Two things you may have noticed, the 
large proport ion of  my teachers who are still alive, and the 

Bruce Berndt with Ramanujan's Slate. 

insularity, if I may so describe it, of  my education. If that  
hypothetical  lecture by Lord Rayleigh had taken place, he 
could have given a more striking illustration of insularity 
which you  will probably hardly credit. In his time, each Col- 
lege tu tor  was responsible for  the teaching of  his own  
pupils and of  nobody else; he was  aided by one or two as- 
sistant tutors, but  the pupils, no matter  what  subject they 
were reading, received no official instruction except f rom 
their own tutor and his assistants. 

After spending something like ten minutes on these ir- 
relevancies, it is time that I s tar ted getting to business. 

There is one assumption which I am going to make 
throughout,  namely that the extent  of  your  knowledge 
about  the elements of  the theory  of  equations is roughly 
the same as might have been expected of  a similar audi- 
ence in 1905. For instance, I am going to take for granted 
that you know about symmetric functions of  roots in terms 
of  coefficients and that you are at any rate vaguely famil- 
iar with methods of  obtaining algebraic solutions of  qua- 
dratic, cubic and quartic equations, and that you have heard 
of  the theorem due to Abel that  there is no such solution 
of  the general quintic equation, i.e., a solution expressible 
by a number  of  root  extractions. 

In modern language, i f  f (x)  E Q[x] is irreducible and of de- 
gree 5, then the quintic equation f (x )  = 0 is solvable by rad- 
icals i f  and only i f  the Galois group G o f f (x )  is solvable. 
The Galois group G is solvable i f  and only i f  it is a sub- 
group of  the Frobenius group F20 of order 20, that is, it is 
F20, D5 (the dihedral group of order 10), or E/5E (the cyclic 
group of  order 5); see for  example [24, Theorem 2, p. 397], 
[25, Theorem 39, p. 609]. Thus a quintic equation f (x )  = 0 
cannot have its roots expressed by a f ini te  number of root 
extractions i f  the Galois group G o f f  is non-solvable, that 
is, i f  it is $5 (the symmetric  group of  order 120), or A5 (the 
alternating group of order 60). "Almost all" quintics have 
$5 as their Galois group, so the "general" quintic is not solv- 
able by radicals. It is easy to give examples of quintics 
which are not solvable by radicals; see for  example [46]. 

You may or  may not  have encountered the theorem that  
any irreducible quintic which has got an algebraic solution 
has its roots  expressible in the form 

U 0 4- tOrUl 4- o)2ru 2 4- oj3ru3 4- w4ru4, 

where ~o denotes exp(2~v//5), r assumes the values 0, 1, 2, 
3, 4, and u 5, u 5, u 5, u 5 are the roots  of  a quartic equation 

whose coefficients are rational functions of  the coefficients 
of  the original quintic. If you are not  familiar with such re- 
sults, you  will find proofs of  them in the treatise by Burn- 
side and Panton. 

One can f i n d  this in Section 5 of  Chapter X X  of  Burnside 
and Panton's book [5, Vol. 2]. A modern reference for  this 
result is [24, Theorem 2, p. 397]. 

When I was  an undergraduate, all other  knowledge about  
quintic equations was hidden behind what  modern politi- 
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cians  would  descr ibe  as  an i ron  curtain, and it is conve-  
n ient  for  me to assume that  this  s tate of  affairs still  per-  

sists, for  o therwise  it would  be  a work  of  a supere roga t ion  

for  m e  to deliver  this lecture.  
I might  ment ion  at  this po in t  that  equat ions of  the  fifth 

or  a h igher  degree which pos se s s  a lgebraic  solut ions (such  
equat ions  are usual ly desc r ibed  as  Abelian)  are of  some  im- 
po r t ance  in the  theory  of  e l l ip t ic  functions,  apar t  f rom the i r  

intr insic  interest .  

T o d a y  s u c h  equa t ions  are called solvable. 

There  is, for instance,  a theorem,  also due to Abel, tha t  the  
equat ions  sat isf ied by  the so-cal led singular  modul i  of  el- 

l iptic funct ions are  all Abel ian  equations.  

S i n g u l a r  m o d u l i  are d i s c u s s e d  i n  Cox's book [23, Chap te r  
3] as  we l l  as i n  Bernd t ' s  book [1, Par t  V, Chapter  34]. 

It was  these  singular  modul i  which  a roused  my in teres t  
some  fifteen years  ago in the  solut ions  of  Abelian equa- 
tions, no t  only of  the fifth degree,  but  also of  the sixth, sev- 

enth and  o ther  degrees  higher  still. It consequent ly  b e c a m e  
neces sa ry  for me to co-ordinate  the  work  of  previous  writ-  
ers in such  a way  as to have handy  a sys temat ic  p rocedu re  

for solving Abel ian quintic equat ions  as rapidly as possible ,  
and  this  is what  I am going to  descr ibe  tonight. 

Methods  f o r  so lv ing  a genera l  solvable q u i n t i c  e q u a t i o n  

i n  rad i ca l s  have  been g i v e n  i n  the 1990s  by  D u m m i t  [24] 
a n d  K o b a y a s h i  and  N a k a g a w a  [33]; see also [47]. 

To i l lus t ra te  the  na tu re  o f  the  p r o b l e m  to be so lved ,  I 

am n o w  going to use  equa t ions  of  degrees  lower  t han  the  
fif th as  i l lus t ra t ions .  A r e a s o n  why  such equat ions  pos -  
sess  a lgebra ic  so lu t ions  (and  it p roves  to  be  the  r e a s o n )  

is t ha t  ce r ta in  non- symmet r i c  func t ions  of  the  r o o t s  ex- 
is t  such  tha t  the  va lues  wh ich  ce r t a in  p o w e r s  of  t h e m  can  
a s s u m e  are  f ewer  in n u m b e r  than  the  degree  of  the  equa- 
t ion.  Thus,  in the  case  of  the  quadra t ic  equat ion  wi th  
r o o t s  c~ and/3 ,  the re  a re  two  va lues  for  the  d i f fe rence  of  

the  roots ,  namely  

o ~ - / 3 , / 3  - ,:~. 

However  the squares  of  bo th  of  these  differences have one 

value only, namely  

(a  + /3)  2 - 4aft, 

and this  is express ib le  ra t ional ly  in t e rms  of  the coeffi- 
cients.  Hence the values  of  the  dif ferences  of  the roo ts  a re  
ob ta inab le  by the ext rac t ion  of  a square root,  and, s ince  the  
sum of  the  roots  is known, the  roots  themselves  are  im- 

media te ly  obtainable.  
The cubic equation, with roo ts  a,/3, y, can be t rea ted  sim- 

ilarly. Let e 3 = 1 (e r 1). Then we can form six express ions  

a+/3E+ye  2, ~ + y E + ~ 2 ,  ~/+ae+/3e z, 
a + / 3 e 2 + T e ,  / 3 + T e 2 + ~ ,  T + a e 2 + f l e ,  

with the p rope r ty  that  their  cubes have,  not  s ix different  

values,  but  only two,  namely  

(~ + /3e  + 3'e2) ~, (~ + 13~2 + 3'~)3, 

and these  express ions  are the  roots  of  a quadrat ic  equation 
whose  coeff ic ients  are ra t ional  funct ions of  the  coefficients  

of  the cubic. When the cubic  equation is 

a x  3 + 3bx 2 + 3cx  + d = O, 

the quadrat ic  equat ion is 

a6X 2 + 27a3(a2d - 3abc + 2b3)X + 729(b 2 - ac)  3 = O, 

and there  is no difficulty in complet ing  the  solut ion of the  

cubic. 

I t  i s  eas i ly  checked u s i n g  MAPLE tha t  th is  q u a d r a t i c  i s  

correct. 

For  the quart ic  equation, with roo ts  a,/3, T, 8, such ex- 

press ions  as 

(Ol-F /3-- 3'-- 8) 2, (O~A-~-- t~-- /3) 2, (OlA- 8/"  /3-- 3') 2 

have only three  dis t inct  values; s imilar  bu t  sl ightly s impler  

express ions  are 

a/3 + 3'8 - a3' - a8  - /33 ,  - / 3 8 ,  etc., 

o r  s impler  still, 

~/3 + 3'8, aT +/38, ~8 +/33'. 

When the quart ic  equation is taken to  be  

a x  4 + 4bx 3 + 6cx 2 + 4dx + e = 0, 

the cubic equation satisfied by the last  three  express ions  is 

aX  8 - 6a2cX 2 + (16bd - 4 a e ) a X  

- (16b2e + 16ad 2 - 24ace) = 0, 

and, by  the subs t i tu t ion  

a X -  2c = - 4 0 ,  

this  becomes  

403 - O(ae - 4bd + 3c 2) 
- (ace + 2bcd - ad 2 - b2e - c 3) = 0, 

which is the  s t anda rd  reducing cubic 

403 - I O -  J =  O. 

Th i s  i s  d i s c u s s e d  i n  [26, pp. 191-197; see  p rob lem 15, p. 

197], w h e r e  the va lues  o f  I a n d  J are g i v e n  by  

a b !  

I = a e - 4 b d + 3 c  2, J =  b c 
c d 

I have d iscussed  the problem of  solving the quartie equa- 

t ion at some length in order  to be able to point  out  to you 
the exis tence of  a special  type of quartic equation which 
rarely receives the  at tention that  it merits. In general  the re- 
ducing cubic of  a quartic equation has no root  which is ra- 
t ional in the field of  its coefficients, and any express ion for 
the roots  of the quartic involves cube roots; on the other  
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SHEET 1A 

The discr iminant  A of  the quintic equat ion in its s tandard  form is equal  to the p roduc t  of  the  squared differences 
of  the roots  mul t ip l ied  by a8/3125. The va lue  of  the discr iminant  A in te rms of  the coeff ic ients  is 

a4f4 - 20a3bcf3 - 120a3cdf3 + 160a3ce2f 2 + 360a3d2ef 2 

-640a3de3 f  + 256a3e 5 + 160a2b2df 3 - lOa2b2e2f2 

+ 360a2bc2f3 - 1640a2bcdef2 + 320a2bce3f - 1440a2bd3f2 

+4080a2bd2c2f -  1920a2bde 4 - 1440a2c3ef2 + 2640a2c2d2f 2 

+ 4480a2c2de2f - 2560a2c2e 4 - l O080a2cdUef + 5760a2cd2e 3 

+ 3456a2d5f - 2160a2d4e 2 - 640ab3cf3 + 320ab3def  2 

-180ab3c3 f  + 4080ab2c2ef 2 + 4480ab2cd2f 2 - 14920ab2cde2f 

+ 7200ab2ce 4 + 9 6 0 a b 2 d 3 e f -  600ab2d2e 3 - lO080abcadf2 

+960abcae2f+ 28480abc2d2ef - 16000abc2de 3 - 11520abcd4f 

+ 7200abcdUe 2 + 3456ac5f  2 - 11520ac4def + 6400ac4e 3 

+5120ac3d3f - 3200ac3d2e 2 + 256b5f 3 - 1920b4cef2 

-2560b4d2f  2 + 7200b4de2f - 3375b4c 4 + 5760b3c2df 2 

- 6 0 0 b a c 2 e 2 f -  16000b3cd2ef + 9000b3cde 3 + 6400b3d4f 

-4000bSd3e 2 - 2160b2c4f2 + 7200b2cadef - 4000b2c3e3 

- 3200b2c2daf + 2000b2c2d2e 2. 

hand, there  is no difficulty in constructing quart ic  equations 
whose reducing cubics  possess  at least  one rat ional  root; the 
roots  of such quartics are  obtainable in forms which  involve 
the extract ion of  square roots  only. Such quart ics  are anal- 

ogous to Abelian equations of  higher degrees, and it might 
be worth  while to descr ibe  them either as  "Abelian quartic 
equations" or  as "biquadratic equations," the la t ter  being an 

alternative to the p resen t  usage of  employing the te rms quar- 
tic and biquadratic indifferently. (I once d iscussed  this ques- 
t ion with my friend Professor  Berwick, who in his lifetime 

was the leading author i ty  in this country on algebraic equa- 
tions, and we both ra ther  reluctantly came to the  conclusion 
that  the existing terminology was fixed sufficiently firmly to 
make any al terat ion in it  pract ical ly impossible.)  

I f  f ( x )  E Q[x] i s  a n  i r reduc ib le  quar t i c  p o l y n o m i a l ,  i t s  

cub ic  resolvent  has  a t  least  one ra t i ona l  root  i f  and  on ly  

i f  the Galois  g roup  o f f ( x )  i s  the K l e i n  4-group V4 o f  or- 

der  4, the cycl ic  g r o u p  ~_/4~_ o f  order 4, or  the d ihedral  

g roup  D4 o f  order  8. S i n c e  D4 is  no t  abel ian,  i t  i s  no t  ap- 

p r o p r i a t e  to call s u c h  q u a r t i c s  "abelian. " F o r  the so lu t ion  

o f  the quar t i c  by  radicals ,  see f o r  e x a m p l e  [25, p. 548]. 

After this very lengthy preamble,  I now reach  the main 
topic of  my discourse,  namely  quintic equations. Some of you 
may be familiar with the  name of  William Hepworth  Thomp- 

son, who was Regius Professor  of Greek from 1853 to 1866, 
and subsequently Master  of  Trinity until 1886. A question was 
once put  to him about  Greek  mathematics,  and his reply was, 
"I know nothing about  the subject. I have never even lectured 
upon it." Although there  are large t racts  of knowledge about 
quintic equations about  which I am in complete  ignorance, I 
have a fair amount  of  pract ical  experience of  them. For  in- 
stance, if my friend Mr. P. Hall of King's College is here this 

evening, he will p robably  be horrified at the ignorance which 

I shall show when I say anything derived from the theory of  

groups. On the other hand, while to the best  of  my knowl- 
edge nobody  else has solved more  than about  twenty Abelian 
quintics (you will be hearing la ter  about  these solvers, and I 

have no certain knowledge that  anybody else has ever solved 
any), my  own score is something be tween  100 and 120; and 
I must  admi t  that I feel a certain amount  of  pride at having 
so far outdis tanced my nearest  rival. 

Young  solved several  q u i n t i c  e q u a t i o n s  i n  [58] a n d  [59]. 

The no ta t ion  which I use is given at  the  top  of  the first  
of  the  shee t s  which have been  dis tr ibuted.  The first  equa- 
tion, namely  

PoY 5 + P lY  a + P2Y 3 + P3Y 2 + P4Y + P5 = O, 

is wha t  Cayley calls the denumera t e  form, while 

a x  5 + 5bx 4 + 10cx 3 + 10dx 2 + 5ex + f = O, 

is the s t andard  form. The second  is der ived from the first  
by  the  subs t i tu t ion  10y = x, wi th  the  re la t ions 

a = p o ,  b = 2 p l ,  c = 1 0 p 2 ,  d = 1 0 0 P 3 ,  
e = 2000p4, f = 105p5. 

Next  we  carry  out  the p roces s  usual ly  descr ibed  as  "re- 
moving the second  term" by  the subs t i tu t ion  a x  + b = z, 
which yie lds  the r educed  form 

z 5 + 10Cz 3 + 10Dz 2 + 5 E z  + F = O, 

in which  

C = ac - b 2, D = a2d - 3abc + 2b 3, 
E = aae - 4a2bd + 6ab2c - 3b 4, 

F = a 4 f -  5aabe + lOa2b2d - lOabac + 4b 5. 

The roo t s  of  the last  two quint ics  will be  deno ted  by  Xr 

and Zr respect ive ly  with r = 1, 2, 3, 4, 5. 
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SHEET 3 

T h e  r o o t s  o f  t h e  q u i n t i c  in  i t s  r e d u c e d  f o r m  a r e  

Z r +  1 = o)rUl  4- o )2 ru  2 4- e ) 3 r u 3  "4- o)4 ru  4 

w i t h  w = e x p ( 2 ~ r / / 5 ) ,  r = 1, 2, 3, 4, 0. 

(1)  UlU4 + u2u3 = - 2 C .  

(2) + U Ul + u u4 + = - 2 D .  
(3)  2 2 u 2 2 u3u2 3 u 3 u l - u ~ u 3 = E .  U l U  4 4- 2U3  --  U l U 2 U 3 U  4 - -  __ U 2 U 4  - -  

(4)  u5[+  u 5 + u 5 + u 5 - 5 ( u l u 4  - u2us)(u21u3 - u2ul - u2u4 + u2u2) = - F .  

N e w  u n k n o w n s ,  0 a n d  T, d e f i n e d  b y  

(5) 
(6) 

UlU4 - u2u3 = 20, 
u u3 + - - u u4 = 2T.  

U l U 4  = - C  4- 0, u 2 u  3 = - C  - O. 

u2u3 + u2u2 = - D  + T, U2Ul 4- u2u4 = - D  - r.  

u2u3 - u2u2 = -+ ~ / ( D  - T) 2 + 4 ( C  - 0 )2 (C  + 0) = RI ,  

u~2ul - u2u4 -- -+ ~ / ( D  + T) 2 + 4 ( C  + 0 )2 (C  - 0) = R2. 

u~u2 = (u2u3)(u2ut)/(u2u3),  etc . ,  u 5 = (u2u3)2(u2ul)/(u2u3) 2, e tc .  

(7)  C(D 2 - T 2) + ( C  2 - 0 2 ) ( C  2 + 302 - E )  = R1R20. 

(8)  ( D  2 - T2 )  2 + 2 C ( D  2 - T 2 ) ( C  2 + 302)  - 8 C 0 2 ( D  2 + T 2) 

+ ( C  2 - 02)2(C2 - 502)2 + 16DO3T + E 2 ( C  2 - 02) 

- 2CE(D 2 - T 2) - 2 E ( C  2 - 0 2 ) ( C  2 + 302)  = 0. 

(9)  (DO + CT)(D 2 - T 2) + T(C  2 - 502)  2 - 2CDEO 

- E T ( C  2 + 02) + F e ( C  2 - 02) = 0. 

Y o u n g ' s  s u b s t i t u t i o n s  a r e  

T = Ot, 02 = ~. 

T h e  c o n n e x i o n  b e t w e e n  t h e  0 a b o v e  a n d  t h e  r o f  C a y l e y ' s  s e x t i c  r e s o l v e n t  is  

100~/-5 = a 2 r  

T h e  d e n u m e r a t e  q u i n t i c  o f  R a m a n u j a n ' s  p r o b l e m  is  

y5  _ y 4  + y3  _ 2y2  + 3 y  - 1 = 0. 

F o r  t h i s  q u i n t i c ,  C = 6, D = - 1 5 6 ,  E = 4592 ,  F = - 4 7 3 2 8 .  

z = 10y  - 2, 0 = - 1 0 ~ v ~ ,  t = - 1 0 ,  T = 100~-5 .  

u 5, u 5 = - 1 3 1 6 8  - 6400~x/5 -+ ( 2 1 6 0  + 9 6 0 ~ / - 5 ) X / 7 9 ( 5  - 2 ~ / 5 ) ,  

u 5, u 5 = - 1 3 1 6 8  + 6400X/-5 -+ (2160  - 9 6 0 % / 5 ) N / 7 9 ( 5  + 2 ~ / 5 ) .  

2 2 _  = R1, R 2  7 9 ( 8 0 0 - +  1 6 0 V 5 ) ,  RIR2 - 3 2 0  x 7 9 ~ .  

We r e m a r k  that  Young ' s  equa t ions  f o r  t a n d  ~ i n  th is  

e x a m p l e  are: 

( 2 4 3 3 6  - Ot  2) + 1 2 ( 2 4 3 3 6  - 0 t 2 ) ( 3 6  + 3 0 )  

- 4 8 ~ ( 2 4 3 3 6  + 0 t  2) + (36  - 0 ) ( 3 6  - 5 0 )  2 

- 2496~b2t - 5 8 1 8 9 8 2 4 0  - 2 1 0 8 6 4 6 4 ~  

+ 5 5 1 0 4 0 t  2 - 9 1 8 4 ( 3 6  - 0 ) ( 3 6  + 3 ~ )  = 0 

and  

( - 1 5 6  + 6 t ) ( 2 4 3 3 6  - Ot 2) + t ( 3 6  - 5 ~ )  2 

+ 6 8 9 2 4 1 6  - 4 5 9 2 t ( 3 6  + 0 )  + 4 7 3 2 8 0  = 0, 

so that  t = - 1 0  and  0 =  500  i n  a g r e e m e n t  w i t h  

Watson.  
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Our next object is the determination of  non-symmetric 
functions of  the roots which can be regarded as roots  of  a 
resolvent equation. An expression which suggests itself is 

(Xl § COX 2 § tf2X3 § tO3X4 § tO4X5) 5. 

The result  of  permuting the roots  is to yield 24 values for 

the expression. 

A p e r m u t a t i o n  (r ~ $5 acts  on  th i s  e l emen t  by 

of(x ,  + ~x2 + ~o2x3 + ~03Xn + ~04x5) 5) 
: (Xr § tOX(r(2) § tO2X~(3) § tO3X~(4) § tO4X(r(5)) 5" 

A n  e a s y  ca lcu la t ion  s h o w s  that  (r preserves 

OL : (X 1 § t0X 2 § tO2X3 § t03X4 § 0)4X5) 5 

i f  a n d  on ly  i f  (r = (1 2 3 4 5)k f o r  s o m e  k E {0, 1, 2, 3, 4}. 

H e n c e  

stabs5(a) = ((1 2 3 4 5)>, 

so that  

Istabss(a)l = 5. 

Thus,  by  the orbi t -s tabi l i zer  theorem [27, p. 139], w e  ob ta in  

iorbs5(a)l = ~ _ 120 _ 24, 
5 5 

so that  p e r m u t i n g  the roots y ie lds  24 di f ferent  express ions .  

The disadvantage of  the corresponding resolvent equation 
is the magnitude of the degree of  its coefficients when  ex- 
pressed as functions of  the coefficients of  the quintic; more- 
over it is difficult to be greatly attracted by an equation 
whose  degree is as high as 24 when our aim is the solution 
of  an equation of  degree as low as 5. 

An expression which is more  amenable than the ex- 
pression just considered was  discovered just 90 years ago 
by two mathematicians of  some eminence in their day, 
namely Cockle and Harley, and it was published in the 
M e m o i r s  o f  the M a n c h e s t e r  L i t e r a r y  a n d  Ph i lo soph ica l  So- 

c ie ty .  This expression is 

~1 = X l X 2  § X2X3 § X3X4 § X4X5 § X 5 X l  -- X l X 3  

--  X3X5 --  X5X2 -- X2X4 --  X4 X l .  

The quan t i t i e s  x lx2 + x2x3 + x3x4 § x4x5 § X5Xl and  XlX3 + 

X3X5 + X5X2 § X 2X  4 § X4X  1 a p p e a r  i n  the w o r k  o f  H a r l e y  

[29] a n d  the ir  d i f ference  is  cons idered  by  Cayley  [6]. We 

have  no t  located a j o i n t  p a p e r  o f  Cockle a n d  Harley .  W h e n  

he w a s  w r i t i n g  these notes,  w e  believe Wat son  w a s  read- 

i n g  f r o m  Cay ley  [6] w h e r e  the n a m e s  o f  Cockle a n d  H a r l e y  

are l i nked  [6, p. 311]. 

Permutat ions of  the suffixes give rise to 24 expressions, 
which may be denoted by ~ _+ X ~ s ,  where r and s run 
through the values 1, 2, 3, 4, 5 with r r s. The choice of  the 
signs is most  simply exhibited diagrammatically, with each 
of  the 24 expressions represented by a separate diagram. 
If you turn to the second page of  your  sheets, you will see 
the 24 pentagrams with vertices numbered 1, 2, 3, 4, 5 in 

all possible orders (there is no loss of  generality in taking 
the number  1 in a special place) and the rule for determi- 
nation of  signs is that  terms associated with adjacent ver- 
tices are assigned + signs, while those associated with op- 
posite vertices are assigned - signs. 

Now the pentagrams in the third and fourth columns are 
the optical images in a vertical line of  the corresponding 
pentagrams in the first and second columns, and since 
proximity and oppositeness are invariant for the operation 
of  taking an optical image, the number  of  distinct values of  
& is reduced f rom 24 to 12. 

Further, the pentagrams in the second column are de- 
rived from those in the first column by changing adjacent 
vertices into opposite vertices, and vice versa, so that the 
values of  ~b arising from pentagrams in the second column 
are minus the values of ~b arising from the corresponding 
pentagrams in the first column. It follows that the number  
of  distinct values of  (b 2 is not  12 but 6, and so our  resolvent 
has now been reduced to a sextic equation in r with co- 
efficients which are rational functions of  the coefficients of  
the quintic, and a sextic equati.on is a decided improvement 
on an equation of  degree /20 ,  or even on one of  degree 24. 

Le t  a = (12345) E $5 and  b -- (25)(34) ~ $5, so that  a 5 = 

b 2 = e and  bab = a 4. A s  acbl = c~1 a n d  bob1 = ~bl, w e  have  

stabss(r ) >- (a, bla 5 = b 2 = e, bab = a 4> = Ds, 

so that  

Istabs5(~b,)l-> 10. 

On the o ther  hand ,  the f i r s t  two  c o l u m n s  o f  Watson ' s  pen -  

t a g r a m  table s h o w  that  

]orbs5(~bl)l-> 12. 

Hence,  by  the o rb i t - s tab i l i z e r  theorem, w e  see that  

Istabs5(r = 10, Iorbs5(~bl)l = 12 

a n d  thus  

stabs5(~bl) = (a, bla 5 = b 2 = e, bab = a 4> = D5. 

N o w  let c = (2 3 4 5), so that  c 2 = b. A s  a4~2 = r and  cr 

= cb 2, w e  have  

stabs5(~b 2) D_ (a, cla 5 = c 2 = e, c lac = a 3> = F20, 

so that  Istabs5(~b2)l --- 20. F r o m  the f i r s t  c o l u m n  o f  the pen -  

t a g r a m  table, w e  have  

Iorbsa(r 6. 

Hence,  by the orb i t - s tab i l i z e r  theorem,  w e  deduce  that  

Istabs5(r = 20, Iorbs5((,b2)l = 6, 

and  thus  

stabs5(~b 2) = (a, c]a 5 = c a = e, c lac = a n} = F20. 

It is, however,  possible to effect a further simplification; 
it is not, in general, possible to construct  a resolvent equa- 
tion of  degree less than 6, but  it is possible to construct  a 
sextic resolvent equation in which two of  the coefficients 
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are zero. We s u c c e e d e d  in construct ing a sext ic  in 4) 2 be- 
cause the  12 values  of  r could be grouped in pa i r s  with the  
members  of  each pa i r  numerical ly  equal bu t  oppos i te  in 
sign; but  a different  grouping is also possible,  namely  a se- 
lect ion of  one m e m b e r  from each  of  the six pa i r s  so as  to 
form a ses te t  in which  the sum of  the m e m b e r s  is zero, and  

it is evident  that  those  member s  which have no t  been  se- 
lected also form a ses te t  in which the sum of  the  member s  
is zero; one of  these  ses te ts  is r epresen ted  by  the penta-  
grams in the first column,  the o ther  by the  pen tag rams  in 
the second  column. 

A sestet  i s  a set  o f  s i x  objects. 

Denote the values  o f  (5 represen ted  by  the pen tag rams  

in the first column by  (51, ~ ,  �9 �9 �9 (56, and let  

(5~ + (5~ + " " " + (5~= Er. 

It is then not  difficult to  verify that  an in te rchange  of  any  

pa i r  of  Xl, x2, �9 �9 �9 x5 changes  the  sign o f  Er  when  r is odd, 
but  leaves it una l te red  in value when r is even. 

B y  looking at  the f i r s t  c o l u m n  o f  the p e n t a g r a m  table w e  

see that  the even p e r m u t a t i o n s  (234), (243), (354), (235), 

(24)(35) send  (51 to (52, (53, (54, (55, (56, respect ively .  We n e x t  

s h o w  that  a n  odd p e r m u t a t i o n  o" c a n n o t  s e n d  r  to (sj f o r  

a n y  i and  j .  S u p p o s e  that  0((5i) = (sj. B y  the above re- 

m a r k s  (5i = 8(51  f o r  s o m e  0 E A5, and  (51 = P(Sj f o r  s o m e  

p E A5. H e n c e  

( P 0 - 0 ) ( 5 1  = ( P O ' ) ( s i  ---- P ( S j  ---- (51,  

so that  

po'O E stabs5(51 = D5 C A5. 

H e n c e  o-E A5, w h i c h  i s  a con trad ic t ion .  N o w  

{ 0 ( ( 5 t ) , . . . ,  0((56)} C orbs5(51, I0rb35(511 = 12, 

a n d  

so that  

{ 0 ( ( 5 1 ) ,  �9 �9 � 9  0 ( ( 5 ~ ) }  n {(51,  �9 �9 �9 , (56} = O ,  

{ 0 ~ ( 5 1 ) , ' "  " ,  0 ~ ( 5 6 ) }  = { - - ( 5 1 , ' ' ' ,  - - ( 5 6 } "  

T h u s  i f  "r E $5 is  a t ranspos i t i on ,  

r(Er) = r((5[ + . . .  + (5~) 
= ( - -  (51)  r 4-  " " " + ( - -  ( 5 6 )  r ---- ( - -  1) r Er. 

It is now evident  tha t  each  of  the  10 express ions  Xm - Xn 

(m, n = 1, 2, 3, 4, 5; m < n)  is a factor  of  E~ wheneve r  r is 
an odd integer. 

Clearly  Er  E 7/[Xl, . . . , x5] a n d  so can  be regarded  as a 

p o l y n o m i a l  i n  x t  w i t h  coe f f i c ien t s  i n  7/[x2, . . . ,  x5]. Di-  

v i d i n g  Er  by  x t  - x2, w e  ob ta in  

Er  = ( X l  - -  x2)q(x2, �9 �9 �9 , x5) + r(x2, . . . , x5), 

w h e r e  

q(x2 . . . .  , x5), r(x2 . . . .  , x5) E 7 / [x2 , . . .  , x5]. 

I f  r i s  odd, the t r a n s p o s i t i o n  (12) changes  the above equa-  

t ion  to 

- E r  = ( X 2  - -  x l )q ( x l ,  x3, x4, x5) + r (xl ,  x3, x4, x5). 

A d d i n g  these two equat ions ,  w e  ob ta in  

0 = (x l  - x2)(q(x2, x3, x4, x5) - q(xl ,  x3, x4, x5)) 

+ r(x2, x3, x4, x5) + r (x l ,  x3, x4, x5). 

T a k i n g  Xl  = x2 w e  deduce that  

r(x2, x3, x4, x5) = 0. 

H e n c e  

Er  ---- ( X l  - -  x2)q(x2, �9 �9 �9 , x5). 

Thus  Xl  - x2 d iv ides  Er. S i m i l a r l y  Xm - xn  d iv ides  Er  f o r  

m,  n = 1, 2, 3, 4, 5, m < n. H e n c e  

[I (xm - Xn) 
l ~ < m < n _ < 5  

d iv ides  Er  w h e n  r i s  an  odd integer.  

Now the degrees  of  E1 and E3 in the  x ' s  are respect ively  2 

and 6, and  so, s ince these  number s  are less than 10, bo th  
E1 and E3 mus t  be ident ical ly  zero, while E5 mus t  be a con- 
s tant  mul t ip le  of  

( x l  - x 2 ) ( X l  - x ~ ) .  - -  ( x 3  - x 6 ) ( x 4  - x ~ ) .  

On the o ther  hand, $2, $4, and  $6 are  symmetr ic  funct ions 
of  the  x 's ,  and are consequent ly  express ib le  as ra t ional  
funct ions  of  the coefficients  in the  s tandard  form of  the  
quintic. 

These p roper t i e s  ensure  that  the p o l y n o m i a l  

( (5  - (51 ) ( (5  - ~ ) " "  ( (5  - (56) 

has  coe f f i c i en t s  i n  Q or  Q ( V ~ ) ,  w h e r e  D is  the d i s c r i m -  

i n a n t  o f  the qu in t i c ,  w i t h  the coe f f i c ien t s  o f  (55 and  (53 
equal  to zero. 

Apar t  f rom the graphica l  r ep resen ta t ion  by  pen tag rams  
(which, as  the  White Knight wou ld  say, is my own inven- 
tion), all o f  the analysis  which  I have jus t  been  descr ib ing 

was  famil iar  to Cayley in 1861; and  he the reupon  set  abou t  
the cons t ruc t ion  of  the sext ic  reso lven t  whose  roo ts  a re  

(51, (52, �9 �9 �9 (56. The resul t  which  he ob ta ined  was  the equa- 
t ion 

(0) a6(56 - 100Ka4r 4 + 2000La2r 2 

- 800a2(5~5A + 40000M = 0 

in which  the values  of  K, L, M in t e rms  of  the coefficients  
of  the quintic  are those  given on the  first sheet,  while A is 
the d iscr iminant  of  the  quintic in i ts s tandard  form, that  is 

to say, it  is the  p roduc t  of  the  squared  differences of  the  
roots  of  the  quintic mult ipl ied by  aS/3125. Its value, in t e rms  

of  the coeff icients  occupies  the  lower  half  of  the  first sheet.  

The w o r k  o f  Cay ley  to w h i c h  W a t s o n  refers i s  c o n t a i n e d  

i n  [6], w h e r e  on  pages  3 1 3  a n d  3 1 4  Cay ley  i n t roduces  the 
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pentagrams described by Watson. Note that the usual dis- 
cr iminant  D of the quintic is [26, p. 205] 

aS(x1 - x2)2(x1 - x3) 2" �9 �9 (x4 - x5) 2 = 3125A = 55A. 

There  is no obvious way  of  const ruct ing  any s impler  re- 

so lvent  and so it is only na tura l  to ask "Where do we  go 
f rom here?" It seems frui t less to  a t tempt  to obta in  an  al- 
gebra ic  solut ion of  the genera l  sext ic  equation; for, if  we 

could  solve the  general  sext ic  equa t ion  algebraically,  we 
could  solve the general  quintic equat ion by  the inser t ion of  
a fac tor  of  the first degree, so as  to conver t  it into a sext ic  
equation. In this  connect ion  I may  ment ion  ra ther  a feeble  

j oke  which  was  once pe rpe t r a t ed  by Ramanujan.  He sent  
to the  Journal of the Indian Mathematical Society as a 
p r o b l e m  for solution: 

Prove that  the  roots  of  the  equat ion 

x6 - x3 4- x2 4- 2 x -  1 = 0 

can be  expressed  in te rms of  radicals .  

This problem is the f irs t  part of Question 699 in [38]. It 
can be found in [40, p. 331]. A solution was given by Wat- 
son in [49]. It seems inappropriate to refer to this prob- 
lem as a "feeble joke." 

Some years  la ter  I rece ived  ra ther  a pathet ic  le t ter  f rom 
a mathemat ic ian ,  who was  anxious  to p roduce  someth ing  
wor th  publicat ion,  saying tha t  he had not iced  that  x 4- 1 

was a fac tor  of  the express ion  on the left, and tha t  he 
wan ted  to reduce  the equat ion still  further, but  did not  see  
how to do so. My reply to his le t ter  was  that  the  quintic 

e~luation 

x 5 - x  4 4 - x  3 - 2 x  2 4 - 3 x -  1 = 0  

was  sa t i s f ied  by  the s t anda rd  s ingular  modulus  a s s o c i a t e d  
with  the  el l ipt ic funct ions  for  which  the pe r iod  iK' /K was 
equal  to  ~ ,  and  consequen t ly  it was  an Abel ian  quin- 

tic, and  the re fo re  it could  be  so lved  by  radicals;  and  I to ld  
him where  he would  find the  so lu t ion  in print.  I do  no t  
k n o w  why Ramanujan  inse r t ed  the  fac tor  x 4- 1; it  m a y  
have been  an a t t empt  at  frivolity,  or  it  may  have been  a 
des i re  to p ropose  an equat ion  in which  the coeff ic ients  

were  as  smal l  as  poss ible ,  o r  it  may  have been  a combi-  

na t ion  of  the  two. 

On pages 263 and 300 in his second Notebook [39], Ra- 
manu jan  indicates that 21/4G79 is a root of the quintic 
equation x 5 - x 4 + x 3 - 2x 2 4- 3x - 1 = 0; see [1, Par t  V, 

p. 193]. For a positive integer n, Ramanujan defined Gn 
by 

Vn = 2 -  t/4 f(~/E-n-n), 

where, for  any z = x 4- iy E C with y > O, Weber's class 
invariant f (z )  [57, Vol. 3, p. 114] is defined in terms of  the 
Dedekind eta funct ion 

~7(z) = e #iz/12 ~ (1 - e 2~mz) 

by 

f ( z )  = e - ~ / 2 4 ~ 7 ( ~  - ~ )  

V(z) 

A result equivalent to Ramanujan's  assertion was f irs t  
proved by Russell [42] and later by Watson [53]; see also 
[54]. The solution of this quintic in radicals is given in 
[49]. In [38], Ramanujan  also posed the problem of f ind-  
ing the roots of another sextic polynomial which factors 
into x - 1 and a quintic satisfied by G47. For additional 
comments and references about this problem, see [4] and 
[40, pp. 400-401]. Both Weber and Ramanujan  calculated 
over 100 class invariants, but for different reasons. Class 
invariants generate Hilbert class fields, one of Weber's 
pr imary  interests. Ramanujan used class invariants to 
calculate explicitly certain continued fractions and prod- 
ucts of theta functions. 

After  this digression,  let  us re turn  to the sext ic  resol-  
vent; it  is the key  to  the solut ion of the  quintic in terms of  
radicals ,  p rov ided  that  such a key exists.  It is l~ossible, by  

acc ident  as  it were ,  for the  sext ic  reso lven t  to have a so- 
lution for which  4)2 is rational,  and the cor responding  value 
of  4) is of  the form p~f5h, where  p is rat ional .  A knowledge  

of  such a value of  4) proves  to be sufficient  to enable  us  to 
express  all the  roo t s  of the  quintic in t e rms  of  radicals.  In 
fact, when this happy  acc ident  occurs ,  the  quintic is 
Abelian, and when  it does  not  occur,  the quintic i s  not  

Abelian. 

I f  4) 2 E Q it is clear f rom the resolvent sextic that 4) = 
pV'5-h for  some p E (~. We are not aware of any rigorous 
direct proof in the classical literature of  the equivalence 
of 4)2 E Q to the original quintic being solvable. 

This is as  far as  Cayley went; he was  p re sumab ly  not  in- 

t e res ted  in the s o m e w h a t  labor ious  t a sk  of  complet ing  the 
detai ls  of  the so lu t ion  of  the  quintic af ter  the  determina-  

t ion of  a roo t  of  his sext ic  resolvent.  
The detai ls  of  the  solut ion of an Abel ian  quintic were  

worked  out  near ly  a quar ter  of  a cen tury  la ter  by  a con- 
t empora ry  of  Cayley, namely  George Pax ton  Young. I shall  
not  descr ibe  Young as a mathemat ic ian  whose  name has  
been  a lmost  forgotten,  because  he was  not  in fact  a pro-  
fessional  mathemat ic ian  at  all. The few detai ls  of  his ca- 

reer  that  are known  to me are  to be found in P o g g e n d o r f s  
b iographies  of  au thors  of  scientif ic papers .  He was  born  in 
1819, g radua ted  M.A. at  Edinburgh, and  was  subsequent ly  
Professor  of  Logic and Metaphysics  at  Knox College, 
Toronto; he was  also an Inspec tor  of  Schools,  and subse-  
quently Professor  of  Logic, Metaphysics  and Ethics  in the  

Universi ty of  Toronto.  He died at  Toronto  on Februa ry  26, 
1889. His life was  thus a lmost  coextens ive  wi th  Cayley 's  

(born August  16, 1821, died January  26, 1895). Young in the  
last  decade  of  his life (and not  until then)  pub l i shed  a num- 
ber  of  pape r s  on the algebraic  solut ion of  equations,  in- 
cluding three  in the  American Journal of Mathematics 
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which among them conta in  his me thod  of  solving Abelian 
quintics. 

These are p a p e r s  [58], [59] and  [60]. 

In style, his pape r s  a re  the  very ant i thesis  of  Cayley's.  While 
Cayley could  not  (or  a t  any rate  frequently did  not)  wri te  
grammat ica l  English, he a lways wrote  wi th  ex t reme  clar- 
ity, and, when one r e a d s  his papers ,  one canno t  fail to be  
impressed  by the t e r seness  and lucidi ty of  his style, by the  

mas te ry  which he exerc i ses  over  his symbols ,  and  by the 
feeling which he succeeds  in conveying that, a l though he 
may  have frequently suppres sed  detai ls  of  calculat ion,  the  
r eade r  would  exper ience  no real  difficulty in filling in the 
lacunae,  even though such  a t ask  might  require  a good deal  
of  labour.  

On the o ther  hand, when  one is reading Young's  work,  
it  is difficult to dec ide  what  his aims are  unti l  one has  
reached  the end of  his work,  and then one has  to  re turn  to 

the  beginning and r ead  it again in the light of  wha t  one has  
discovered;  his choice  of  symbols  is often unfortunate;  in 
fact  when  I am read ing  his papers ,  I find it necessa ry  to 

make  out  two lists of  the  symbols  that  he is using, one list 
of  knowns  and the o the r  of  unknowns;  finally, his resul ts  
seemed  to be ob ta ined  by  a sheer  p iece  of  good  fortune, 

and  not  as  a consequence  of  de l ibera te  and  sys temat ic  
strategy. A compar i son  of  the  wri t ings of  Cayley and Young 
shows  a str iking con t r a s t  be tween  the compe ten t  draughts-  
manship  of  the lawyer  and pure  mathemat ic ian  on the one 

hand  and the obscur i ty  of  the ph i losopher  on the  other. 
The res t  of  my  lec ture  I p ropose  to devote  to an account  

of  a prac t ica l  me thod  of  solving Abelian quintic equations.  
The method  is in subs tance  the method  given by  Young, 

but  I hope that  I have succeeded  in set t ing it out  in a more  
intelligible, sys temat ic  and  symmetr ica l  manner .  

Take the r educed  form of  the quintic equat ion 

z 5 + 10Cz 3 + 10Dz 2 + 5Ez  + F = O, 

and suppose  that  i ts roo t s  are 

Zr+ l z o)rul ~- (.02ru2 -{- o)3ru3 Jr to4ru4 ' 

where  

w = exp(2qr//5), r = 1, 2, 3, 4, 0. 

St ra ightforward bu t  somewha t  ted ious  mul t ip l ica t ion 
shows  that  the quintic equat ion with these  roo t s  is 

Z 5 - -  5Z3(UlU4 - { -  U2U3) - -  5Z2(U2U 3 - + -  U2Ul " 1 -  U2U4 - } -  U2U2) 
U2U 2 -  U31U2 U32U4 U3Ul +5z(u~u~ + 2 3 ulu2u3u4 - - - 

- u u3) 
--(U 5 " 1 -  U 5 -+ "  U 5 - t -  U 5 - -  5U3U3U4 - -  5U3UlU3 

-- 5U3U4U2 -- 5U3U2U1 
=1= 2 2  5U2U2U2+ 5U4U2U 2) 0; 5UlU3U 4 -~- 5U3U2U 2 -~ = 

and a compar i son  of  these  two forms of  the quintic yields 
four  equat ions from which  ul ,  u2, Us, u4 are  to be  deter-  
mined, namely  

(1) u l u 4  + u2u3 = - 2 C ,  

(2) u21u3 ~- U2Ul + u2u4 ~- u2u2 = - 2 D ,  

(3) 2 2  u2u 2 u iu2 u u4 u u, UlU4 ~- 2 3 -- UlU2U3U4 -- -- - -  

- u 3 u 3  = E ,  

(4 )  U 5 -{- U 5 -I- U 5 ~ -  U 5 - -  5 ( U l U  4 - -  U2U3)(U21U3 - -  U2Ul 
- u2u4 + u2u2) = - F .  

These  coe f f i c ien ts  were  e s sen t ia l l y  g i ven  by R a m a n u -  

j a n  i n  h i s  f i r s t  Notebook [39]; see B e r n d t  [1, Par t  IV, p. 38]. 
They  also occur  i n  [43]. 

We nex t  in t roduce  two addi t ional  unknowns,  0 and T, 
def ined by  the equations 

(5) ulua  - u2u3 = 28, 
(6) u2u3 + u24u2 - u2u ,  - u2u4 = 2T, 

in which a kind of  skew symmet ry  will be noticed. The nat- 

ural p rocedure  is now to de termine  ul ,  u2, u3, u4 in terms of  
8, T a n d  the coefficients of  the r educed  quintic by using equa- 
tions (1), (2), (5) and (6) only. When this has been  done, sub- 
sti tute the results  in (3) and (4), and we have reached the 

penul t imate  stage of  our jou rney  by  being confronted with 
two s imultaneous equations in the unknowns 0 and T. 

F r o m  (1) and (5) we have 

UlU 4 = - C - ~  8, U2U3 = - C -  8, 

while f rom (2) and (6) we have 

u 2 u 3 + u 2 u 2 = - D + T ,  u ~ u l + u 2 u 4 = - D - T ;  

and hence  it fol lows that  

u2u3 - u2u2 = • ~/(D - T) 2 + 4(C - 0)2(C + 8) =: R1, say; 

u2ul  - u2u4 = • ~/(D + T) 2 + 4(C + 0)2(C - 8) =: R2, say. 

W a t s o n  m a k e s  u se  o f  the i d e n t i t i e s  

(U2U3 -- U2U2)2 = (U2U3 + U2U2)  2 -- 4(UlU4)2(U2U3), 
(U2Ul - -  U2U4) 2 ---- (U2UI -~ U2U4)  2 - -  4(u2u3)2(UlU4). 

These last  equat ions enable  us  to obta in  s imple expres-  
s ions for  the  var ious  combina t ions  of  the u ' s  which occur  
in (3) and  (4). Thus, in r e spec t  o f  (3), we have 

U lU2 _ ulu , 
U2U3 

3 3 with s imi lar  express ions  for u2u4, u3ul ,  u3u3. When we sub- 
st i tute these  values  in (3) and  pe r fo rm some quite straight-  
fo rward  reduct ions ,  we obta in  the  equation 

(7) C(D 2 - T 2) + (C 2 - 02)(C 2 + 302 - E)  = RIR20. 

This shows incidentally that, when 0 and T have been de- 
termined, the signs of  R1 and R2 cannot  be assumed arbi- 
trarily but  have to be selected so that  R1R2 has a uniquely de- 
terminate value. The effect of  changing the signs of  both  R1 

and R2 is merely to interchange u l  with u4 and u2 with u3. 
The resul t  of  rat ional is ing (7) by  squaring is the more  

formidable  equation 

(D 2 - T2)2 + 2C(D 2 - T2)(C 2 + 302) - 8C02(D2 + T 2) 
(8) + ( C  2 - 02)(C 2 - 502) 2 + 16DO3T + E2(C 2 - 82) 

- 2 C E ( D  2 - T 2) - 2E(C 2 - 02)(C 2 + 382) = 0. 
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This d i sposes  of  (3) for the  t ime being, and we turn  to 

(4). The formulae  which now serve our  purpose  are  

u 5 = (u2u3)2(u2ul) etc., 
( u 2 u 3 ) 2  ' 

with three  s imilar  formulae.  When  these  resul ts  are inser ted  

in (4) and the equation so ob ta ined  is s implif ied as  much  
as possible ,  we have an equat ion which I do not  p ropos e  
to wr i te  down, because  it wou ld  be a lit t le tedious; it  has  
a sor t  of  family resemblance  to  (7) in that  it  is of  abou t  the  
same  degree of  complexi ty  and it involves the unknowns  0 

and T and the p roduc t  RIR2 rat ionally.  

MAPLE gives the equation as 

(1) 2 - T2)(DO 2 + 2CT0 + C2D) + 2(C 2 - 02)(3CD02 - TO 3) 

-RIR2(TO 2 + 2CD0 + C2T) + (C 2 - 02)2(20T0 - F) = O. 

When we subst i tute  for this  p roduc t  R1R2 the value which  
is suppl ied  by (7), we obta in  an equation which is wor th  
wri t ing out  in full, namely  

(DO + CT)(D 2 - T 2) + T(C 2 - 502) 2 - 2CDEO 

(9) - E T ( C  2 + 02) + FO(C 2 - 02) = O. 

We now have two s imul taneous  equations, (8) and (9), in 
which the only unknowns are  0 and T. When these equations 

have been  solved, the values of  Ul, u2, u3, u4 are immedi-  
ately obtainable from formulae of  the type giving u 5 in the 

form of  fifth roots, and our  quest  will have reached its end. 

Watson means  that Ul can be given as a f i f t h  root o f  an 

e~pression involving the coeff icients o f  the quint ic ,  R1 

and R2. 

An inspec t ion  of  this pa i r  of  equations,  however,  suggests  
that  we  may  still have a formidable  task  in front of  us. 

It has  to be admit ted  that,  to  all intents  and purposes ,  

this  t a sk  is sh i rked  by  Young. In place  of  (8) and (9), the  
equat ions  to which his analysis  leads  him are modi f ied  
forms of  (8) and  (9). They are  obta inable  from (8) and  (9) 
by  taking new unknowns  in p lace  of  0 and T, the  new un- 

knowns  t and 0 being given in t e rms  of  our  unknowns  by  
the formulae  

T = O t ,  0 2 = 0 .  

Young's  s imul taneous  equat ions  are  cubic-quart ic  and  

quadrat ic-cubic  respect ive ly  in ~ and t. When the original  
quintic equation is Abelian, they  possess  a rat ional  se t  of  
solut ions.  

Young's p a i r  o f  s imul taneous  equations f o r  t and 0 are 

(D 2 - ~ht2) 2 + 2C(D 2 - 0t2)(C 2 ~- 30) - 8C~(D 2 + 0t 2) 
+ (C 2 - O)(C 2 - 5~)2 +16D02t + E2(C 2 - ~) 

- 2CE(D 2 - 0t 2) - 2E(C 2 - O)(C 2 + 3~) = 0 

and 

(D + Ct)(D 2 - ~ 2 )  + t'(C 2 _ 5~)2 _ 2CDE 

- E t ( C  2 + o ) + F ( C  2 - ~ ) = 0 .  

Young goes on  to  suggest  that, in numer ica l  examples ,  
his pair  of  s imul taneous  equations should  be solved by in- 
spect ion.  He does ,  in fact, solve the  equat ions  by inspec-  
t ion in each  of  the  numer ica l  examples  that  he considers ,  
and, al though he says  it is poss ible  to  e l iminate  ei ther  of  

the unknowns  in o rder  to obtain a single equat ion in the  
o ther  unknown,  he  does no t  work  ou t  the eliminant.  You 
will p robab ly  real ize  that  the  solut ion by  inspect ion  of  a 
pa i r  of  s imul taneous  equations of so high a degree  is l ikely 
to be an ex t r eme ly  tedious  task, and you will not  be mis- 
t aken  in your  assumpt ion.  Consequent ly  Young's investi- 

gat ions have not  got  the air  of  f inali ty about  them which  
could  have been  desired.  

Fortunately,  however ,  the  end of  the  s tory  is implici t ly 
told in the  p a p e r  by  Cayley on the sext ic  resolvent  which 

I have a l ready descr ibed  to  you and which  had  been  pub-  
l ished over  a quar te r  of a century  earlier.  It is, in fact, easy  
to es tabl ish  the  re la t ions  

z ~ z 2  + . . . .  Z l Z 3  . . . .  

= a2(xlx2 + . . . .  x lx3 . . . .  ) = a2r 

and also to p rove  that  t h e ~ x p r e s s i o n  on the left  is equal to 

5 ( u l u 4  - u 2 u ~ ) X / 5  

so that  

100V5 = a2~bl. 

Watson is u s ing  the relation zi = axi + b (i E {1, 2, 3, 4, 
5}) to obtain the f i r s t  equality. 

W i t h  z r --~ o ) r u l  § o)2ru2 § o)3ru 3 § o)4ru 4 (r E {1, 2, 3, 4, 

5}) M A P L E  gives 

Z l Z  2 § . . . .  Z l Z  3 . . . .  

= 5 ( U l U 4  - u 2 u D ( ~ o  - J - o~ 3 + o~ 4 )  

so that 

z l z 2  + . . . .  Z lZ3  . . . . .  5 ( u l u 4  - u 2 u 3 ) V ~  

since 

Consequently, to obtahi a value of  0 which satisfies 
Young's s imultaneous equations, all that  is necessary  is to ob- 

tain a root  of  Cayley's sextic resolvent; and the determina- 
t ion of a rational value of  ~b 2 which satisfies Cayley's sextic 
resolvent is a perfect ly straightforward process,  since any 
such value of  a2~b 2 mus t  be an integer which is a factor of  
1600000000M 2 when  the coefficients in the s tandard form of  
the quintic are integers, and so the number  of  trials which 
have to be made to ascertain the root  is definitely limited. 

The quant i t y  M is defined on Watson's sheet 1. The con- 

s tant  term o f  Cayley's sext ic  resolvent (0) is 40000M. 

When 0 has  been  thus  determined,  Young's pa i r  of  equa- 
t ions conta in  one unknown T only, and  there  is no diffi- 
culty at  all in f inding the single value of  T which  satisfies 

bo th  of  t hem by a ser ies  of  tr ials exac t ly  resembl ing  the set  
of  tr ials by  which  0 was determined.  
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Watson's method o f  f i n d i n g  a real root o f  the solvable 

qu in t i c  equation: 

a x  5 + 5 b x  4 +  10cx 3 + 1 0 d x  2 + 5 e x + f = 0  

Firs t  t rans form the qu in t i c  into reduced f o r m  

x 5 + 10Cx 3 § 10Dx 2 + 5Ex § F = O. 

Watson's s tep-by-step procedure gives  a real root o f  the re- 

duced equat ion i n  the f o r m  x = u t  + u2 + u3 + u4. The 
other f o u r  roots o f  the equat ion have the f o r m  odul + 
o)2Ju2 § o)3Ju3 § ~04Ju4 ( j  = 1, 2, 3, 4), where  w = 

exp(2~T//5). 

INPUT" C,D,E,F 

Step 1. F ind  a POsit ive in teger  k such that  

k ] 1 6 x l 0  s X M  2, 

e V ~ / a  is a root o f  (0) f o r  e = 1 or - 1. 

Step 2. De te rmine  O f r o m  

e a V k  

0 = I O N / ~ .  

Step 3. Pu t  the value  o f  0 in to  (7) and (9) and  then add 
and subtract  mu l t i p l e s  o f  these equat ions  as  necessary  
to de termine  T. 

Step 4. De te rmine  R1 f r o m  

R1 = ~/ (D - T) 2 § 4(C - 0)2(C § 0). 

Step 5. De t e rmine  R2 f r o m  

RIR2 = (C(D 2 - T 2) + (C 2 - 02)(C 2 + 302 - E))/0. 

Step 6. De te rmine  Ul f r o m  

= f X 2 y ~  1/5 
U l  ' 

where  

X = ( - D  + T + R1)/2, 

Y = ( - D - T + R 2 ) / 2 ,  Z = - C -  0. 

Step 7. De termine  u4 f r o m  

UlU 4 = - C  § O. 

Step 8. De te rmine  u2 f r o m  

u2u2 = ( - D  + T - R1)/2. 

Step 9. De termine  u3 f r o m  

U2U 3 = - C -  O. 

OUTPUT" A real root o f  the qu in t i c  is  x = Ul + u2 § 

U 3 + U 4. 

The p roc e s s  which I have now descr ibed  of  solving an  
Abel ian  quintic by making use of  the  work  of  both  Cayley 
and Young is a perfect ly  p rac t ica l  one, and, as  I have al- 
ready  implied,  I have used  it to solve  ra ther  more  than 100 

Abel ian quintics. If any of  you wou ld  hke to a t tempt  the  so- 
lution of  an Abelian quintic, you will  find enough informa- 

t ion abou t  Ramanujan ' s  quintic given at  the foot  of  the th i rd  
sheet  to  enable  you to comple te  the  solution. You may  re- 
m e m b e r  tha t  I ment ioned  that  the  equation was  connec ted  
with the  elliptic f imct ions for  which  the per iod-quot ient  

was X/C-~,  and you will see  the  n u m b e r  79 appear ing some-  
wha t  unobtrus ively  in the va lues  which  I have quoted for  
the u's.  

This is  the end o f  Watson's lecture. We have made  a f e w  
correct ions to the text: f o r  example ,  i n  one place Watson 

wrote  "cubic" when  he clearly m e a n t  "quintic." Included 
i n  this  art icle are the three handou t  sheets that  he refers 
to i n  h i s  lecture. We conclude w i t h  three examples.  

Three Examples Illustrating Watson's Procedure 

E x a m p l e  1. x 5 - 5 x  + 12 = 0 

The Galois group o f  x 5 - 5x + 12 is  D5. Here  

a = l,  b = O, c =- O, d = O, e = - l, f =12,  
C = 0 ,  D = 0 ,  E = - l , F = 1 2 ,  
K =  - 1 ,  L = 3, M =  - 1 ,  
A = 5 X 212, ~ = 520. 

Equat ion  (0) i s  

Step 1 

Step 2 

Step 3 

~b 6 + 100r 4 + 6000~b 2 - 256000q) - 40000 = 0. 

k =  10. 

1 
O - X / ~ .  

2 
T =  V ~ .  Cont inues  on nex t  page 
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Examples (continued) 

Step 4 

Step 5 

R2 = - 2  ~ / 5  - ~x/-g. 

Step 6 

X/5 + N/5  + N/5 - V ' 5 -  ~ / 5 -  V ~  1 
X = 5 ' Y = 5 , Z = --~/-~, 

Ul = --( ( ~ ' 5  + ~V/5 -b ~/-5)2 (~/'5 ~- ~/-5 -- ~f5) ) 1 / 5 2 5  " 

Step 7 

u4 = - 25 ] " 

Step 8 

( (~/'5 -- ~ / 5  -- ~/ '5)2(__~'5 __ ~f5-[-  -Vf5)~1/5 
u2 = - 25 ] " 

Step 9 

u3 = - 25 ] 

A solution o f x  5 - 5x + 12 = 0 is x = Ul '~ u2 ~- u3 -b u 4. This agrees w i th  [43, Example  1]. 

E x a m p l e  2.  x 5 + 15x + 12 = 0 

The Galois group of  x 5 + 15x + 12 is F2o. Here 

a = l , b = 0 ,  c = 0 ,  d = 0 ,  e = 3 , f =  12, 
C = 0 ,  D = 0 ,  E = 3 ,  F = 1 2 ,  
K =  3, L = 27, M = 27, 
A = 210 X 34, V ' ~  = 288V'5. 

Equat ion  (0) is 

Step 1 

~6 _ 3 0 0 r  5 4 0 0 0 r  230400X/-5& + 1080000 = 0. 

k = 180. 

Step 2 

Step 3 

Step 4 

3 
0 - ~  - - .  

5 

T =  6_ 
5" 

12x/Y6 
R 1 - - -  

25 

Continues on next  page 
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Examples (continued) 

Step 5 

Step 6 

Step 7 

Step 8 

Step 9 

X -  

6 ]-6 
R 2 -  

25  

15 + 6 ~ 1 - 6  - 1 5  + 3 X / ~  
, Y -  

25  25  

- 7 5  : 21v1 /1 5 
u l  = 125 ] 

- 7 5  + 21X//~/1/5 
U 4 = 1 ~  ] " 

= ( 2 2 5  - 72X/1-0 ~1/5 
U2 

125 ] " 

= i / 225 +_ 7 2 ~ / 1 0  ~1/5 
U3 

125 ] " 

This agrees wi th  [43, E x a m p l e  2]. 

E x a m p l e  3 .  x 5 - 2 5 x  3 + 5 0 x  2 - 25 = 0 

The Galois group of  x 5 - 2 5 x  3 + 5 0 x  2 - 25  is Z/5~_. Here 

Equation (0) is 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

3 
, Z -  

5 '  

a = 1, b = 0, c = - 5 / 2 ,  d = 5, e = O , f =  - 2 5 ,  

C = - 5 / 2 ,  D = 5, E = 0, F =  - 2 5 ,  

K = 75/4,  L = 5375/16 ,  M = - 3 0 6 2 5 / 6 4 ,  

h = 5 7 X 7 2 , h / ~  = 5 4 x 7. 

r  _ 1 8 7 5 r  671875~b 2 _ 3 5 0 0 0 0 0 &  - 1 9 1 4 0 6 2 5  = 0. 

k = 625.  

0 -  
2 

T=O.  

R1 = ~ / - 2 5  + 10X/5 .  

R2 = ~ / - 2 5  - 10X/5 .  

Concludes on next page 
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Examples (continued) 

Step 6 

X =  
- 5  + % / - 2 5  + 10~/5 - 5  + "k,/-25 - 10~5 

, Y =  , Z -  - -  
2 2 

5+~/~ 
2 ' 

= { X 2 y ~  t/5 25 + 15V'-5 + 5~v/-130 - 58X/5 

u,  [ ~ - ]  = 4 

Step 7 

Step 8 

Step 9 

U 4 ~ -  

U 2 = 

U 3 = 

25 + 15X/-5 - 5 % / -  130 - 5SX/5 

25 - 15~/5 + 5 % / -  130 + 58~/5 

25 - 15%/-5 - 5X/-130  + 5SX/-5 
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