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he following notes are from a lecture on solving quintic equations given by the late

Professor George Neville Watson (1886-1965) at Cambridge University in 1948. They

were discovered by the first author in 1995 in one of two boxes of papers of Pro-

fessor Watson stored in the Rare Book Room of the Library at the University of

Birmingham, England. Some pages that had become sep-
arated from the notes were found by the third author in
one of the boxes during a visit to Birmingham in 1999.

“Solving the quintic” is one of the few topics in mathe-
matics which has been of enduring and widespread inter-
est for centuries. The history of this subject is beautifully
illustrated in the poster produced by MATHEMATICA.
Many attempts have been made to solve quintic equations;
see, for example, [6]-[14], [17]-[21], [28]-[32], [34]-[36],
[68]-[60]. Galois was the first mathematician to deter-
mine which quintic polynomials have roots expressible
in terms of radicals, and in 1991 Dummit [24] gave for-
mulae for the roots of such solvable quintics. A quintic is
solvable by means of radicals if and only if its Galois
group is the cyclic group Z/5Z of order 5, the dihedral
group D5 of order 10, or the Frobenius group Fsg of order

20. In view of the current interest (both theoretical and
computational) in solvable quintic equations [24], [33],
[43]-[46], it seemed to the authors to be of interest to pub-
lish Professor Watson’s notes on his lecture, with com-
mentary explaining some of the ideas in more current
mathematical language. For those having a practical need
Jor solving quintic equations, Watson’s step-by-step pro-
cedure will be especially valuable. Watson's method ap-
plies to any solvable quintic polynomial, that is, any
quintic polynomial whose Galois group is one of /57, Dy
or F: 20-

Watson’s interest in solving quintics was undoubtedly
motivated by his keen inlerest in verifying Srinivasa
Ramanujan’s determinations of class invariants, or
equivalently, singular moduli. Ramanujan computed the
values of over 100 class invariants, which he recorded
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G. N. Watson

without proofs in his paper [37] and at scattered places
throughout his notebooks, especially in his first notebook
[39]. Although many of Ramanujanr’s class invariants had
been also calculated by Heinrich Weber [57], most had not
been verified. Class invariants are certain algebraic num-
bers which are normally very difficult to calculate, and
their determinations often require solving a polynomial
equalion of degree greater than 2; and, in particular, 5.
Waison [b2] used modular equations in calculating
some of Ramanujan’s class invariants; solving polyno-
mial equations of degree exceeding 2 was often needed.
In a series of six further papers [50]-[51], [53]-[56], ke de-
veloped an empirical process for calculating class in-
variants, which also depended heavily on solving poly-
nomial equations of high degree. He mot only verified
several of Ramanujan’s class invariants bul also found
many new ones. For these reasons, Watson proclaimed in
his lecture that he had solved more quintic equations than
any other person. Despite Walson’s gargantuan efforts in
calculating Ramanujan’s class invariants, etghteen re-
mained unproven until recent times. The remaining ones
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were verified in two papers by Berndt, Chan, and Zhang
[2], [3]; see also Berndt’s book [1, Part V, Chapter 34]. Chan
[16] has used class field theory to put Watson’s determi-
nations on a firm foundation, and Zhang [61], [62] has
used Kronecker’s limit formula to verify Watson’s calcu-
lations.

Professor Watson held the Mason Chair of Mathemat-
ics at the University of Birmingham from 1918 to 1951.
He was educated at Cambridge University (1904-1908),
where he was a student of Edmund Taylor Whittaker
(1873-1956). He became a Fellow of Trinity College,
Cambridge, in 1910. From 1914 to 1918 he held aca-
demic positions at University College, London. Watson
devoted a great deal of his research to extending and pro-
viding proofs for results contained in Ramanujan’s Note-
books [39]. He wrote more than thirty papers related to
Ramanujan’s work, including the aforementioned papers
on class invariants or singular moduli.

Most mathematicians know Watson as the co-author
with E. T. Whittaker of the classic book A Course of Mod-
ern Analysis, first published in 1915, and author of the
monumental treatise Theory of Bessel Functions, first
published in 1922. For more details of Watson’s life, the
reader may wish to consult [22], [41], [48].

We now give the text of Watson’s lecture with our com-
mentary in italics. In the course of the text we give the
contents of three sheets which presumably Watson handed
out to his audience. The first of these gives the basic quan-
tities associated with a quintic equation, the second gives
twenty-four pentagrams used in showing that permuta-
tions of the suffixes of

(X122 + T3 + T3T4 + T4T5 + X521
— X1%3 — X35 — Tsly — Loy — XaX1)?

yield six distinct expressions, and the third gives Wat-
son’s method of solving a solvable quintic equation in
radicals.

I am going to begin by frankly admitting that my subject
this evening is definitely old-fashioned and is rather stodgy;
you will not find anything exciting or thrilling about it.
When the subject of quintic equations was first seriously
investigated by Lagrange it really was a “live” topic; the ex-
tent of the possibility of solving equations of various de-
grees by means of radicals was of general interest until it
was realized that numbers represented by radicals and
roots of algebraic equations were about what one nowa-
days calls algebraic numbers.

It is difficult to know quite how much to assume that
you already know about solutions of algebraic equations
but I am going to take for granted . . .

Watson’s notes do not state the prerequisites for the lecture!

I cannot begin without saying how much I value the com-
pliment which you have paid me by inviting me to come
from a provincial University to lecture to you in Cambridge;
and now I am going to claim an old man’s privilege of in-
dulging in a few reminiscences. In order to make my lec-



SHEET 1

The denumerate form of the quintic equation is

The standard form of the quintic equation is

The reduced form of the quintic equation is

The sextic resolvent is

where

K = ae — 4bd + 3¢2,

Doy® + D1yt + p2y® + psy® + pay + ps = 0.

ax® + 5bx* + 10cx® + 10dx® + bex + f = 0. (x = 10y)

2%+ 10C23 + 10D22 +5Ez+ F=0. (2 =ax + b)

ab¢8 — 100Ka*¢* + 2000La?¢? — 800a?¢V5A + 40000M = 0,

L = —2a2df + 3a%e> + 6abcf — 14abde — 2ace + 8acd? — 4b3f
+10b%ce + 20b2d2 — 40bcZd + 15¢4,

M = a3¢cf? — 2a3def + a’e® — ab%f2 — 4abcef + 8a2bdf — 2a°bde?
—2a2c%df — 11a®c%e? + 28acd?e — 16a2d? + 6abPef
—12ab%cdf + 35ab’ce® — 40ab’d2e + 6abc’f — 70abc’de
+ 80abed?® + 35ac?e — 40ac3d? — 26b%? + 100b3cde
—50b%c3e — 100b2c2d 2 + 100bc*d — 25c¢S.

ture effective, I must endeavour to picture to myself what
is passing in the mind of John Brown who is sitting some-
where in the middle of this room and who came up to Trin-
ity last October; and I suppose that, in view of the recent
decision about women’s membership of the University,
with the name of John Brown I must couple the name of
his cousin Mary Smith who came up to Newnham at the
same time. To try to read their thoughts I must cast my
mind back 43 years to the Lent Term of 1905 which was in
my first year. If I had then attended a lecture by a mathe-
matician 43 years my senior who was visiting Cambridge,

Watson Building, University of Birmingham. (Photo from 1995.)

an inspection of the Tripos lists would show that the most
likely person to satisfy the requisite conditions would have
been the late Lord Rayleigh, who was subsequently Chan-
cellor. Probably to you he seems quite prehistoric; to me
he was an elderly and venerable figure whose acquairnitance
I made in 1912, and with whom I subsequently had some
correspondence about electric waves. You cannot help re-
garding me as equally elderly, but I hope that, for a num-
ber of reasons you do not consider me equally venerable,
and that you will believe me when I say that I still have a
good deal of the mentality of the undergraduate about me.
However, so far as [ know, Lord Rayleigh did not visit Cam-
bridge in the Lent term of 1905, and so my attempt at an anal-
ogy rather breaks down. On the other hand a visit was paid
to Cambridge at the end of that term by a much more emi-
nent personage, namely the Sultan of Zanzibar. For the ben-
efit of those of you who have not heard that story, I mention
briefly that on the last day of term the Mayor of Cambridge
received a telegram to the effect that the Sultan and his suite
would be arriving by the mid-day train from King’s Cross and
would be glad if the Mayor would give them lunch and arrange
for them to be shown over Cambridge in the course of the
afternoon. The program was duly carried out, and during the
next few weeks it gradually emerged that the so-called Sul-
tan was W. H. de Vere Cole, a third-year Trinity undergradu-
ate. It was the most successful practical joke of an age in
which practical joking was more popular than it is to-day.
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If you could be transported back to the Cambridge of
1905, you would find that it was not so very different from
the Cambridge of 1948. One of the differences which would
strike you most would probably be the fact that there were
very few University lectures (and those mostly professor-
ial lectures which were not much attended by undergrad-
uates); other lectures were College lectures, open only to
members of the College in which they were given, or, in
the case of some of the smaller Colleges, they were open
to members of two or three colleges which had associated
themselves for that purpose. Thus most of the teaching
which I received was from the four members of the Trin-
ity mathematical staff; the senior of them was Herman, who
died prematurely twenty years ago; in addition to teaching
me solid geometry, rigid dynamics and hydrodynamics, he
infected me with a quality of perseverance and tenacity of
purpose which I think was less uncommon in the nine-
teenth century than it is to-day when mathematics is tend-
ing to be less concrete and more abstract. Whitehead was
still alive when I started collecting material for this lecture.
Whittaker, who lectured on Electricity and Geometric Op-
tics, whose name is sometimes associated with mine, is liv-
ing in retirement in Edinburgh; and Barnes is Bishop of
Birmingham. Outside the College I attended lectures by
Baker on Theory of Functions, Berry of King’s who taught
me nearly all of what I know of elliptic functions, and Hob-
son on Spherical Harmonics and Integral Equations; also
two of the Professors of that time that were Trinity men,
Forsyth and Sir George Darwin, whom I remember lectur-
ing on curvature of surfaces and the problem of three bod-
ies, respectively. Two things you may have noticed, the
large proportion of my teachers who are still alive, and the
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insularity, if I may so describe it, of my education. If that
hypothetical lecture by Lord Rayleigh had taken place, he
could have given a more striking illustration of insularity
which you will probably hardly credit. In his time, each Col-
lege tutor was responsible for the teaching of his own
pupils and of nobody else; he was aided by one or two as-
sistant tutors, but the pupils, no matter what subject they
were reading, received no official instruction except from
their own tutor and his assistants.

After spending something like ten minutes on these ir-
relevancies, it is time that I started getting to business.

There is one assumption which I am going to make
throughout, namely that the extent of your knowledge
about the elements of the theory of equations is roughly
the same as might have been expected of a similar audi-
ence in 1905. For instance, I am going to take for granted
that you know about symmetric functions of roots in terms
of coefficients and that you are at any rate vaguely famil-
iar with methods of obtaining algebraic solutions of qua-
dratic, cubic and quartic equations, and that you have heard
of the theorem due to Abel that there is no such solution
of the general quintic equation, i.e., a solution expressible
by a number of root extractions.

In modern language, if f{x) € Q|x] is irreducible and of de-
gree 5, then the quintic equation flx) = 0 is solvable by rad-
icals if and only if the Galois group G of f{x) is solvable.
The Galois group G is solvable if and only if it is a sub-
group of the Frobenius group Foo of order 20, that is, it is
Foy, D5 (the dihedral group of order 10), or Z/57 (the cyclic
group of order 5); see for example [24, Theorem 2, p. 397],
[25, Theorem 39, p. 609]. Thus a quintic equation f(x) =0
cannot have its roots expressed by a finite number of root
extractions if the Galois group G of f is non-solvable, that
18, if it is S5 (the symmeltric group of order 120), or As (the
alternating group of order 60). “Almost all” quintics have
S5 as their Galois group, so the “general” quintic is not solv-
able by radicals. It is easy to give examples of quintics
which are not solvable by radicals; see for example [46].

You may or may not have encountered the theorem that
any irreducible quintic which has got an algebraic solution
has its roots expressible in the form

Uy + wup + wzruz + w3’”u3 + w4’u4,

where o denotes exp(2i/5), r assumes the values 0, 1, 2,
3, 4, and u?, ug, u?;, u] are the roots of a quartic equation
whose coefficients are rational functions of the coefficients
of the original quintic. If you are not familiar with such re-
sults, you will find proofs of them in the treatise by Burn-

side and Panton.

One can find this in Section 5 of Chapter XX of Burnside
and Panton’s book [5, Vol. 2]. A modern reference for this
result is [24, Theorem 2, p. 397].

When I was an undergraduate, all other knowledge about
quintic equations was hidden behind what modern politi-



cians would describe as an iron curtain, and it is conve-
nient for me to assume that this state of affairs still per-
sists, for otherwise it would be a work of a supererogation
for me to deliver this lecture.

I might mention at this point that equations of the fifth
or a higher degree which possess algebraic solutions (such
equations are usually described as Abelian) are of some im-
portance in the theory of elliptic functions, apart from their
intrinsic interest.

Today such equations are called solvable.

There is, for instance, a theorem, also due to Abel, that the
equations satisfied by the so-called singular moduli of el-
liptic functions are all Abelian equations.

Singular moduli are discussed in Cox’s book [23, Chapter
3] as well as in Berndt’s book [1, Part V, Chapter 34].

It was these singular moduli which aroused my interest
some fifteen years ago in the solutions of Abelian equa-
tions, not only of the fifth degree, but also of the sixth, sev-
enth and other degrees higher still. It consequently became
necessary for me to co-ordinate the work of previous writ-
ers in such a way as to have handy a systematic procedure
for solving Abelian quintic equations as rapidly as possible,
and this is what I am going to describe tonight.

Methods for solving a general solvable quintic equation
in radicals have been given in the 1990s by Dummit [24]
ard Kobayashi and Nakagawa [33]; see also [47].

To illustrate the nature of the problem to be solved, I
am now going to use equations of degrees lower than the
fifth as illustrations. A reason why such equations pos-
sess algebraic solutions (and it proves to be the reason)
is that certain non-symmetric functions of the roots ex-
ist such that the values which certain powers of them can
assume are fewer in number than the degree of the equa-
tion. Thus, in the case of the quadratic equation with
roots a and B, there are two values for the difference of
the roots, namely

a— B, B— o

However the squares of both of these differences have one
value only, namely

(a+ B — 4ap,

and this is expressible rationally in terms of the coeffi-
cients. Hence the values of the differences of the roots are
obtainable by the extraction of a square root, and, since the
sum of the roots is known, the roots themselves are im-
mediately obtainable.

The cubic equation, with roots «, 3, v, can be treated sim-
ilarly. Let €3 = 1 (e # 1). Then we can form six expressions

o+ Be+ v, B+ ye+ ad, v+ ae+ B,
a+ BE+ ve, B+ ye+ ae, v+ aé®+ Be

with the property that their cubes have, not six different

values, but only two, namely
(a+ Be+ vé?, (a+ B + ve)d,

and these expressions are the roots of a quadratic equation
whose coefficients are rational functions of the coefficients
of the cubic. When the cubic equation is

ax3 + 3bx2 + 3cx +d =0,
the quadratic equation is
abX? + 27a3(ad — 3abc + 263X + 729(b% — ac)® = 0,
and there is no difficulty in completing the solution of the

cubic.

It is easily checked using MAPLE that this quadraltic is
correct.

For the quartic equation, with roots «, B, v, §, such ex-
pressions as

(@a+B—v—8% (a+ty—86-PB7% (a+8-B—v?

have only three distinct values; similar but slightly simpler
expressions are
aff+ y8 — ay — ad — By — B§, etc,,
or simpler still,
aB + vy8, ay+ B, ab+ By.
When the quartic equation is taken to be
axt + 4ba3 + 6cx® + 4dx + e = 0,
the cubic equation satisfied by the last three expressions is

aX? — 6aZcX? + (16bd — 4ae)aX
— (16b% + 16ad? — 24ace) = 0,

and, by the substitution
aX — 2¢ = —486,
this becomes

46° — &(ae — 4bd + 3¢?)
— (ace + 2bcd — ad? — b% — ¢3) = 0,

which is the standard reducing cubic
48 —10—J = 0.

This is discussed in [26, pp. 191-197; see problem 15, p.
197], where the values of I and J are given by

a b c
I=qe—4bd +3c% J=|b ¢ d
c d e

I have discussed the problem of solving the quartic equa-
tion at some length in order to be able to point out to you
the existence of a special type of quartic equation which
rarely receives the attention that it merits. In general the re-
ducing cubic of a quartic equation has no root which is ra-
tional in the field of its coefficients, and any expression for
the roots of the quartic involves cube roots; on the other
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—3200b2c2d3f + 2000b2c%d2e2.

The discriminant A of the quintic equation in its standard form is equal to the product of the squared differences
of the roots multiplied by a?/3125. The value of the discriminant A in terms of the coefficients is

a’f* — 20a2bef® — 120acdf® + 160ace?f2 + 360ad2ef>
—640a2def + 256a%e5 + 160a2b%df> — 10a2b2ef2
+360a2bc%f® — 1640a2bedef? + 320a2bcef — 1440a2bd>f2
+4080a2bd?c?f — 1920a2bde* — 1440a%cPef? + 2640a%c2d3f?
+4480a%c?de®f — 2560ac%e* — 10080aZcdef + 5760a%cd2e?
+3456a2d5f — 2160a2d%e® — 640ab’cf® + 320ab3def?
—180ab3c3f + 4080abic2ef? + 4480ab’cd?f% — 14920ab’cde?f
+7200ab3cet + 960ab’d3ef — 600abd2e® — 10080abcdf?
+960abce?f + 28480abc’d?ef — 16000abcide® — 11520abedf
+7200abcd?e® + 3456ac5f2 — 11520actdef + 6400acie®
+5120ac3df — 3200ac3d2e2 + 256b°F3 — 1920b%cef?
—2560b%d22 + T200b%de’f — 3375b%c* + 5760b3c2df>
—600b3c2e2f — 16000b3cd?ef + 9000b3cde® + 6400b3df
—4000b3d3e% — 2160b%c2 + 7200b%c3def — 4000b2c3e3

hand, there is no difficulty in constructing quartic equations
whose reducing cubics possess at least one rational root; the
roots of such quartics are obtainable in forms which involve
the extraction of square roots only. Such quartics are anal-
ogous to Abelian equations of higher degrees, and it might
be worth while to describe them either as “Abelian quartic
equations” or as “biquadratic equations,” the latter being an
alternative to the present usage of employing the terms quar-
tic and biquadratic indifferently. (I once discussed this ques-
tion with my friend Professor Berwick, who in his lifetime
was the leading authority in this country on algebraic equa-
tions, and we both rather reluctantly came to the conclusion
that the existing terminology was fixed sufficiently firmly to
make any alteration in it practically impossible.)

If flx) € Qlx] is an irreducible quartic polynomial, its
cubic resolvent has at least one rational root if and only
if the Galois group of fx) is the Klein 4-group Vy of or-
der 4, the cyclic group Z/47 of order 4, or the dihedral
group Dy of order 8. Since D4 is not abelian, it is not ap-
propriate to call such quartics “abelian.” For the solution
of the quartic by radicals, see for example [25, p. 548].

After this very lengthy preamble, I now reach the main
topic of my discourse, namely quintic equations. Some of you
may be familiar with the name of William Hepworth Thomp-
son, who was Regius Professor of Greek from 1853 to 1866,
and subsequently Master of Trinity until 1886. A question was
once put to him about Greek mathematics, and his reply was,
“I know nothing about the subject. I have never even lectured
upon it.” Although there are large tracts of knowledge about
quintic equations about which I am in complete ignorance, I
have a fair amount of practical experience of them. For in-
stance, if my friend Mr. P. Hall of King's College is here this
evening, he will probably be horrified at the ignorance which
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I shall show when I say anything derived from the theory of
groups. On the other hand, while to the best of my knowl-
edge nobody else has solved more than about twenty Abelian
quintics (you will be hearing later about these solvers, and I
have no certain knowledge that anybody else has ever solved
any), my own score is something between 100 and 120; and
I must admit that I feel a certain amount of pride at having
so far outdistanced my nearest rival.

Young solved several quintic equations in [58] and [59].

The notation which I use is given at the top of the first
of the sheets which have been distributed. The first equa-
tion, namely

poy® + pry* + p2y® + pay® + pay + p5 =0,
is what Cayley calls the denumerate form, while
ax® + Bbxt + 10cx® + 10da® + bex + f= 0,

is the standard form. The second is derived from the first
by the substitution 10y = x, with the relations

a = Po, b= 2]717 c= 10p2’ d= 100p3’
e =2000p;, f= 105ps.

Next we carry out the process usually described as “re-
moving the second term” by the substitution ax + b = 2,
which yields the reduced form

2% +10C2° + 10D22 + bEz + F = 0,
in which
C =ac - b% D =a?d — 3abc + 2b3,
E = a’e — 4a2bd + 6ab3c — 3b%,
F = a%f — 5a®be + 10a2b?%d — 10ab’c + 4b5.
The roots of the last two quintics will be denoted by x,
and z, respectively with r =1, 2, 3, 4, 5.
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The roots of the quintic in its reduced form are
Zpr1 = 0"uy + w27u2 + w37u3 + w4’"u4
with w = exp(2#i/6),r=1,2, 3,4, 0.

Q)] Uy + sz = —2C.

2) udug + udu, + u§u4 + u3us = —2D.

3) u?u% + u%ug — U UUIUg — u?ug - u%u4 - ugul - u2u3 =F.

4) w3+ ud +ud +ud — B(uqug — ugug)(u%ug — wdu; — udug + u%ug) = —F.

New unknowns, # and 7, defined by

(5) UiUgq — UgU3z = 20,
6) wius + udug — uduy — wdug = 27T
g = —C+ 0, usug= —C— 0.
u%u;; + uiuz =-D+T, u%ul + u§u4 =-D-T.
wius — udus = * V(O - T2 + 4(C — 0%(C + 6) = R,
wuy —vdug = = VO + T2+ 4C + OXC - 6) = Re.
wiug = (Wius)(Wdu)/(usus), ete., uf = (wiug)®(udur)/(usus)®, ete.
) C(D?2 — T2 + (C2 — 62)(C? + 36% — E) = RiR6.
€)) (D? — T2 + 20(D? ~ TH(C? + 36%) — 8CH(D? + T?)
+(C2 — 62%(C? — 562 + 16DOT + E2(C? - 6%
— 2CE(D? — T?) — 2E(C? — 6%)(C2 + 36%) = 0.
9 D6 + CTYD? — T?) + T(C? — 56%)2 — 2CDE#
—ET(C?% + 6% + F&(C% — ) = 0.

Young’s substitutions are
T=6, 6%>=y.

The connexion between the 8 above and the ¢ of Cayley’s sextic resolvent is
106V5 = a2é.

The denumerate quintic of Ramanujan’s problem is

Y —yt+yi—242+3y—1=0.

For this quintic, C = 6, D = —156, E = 4592, F = —47328.
2=10y — 2, 6= —10V5, t = —10, T = 100V/5.

uf, ul = —13168 — 6400V/5 = (2160 + 960VE)V79(5 — 2V5),

u3, ul = —13168 + 6400V/5 * (2160 — 960\V/5)\V/79(5 + 2V/5).
R}, R% = 79(800 + 160V5), RiR; = —320 X 79V5.

We remark that Young’s equations for t and  in this and

example are: (=156 + 6£)(24336 — t2) + 1(36 — 5¥)2
(24336 — ¥t2) + 12(24336 — t2)(36 + 34) + 6892416 — 4592¢(36 + ) + 473284 = 0,
— 484424336 + Y12) + (36 — ¢)(36 — By)?
— 249642t — 581898240 — 21086464y
+ 5510412 — 9184(36 — ¥)(36 + 3y) = 0

so that t=—10 and ¢ =500 in agreement with
Watson.
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Our next object is the determination of non-symmetric
functions of the roots which can be regarded as roots of a
resolvent equation. An expression which suggests itself is

(1'1 + wxs + a)2x3 + w3x4 + (1)4.%‘5)5.

The result of permuting the raots is to yield 24 values for
the expression.

A permutation o € S; acts on this element by

o((x; + wxg + w2x3 + w3x4 + w4x5)5)
= (xa(l) + a).%'g(z) + w2x0(3) + w3xg(4) + w4x,,(5))5.

An easy calculation shows that o preserves
a=(x; + wry + w?rs + o’ry + o'rs)®

if and only if o= (12 3 4 5)* for some k €{0, 1, 2, 3, 4}.
Hence

stabs, (@) = ((1 23 4 5)),
so that
stabs,(a)| = 5.
Thus, by the orbit-stabilizer theorem [27, p. 139], we obtain

J%L=@=24,

lorbsy(e)| = 5

so that permulting the roots yields 24 different expressions.

The disadvantage of the corresponding resolvent equation
is the magnitude of the degree of its coefficients when ex-
pressed as functions of the coefficients of the quintic; more-
over it is difficult to be greatly attracted by an equation
whose degree is as high as 24 when our aim is the solution
of an equation of degree as low as 5.

An expression which is more amenable than the ex-
pression just considered was discovered just 90 years ago
by two mathematicians of some eminence in their day,
namely Cockle and Harley, and it was published in the
Memoirs of the Manchester Literary and Philosophical So-
ciety. This expression is

b1 = 21X + X3 + T3xg T X5 T T5X — X1X3
— X3x5 — sl — XXy — XaX1.

The quantities X122 + %3 + X3ks + X4X5 + X521 and XXz +
Tas + Tsws + Xoky + 24X appear in the work of Harley
[29] and their difference is considered by Cayley [6]. We
have not located a joint paper of Cockle and Harley. When
he was writing these notes, we believe Watson was read-
ing from Cayley [6] where the names of Cockle and Harley
are linked [6, p. 311].

Permutations of the suffixes give rise to 24 expressions,
which may be denoted by 3 * x,%s, where r and s run
through the values 1, 2, 3, 4, 5 with r # s. The choice of the
signs is most simply exhibited diagrammatically, with each
of the 24 expressions represented by a separate diagram.
If you turn to the second page of your sheets, you will see
the 24 pentagrams with vertices numbered 1, 2, 3, 4, 5 in

all possible orders (there is no loss of generality in taking
the number 1 in a special place) and the rule for determi-
nation of signs is that terms associated with adjacent ver-
tices are assigned + signs, while those associated with op-
posite vertices are assigned — signs.

Now the pentagrams in the third and fourth columns are
the optical images in a vertical line of the corresponding
pentagrams in the first and second columns, and since
proximity and oppositeness are invariant for the operation
of taking an optical image, the number of distinct values of
¢ is reduced from 24 to 12.

Further, the pentagrams in the second column are de-
rived from those in the first column by changing adjacent
vertices into opposite vertices, and vice versa, so that the
values of ¢ arising from pentagrams in the second column
are minus the values of ¢ arising from the corresponding
pentagrams in the first column. It follows that the number
of distinct values of ¢? is not 12 but 6, and so our resolvent
has now been reduced to a sextic equation in ¢?, with co-
efficients which are rational functions of the coefficients of
the quintic, and a sextic equation is a decided improvement
on an equation of degree 120, or even on one of degree 24.

Let a = (12345) € S5 and b = (25)(34) € S, so that a° =
b2 = e and bab = a*. As ad; = ¢, and b, = ¢, we have
stabs (1) = (a, bla® = b2 = ¢, bab = a*) = Ds,

so that
stabs, (¢1)| = 10.

On the other hand, the first two columns of Watson’s pen-
tagram table show that

lorbsy(¢hp)] = 12.
Hence, by the orbit-stabilizer theorem, we see that
stabs(¢1)] = 10, |orbs,(¢1)| = 12
and thus
stabg(¢1) = (@, bla® = b2 = e, bab = a*) = Ds.

Nowletc = (2345),s0 that c2=b.As  ad? = ¢% and cdi
= (ﬁ, we have

stabs (1) 2 (a, cla® = ¢® = ¢, ¢ lac = a®) = Fy,

so that {stabs5(¢%)\ = 20. From the first column of the pen-
tagram table, we have

lorbs(¢D)| = 6.
Hence, by the orbit-stabilizer theorem, we deduce that
stabsy(#D)] = 20, Jorbsy(¢D)] = 6,
and thus
stabs5(¢%) = {a, cla® = ¢* = ¢, ¢ lac = a®) = Fy.

It is, however, possible to effect a further simplification;
it is not, in general, possible to construct a resolvent equa-
tion of degree less than 6, but it is possible to construct a
sextic resolvent equation in which two of the coefficients
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are zero. We succeeded in constructing a sextic in ¢? be-
cause the 12 values of ¢ could be grouped in pairs with the
members of each pair numerically equal but opposite in
sign; but a different grouping is also possible, namely a se-
lection of one member from each of the six pairs so as to
form a sestet in which the sum of the members is zero, and
it is evident that those members which have not been se-
lected also form a sestet in which the sum of the members
is zero; one of these sestets is represented by the penta-
grams in the first column, the other by the pentagrams in
the second column.

A sestet is a set of six objects.

Denote the values of ¢ represented by the pentagrams
in the first column by ¢1, ¢, . . ., ¢4, and let

$T+ ¢+ -+ $§=E,

It is then not difficult to verify that an interchange of any
pair of &1, x», . . . , 5 changes the sign of E, when 7 is odd,
but leaves it unaltered in value when 7 is even.

By looking at the first column of the pentagram table we
see that the even permutations (234), (243), (354), (235),
(24)(35) send ¢y to po, B3, da, b5, dg, Tespectively. We next
show that an odd permutation o cannot send ¢; to ¢; for
any i and j. Suppose that o($;) = ¢;. By the above re-
marks ¢; = 0@ for some 6 € A, and ¢; = pd; for some
p € As. Hence

(o)1 = (po)d; = pd; = ¢y,
so that
paf e stab55¢1 = D5 C As.

Hence o € A, which is a contradiction. Now

{o(¢D), . . ., o(de)} C orbgy, |orbg | = 12,
and
{o(dn), ..., o(de)) N{dy, ..., d6) =T,
so that
{o(d1), ..., o(de)l ={—1, ..., —¢s).

Thus if T € Sy is a transposition,

E) = (1 + - + ¢6)

=(—d) + -+ (=) = (-1) E,.
It is now evident that each of the 10 expressions x,, — x,
(m,n=1,2,3,4,5; m <n)is a factor of E, whenever r is
an odd integer.

Clearly E, € Z[xy, . . ., x5] and so can be regarded as a

polynomial in x, with coefficients in Z[xs, . . ., xs]. Di-
viding E, by x, — 29, we obtain

E,=(x —x)q(xs, ..., 25) + 1r(xs, ..., x5),
where

Qq(x2, . .., 25), r(Xs, . .., 25) E Z[xs, . . ., x5).
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If ris odd, the transposition (12) changes the above equa-
tion to

_E‘r = (.’I/'g - xl)q(xlv X3, Xa, .T5) + /r(xli X3, Xy, x5)'
Adding these two equations, we obtain

0 = (@1 — x2)(g(2, a3, T4, T5) — q(X1, T3, T4, T5))
+ T(xg, X3, X4, x5) + T(xly Xs, X4, x5)'

Taking x| = xo we deduce that
r(X2, X3, X4, 25) = 0.
Hence

E, = (x1 — 22)q(x, . . ., x5).

Thus x1 — x3 divides E,. Similarly x.,, — x, divides E, for
m,n=1,2 3,4,5 m <n. Hence

H (xm - xn)

lsm<n=<5

divides E, when r is an odd integer.

Now the degrees of E; and FEj in the &’s are respectively 2
and 6, and so, since these numbers are less than 10, both
E, and E5 must be identically zero, while E5 must be a con-
stant multiple of

(@1 — x2)(x1 — x3) + - - (3 — X5)(4 — @5).

On the other hand, S,, Sy, and Sg are symmetric functions
of the x’s, and are consequently expressible as rational
functions of the coefficients in the standard form of the
quintic.

These properties ensure that the polynomial

(¢ = )P~ d2) - - - (¢~ o)

has coefficients in Q or Q(VD), where D is the discrim-
inant of the quintic, with the coefficients of ¢° and ¢
equal to zero.

Apart from the graphical representation by pentagrams
(which, as the White Knight would say, is my own inven-
tion), all of the analysis which I have just been describing
was familiar to Cayley in 1861; and he thereupon set about
the construction of the sextic resolvent whose roots are
&1, b2, . . ., ¢ The result which he obtained was the equa-
tion

(0) ab¢® — 100Ka’d? + 2000LaZ¢?
— 800a24V/5A + 40000M = 0

in which the values of K, L, M in terms of the coefficients
of the quintic are those given on the first sheet, while A is
the discriminant of the quintic in its standard form, that is
to say, it is the product of the squared differences of the
roots of the quintic multiplied by a®/3125. Its value, in terms
of the coefficients occupies the lower half of the first sheet.

The work of Cayley to which Watson refers is contained
in [6], where on pages 313 and 314 Cayley introduces the



pentagrams described by Watson. Note that the usual dis-
criminant D of the quintic is [26, p. 205]

as(xl - xg)z(xl - .%‘3)2 v (.1'4 - 1‘5)2 = 3125A = B9A.

There is no obvious way of constructing any simpler re-
solvent and so it is only natural to ask “Where do we go
from here?” It seems fruitless to attempt to obtain an al-
gebraic solution of the general sextic equation; for, if we
could solve the general sextic equation algebraically, we
could solve the general quintic equation by the insertion of
a factor of the first degree, so as to convert it into a sextic
equation. In this connection I may mention rather a feeble
joke which was once perpetrated by Ramanujan. He sent
to the Journal of the Indian Mathematical Society as a
problem for solution:

Prove that the roots of the equation

B-Prat+2w-1=0

can be expressed in terms of radicals.

This problem is the first part of Question 699 in [38]. It
can be found in [40, p. 331]. A solution was given by Wat-
son in [49]. It seems inappropriate to refer to this prob-
lem as a “feeble joke.”

Some years later I received rather a pathetic letter from
a mathematician, who was anxious to produce something
worth publication, saying that he had noticed that x + 1
was a factor of the expression on the left, and that he
wanted to reduce the equation still further, but did not see
how to do so. My reply to his letter was that the quintic
eQuation

2 —xt+ 3 —-222+3xr-1=0

was satisfied by the standard singular modulus associated
with the elliptic functions for which the period iK'/K was
equal to V =79, and consequently it was an Abelian quin-
tic, and therefore it could be solved by radicals; and I told
him where he would find the solution in print. I do not
know why Ramanujan inserted the factor x + 1; it may
have been an attempt at frivolity, or it may have been a
desire to propose an equation in which the coefficients
were as small as possible, or it may have been a combi-
nation of the two.

On pages 263 and 300 in his second Notebook [39], Ra-
manujan indicates that 2Y*Grg is a root of the quintic
equation x® — xt + 2% — 222 + 3x — 1 = 0; see [1, Part V,
p. 193]. For a positive integer n, Ramanujan defined G,
by

G =27 LV —m),

where, for any z =x + iy € C with y > 0, Weber’s class
invariant f(2) [67, Vol. 3, p. 114] is defined in terms of the
Dedekind eta function

77(2) = e%’iz/lz H (1 — eZm'mz)
m=1

by

o~ mil2a ,,’(_z‘;_l))

@ )

A result equivalent to Ramanujan’s assertion was first
proved by Russell [42] and later by Watson [53]; see also
[64]. The solution of this quintic in radicals is given in
[49]. In [38], Ramanujan also posed the problem of find-
ing the roots of another sextic polynomial which factors
into x — 1 and a quintic satisfied by Gy7. For additional
comments and references about this problem, see [4] and
[40, pp. 400-401]. Both Weber and Ramanujan calculated
over 100 class invariants, but for different reasons. Class
invariants generate Hilbert class fields, one of Weber's
primary interests. Ramanujan used class invariants to
calculate explicitly certain continued fractions and prod-
ucts of theta functions.

After this digression, let us return to the sextic resol-
vent; it is the key to the solution of the quintic in terms of
radicals, provided that such a key exists. It is pbssible, by
accident as it were, for the sextic resolvent to have a so-
lution for which ¢? is rational, and the corresponding value
of ¢ is of the form pV5BA, where p is rational. A knowledge
of such a value of ¢ proves to be sufficient to enable us to
express all the roots of the quintic in terms of radicals. In
fact, when this happy accident occurs, the quintic is
Abelian, and when it does not occur, the quintic is not
Abelian.

If ¢2 € Q it is clear from the resolvent sextic that ¢ =
p\@g Jor some p € Q. We are not aware of any rigorous
direct proof in the classical literature of the equivalence
of ¢2 € Q to the original quintic being solvable.

This is as far as Cayley went; he was presumably not in-
terested in the somewhat laborious task of completing the
details of the solution of the quintic after the determina-
tion of a root of his sextic resolvent.

The details of the solution of an Abelian quintic were
worked out nearly a quarter of a century later by a con-
temporary of Cayley, namely George Paxton Young. I shall
not describe Young as a mathematician whose name has
been almost forgotten, because he was not in fact a pro-
fessional mathematician at all. The few details of his ca-
reer that are known to me are to be found in Poggendorf’s
biographies of authors of scientific papers. He was born in
1819, graduated M.A. at Edinburgh, and was subsequently
Professor of Logic and Metaphysics at Knox College,
Toronto; he was also an Inspector of Schools, and subse-
quently Professor of Logic, Metaphysics and Ethics in the
University of Toronto. He died at Toronto on February 26,
1889. His life was thus almost coextensive with Cayley’s
(born August 16, 1821, died January 26, 1895). Young in the
last decade of his life (and not until then) published a num-
ber of papers on the algebraic solution of equations, in-
cluding three in the American Journal of Mathematics
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which among them contain his method of solving Abelian
quintics.

These are papers [58], [59] and [60].

In style, his papers are the very antithesis of Cayley’s. While
Cayley could not (or at any rate frequently did not) write
grammatical English, he always wrote with extreme clar-
ity, and, when one reads his papers, one cannot fail to be
impressed by the terseness and lucidity of his style, by the
mastery which he exercises over his symbols, and by the
feeling which he succeeds in conveying that, although he
may have frequently suppressed details of calculation, the
reader would experience no real difficulty in filling in the
lacunae, even though such a task might require a good deal
of labour. :

On the other hand, when one is reading Young’s work,
it is difficult to decide what his aims are until one has
reached the end of his work, and then one has to return to
the beginning and read it again in the light of what one has
discovered; his choice of symbols is often unfortunate; in
fact when I am reading his papers, I find it necessary to
make out two lists of the symbols that he is using, one list
of knowns and the other of unknowns; finally, his results
seemed to be obtained by a sheer piece of good fortune,
and not as a consequence of deliberate and systematic
strategy. A comparison of the writings of Cayley and Young
shows a striking contrast between the competent draughts-
manship of the lawyer and pure mathematician on the one
hand and the obscurity of the philosopher on the other.

The rest of my lecture I propose to devote to an account
of a practical method of solving Abelian quintic equations.
The method is in substance the method given by Young,
but I hope that I have succeeded in setting it out in a more
intelligible, systematic and symmetrical manner.

Take the reduced form of the quintic equation

2% + 10023 + 10D2% + 5Ez + F =0,
and suppose that its roots are

Zri1 = OUp + 07Uy + PTug + 0V Uy,
where

w =exp(2mi/b), r=12 34, 0.

Straightforward but somewhat tedious multiplication
shows that the quintic equation with these roots is

28— 523(u1u4 + uguig) — 522(u21u3 + u%ul + u§u4 + uiuz)
+5z(u%ui + u%u?; — U UUGUy — u?uz - u§u4 - ugul
3
— uqugz)
] +ud+uld+ul— Sufusus — Budu us
-~ 5u§u4u2 - 5uiu2u1
+ B ulul 2.2 2.2 2.9y _ o,
wusUs + duguiug + busuius + bugusui) = 0;

and a comparison of these two forms of the quintic yields
four equations from which wuq, us, us, u4 are to be deter-
mined, namely

@) UiUg + ugug = —2C,
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2) u%ug + u%ul + u§u4 + uiug = -2D,
B wiui + udud — wusuzuy — wtus — udug — wdu,

- uiug =FE,
5 5 5 5 _ _ 2. 2
@) ul + w3+ u3 + ug — Sluyug — usuz)(Uius — usy;
- u§u4 + u%ug) = -F.

These coefficients were essentially given by Ramanu-
Jan in his first Notebook [39]; see Berndt [1, Part IV, p. 38].
They also occur in [43].

We next introduce two additional unknowns, 6 and 7,
defined by the equations

5) Uity — Uguz = 26,
(6) u%uz; + u‘?iug - u%ul - u§u4 = 2T,

in which a kind of skew symmetry will be noticed. The nat-
ural procedure is now to determine w4, us, U3, %4 in terms of
6, T'and the coefficients of the reduced quintic by using equa-
tions (1), (2), (6) and (6) only. When this has been done, sub-
stitute the results in (3) and (4), and we have reached the
penultimate stage of our journey by being confronted with
two simultaneous equations in the unknowns 6 and 7.
From (1) and (5) we have

Uy = —C+ 6, usus=—C— 6,
while from (2) and (6) we have
u%ug + uiuz =-D+T, u%ul + u§u4 =-D-T,

and hence it follows that

wiug — ugus = + V(D — T)2 + 4(C — O)XC + 6) =: Ry, say,
wiuy — wdug = = V(D + TR + 4(C + 6)2(C — ) =: Ry, say.

Watson makes use of the identities

2 2 2 P 2
(u21u3 - uguz)z = (uéus + uguz)z - 4(u1u4)2(u2u3),
(usu; — u3us)? = (usug + usug)? — Augus)*(urug).

These last equations enable us to obtain simple expres-
sions for the various combinations of the u’s which occur
in (3) and (4). Thus, in respect of (3), we have
2

2

UTUS * ULU

u?u2= 1U3 - UIU3
UgUs3

with similar expressions for u§u4, u%ul, u?;ug. When we sub-
stitute these values in (3) and perform some quite straight-
forward reductions, we obtain the equation

() C(D2 — T2) + (C% — 62)(C? + 302 — E) = R1R:0.

This shows incidentally that, when 8 and 7 have been de-
termined, the signs of R; and Ry cannot be assumed arbi-
trarily but have to be selected so that R;R; has a uniquely de-
terminate value. The effect of changing the signs of both R,
and R; is merely to interchange u; with u4 and us with us.

The result of rationalising (7) by squaring is the more
formidable equation

(D2 — T2)2 + 2C(D% — T?)(C? + 36%) — 8COX(D? + T?)
(8) +(C?— 62)(C? — 562)2 + 16D6°T + E2(C? — 62)
—2CE(D? — T?%) — 2E(C? — 62)(C? + 362) = 0.



This disposes of (3) for the time being, and we turn to
(4). The formulae which now serve our purpose are

2 N2 2
udus)(u
_ (uiug)( zul),et

5
Ui 5
(ugus)

c.,
with three similar formulae. When these results are inserted
in (4) and the equation so obtained is simplified as much
as possible, we have an equation which I do not propose
to write down, because it would be a little tedious; it has
a sort of family resemblance to (7) in that it is of about the
same degree of complexity and it involves the unknowns 6
and T and the product B;R, rationally.

MAPLE gives the equation as

(D2 — T2Y(DO? + 2CTO + C2D) + 2(C% — 62)(3CDE — T63)
—~RiRy(T + 2CDO + C2T) + (C2 — 62)2(20T6 — F) = 0.

When we substitute for this product R;Rs the value which
is supplied by (7), we obtain an equation which is worth
writing out in full, namely

(DO + CTY(D? — T2) + T(C? — 562)2 — 2CDE9
©) —~ET(C? + 6%) + F(C2 — 62) = 0.

We now have two simultaneous equations, (8) and (9), in
which the only unknowns are 6 and 7. When these equations
have been solved, the values of u,, us, us, u4 are immedi-
ately obtainable from formulae of the type giving 3 in the
form of fifth roots, and our quest will have reached its end.

Watson means that u; can be given as a fifth root of an
expression tnvolving the coefficients of the quintic, R,
and Rs.

An inspection of this pair of equations, however, suggests
that we may still have a formidable task in front of us.

It has to be admitted that, to all intents and purposes,
this task is shirked by Young. In place of (8) and (9), the
equations to which his analysis leads him are modified
forms of (8) and (9). They are obtainable from (8) and (9)
by taking new unknowns in place of 6 and 7, the new un-
knowns ¢ and ¢ being given in terms of our unknowns by
the formulae

T=6t &=u.

Young’s simultaneous equations are cubic-quartic and
quadratic-cubic respectively in ¢ and {. When the original
quintic equation is Abelian, they possess a rational set of
solutions.

Young’s pair of simultaneous equations for t and i are

(D? — t?)? + 20(D% — yt2)(C? + 3¢p) — 8CY(D? + y1?)
+ (C2% = )(C? — B5y)? +16DYAt + E%(C? — )
~ 2CE(D? — %) — 2E(C% — ¢)(C% + 3¢) = 0

and

(D + CHD® — yt?) + (C? — by)*> — 2CDE
— Et(C% + ) + F(C? — ) = 0.

Young goes on to suggest that, in numerical examples,
his pair of simultaneous equations should be solved by in-
spection. He does, in fact, solve the equations by inspec-
tion in each of the numerical examples that he considers,
and, although he says it is possible to eliminate either of
the unknowns in order to obtain a single equation in the
other unknown, he does not work out the eliminant. You
will probably realize that the solution by inspection of a
pair of simultaneous equations of so high a degree is likely
to be an extremely tedious task, and you will not be mis-
taken in your assumption. Consequently Young's investi-
gations have not got the air of finality about them which
could have been desired.

Fortunately, however, the end of the story is implicitly
told in the paper by Cayley on the sextic resolvent which
I have already described to you and which had been pub-
lished over a quarter of a century earlier. It is, in fact, easy
to establish the relations

2120+ —223—
= (X + - —XXz— - -+ ) = a2y,
and also to prove that the”éxpxlession on the left is equal to
S(ujug — U2u3)\/5
so that
106V5 = a2

Watson is using the relation z; = ax; + b (1 € {1, 2, 3, 4,
5}) to obtain the first equality. ‘

With 2, = w™uy + o®uy + 0™us + o*uy (r € {1, 2, 3, 4,
5)) MAPLE gives

e+ —2z— -
= B(uity — usuz)(w — o — ® + w?)
so that
2129 t+ - - —2183 — - -+ = b(uug — u2u3)\/5,
since

0—?— o+ ot =V5.

Consequently, to obtain a value of ¢ which satisfies
Young’s simultaneous equations, all that is necessary is to ob-
tain a root of Cayley’s sextic resolvent; and the determina-
tion of a rational value of ¢? which satisfies Cayley's sextic
resolvent is a perfectly straightforward process, since any
such value of a¢? must be an integer which is a factor of
16000000000 2 when the coefficients in the standard form of
the quintic are integers, and so the number of trials which
have to be made to ascertain the root is definitely limited.

The quantity M is defined on Watson’s sheet 1. The con-
stant term of Cayley’s sextic resolvent (0) is 40000M.

When # has been thus determined, Young’s pair of equa-
tions contain one unknown T only, and there is no diffi-
culty at all in finding the single value of T which satisfies
both of them by a series of trials exactly resembling the set
of trials by which 6 was determined.
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Watson’s method of finding a real root of the solvable
quintic equation:

ax® + 5bx* + 10cx® + 10da® + Bex + f=0
First transform the quintic into reduced form
5 + 10Cx3 + 10Dx2 + bEx + F = 0.

Waison’s step-by-step procedure gives a real root of the re-
duced equation in the form x = u; + ug + ug + ug. The
other four roots of the equation have the form wu, +
0¥y + 0¥us + w¥uy G=1, 2, 3, 4), where o=
exp(2mi/5).

INPUT: C,D,E.F

Step 1. Find a positive integer k such that

k|16 X 108 X M2,
eVkla is a root of (0) fore=1or —1.

Step 2. Determine 0 from

L aVE
10V

Step 3. Put the value of 8 into (7) and (9) and then add
and subtract multiples of these equations as necessary
to determine T.

Step 4. Determine Ry from
R, =V — T2+ 4C — 0%C + 6).

Step 5. Determine Ry from
RiRy = (C(D? — T?) + (C? — 6%)(C? + 362 — E))/6.

Step 6. Determine u, from

X2y \5
w=(z)"

where

X=(-D+T+R)A,
Y=(-D—-T+R)2, Z=-C—0.

Step 7. Determine uy4 from
uuy = —C + 6.
Step 8. Determine ug from
udus = (=D + T — RD/.
Step 9. Determine ug from
ugus = —C — 6.

OUTPUT: A real root of the quintic is x = uy + us +
ug + ug.

The process which I have now described of solving an
Abelian quintic by making use of the work of both Cayley
and Young is a perfectly practical one, and, as I have al-
ready implied, I have used it to solve rather more than 100
Abelian quintics. If any of you would like to attempt the so-
lution of an Abelian quintic, you will find enough informa-
tion about Ramanujan’s quintic given at the foot of the third
sheet to enable you to complete the solution. You may re-
member that I mentioned that the equation was connected
with the elliptic functions for which the period-quotient
was V —79, and you will see the number 79 appearing some-
what unobtrusively in the values which I have quoted for
the u’s.

This is the end of Watson’s lecture. We have made a few
corrections to the text: for example, in one place Watson
wrote “cubic” when he clearly meant “quintic.” Included
in this article are the three handout sheets that he refers
to in his lecture. We conclude with three examples.

Three Examples lllustrating Watson’s Procedure

Example 1.2° - 5x + 12=0
The Galois group of x° — bx + 12 is Ds. Here

Equation (0) is

a=1,b=0c=0,d=0,e=—1, f= 12,
C=0,D=0,E=—-1F=12
K=-~1,L=3 M= -1,

A =5 X212 V/BA = 520.

& + 1004 + 600042 — 256000¢ — 40000 = 0.

Step 1

k —
Step 2

6=
Step 3

T=

Continues on next page
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Examples {continued)

Step 4
R1=% 5+ V5.
Step 5
R2=—%\/5—\/5.
Step 6
V5+V5+V5 ~VE-VB-VE 1
X= 5 , ¥ = 5 ’Z—_W,
- ((\/5+'\/5+\/52(\/5+\/5—\/5))1/5
1= 25 :
Step 7
. ((\/5—\/5+\/5)2(\/5—\/5—\/5)>u5
477 25 :
Step 8
o ((\/'—\/5—\/5)2(—\/5—\/5+\/5))1/5
2= 25 .
Step 9

- ((\/5+ \/5—\/5)2(—\/5+‘\/5+\/5)>1/5
A 25 :

A solution of 2° — bx + 12 = 0is x = uy + ug + ug + uy. This agrees with [43, Example 1].

Example 2. 2% + 152+ 12 =0

The Galois group of x° + 15x + 12 is Fy. Here
a=1b=0c=0d=0e=3,f=12
C=0,D=0E=3 F=12
K=3L1=27M=2T,

A =219 x 3% \/BA = 288V/5.

FEquation (0) is
¢% — 3004 + 5400047 — 230400V5¢ + 1080000 = 0.

Step 1
k = 180.
Step 2
=3
0= 5
Step 3
_5
T= 5"
Step 4
_12v10
Ry = 25

Conlinues on next page
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Examples (continued)

Step 5

Step 6

Step 7

Step 8

Step 9

Equation (0) is

Step 1

Step 2

Step 3

Step 4

Step 5

6V10

R2:"—2E—’.

This agrees with [43, Example 2].

Example 3. x5 — 2523 + 5022 — 25 =0
The Galois group of x° — 25x° + 50x% — 25 4s Z/57. Here

a=1,b=0,¢=-52,d=5,e=0,f=
C=-5/2,D=5FE=0,F=—-25,
K ="75/4, L = 5375/16, M = —30625/64,
A=5"xT72VBA=5XT.

_1546VI0 ,_-15+3VI0 ,_ 3

25

(—75 - 21\/E>1/5
m=\— .

125

125

(—75 + 21\/16>1/5
Uy =\ = .

(225 —72V10 )1/5
Upg=|———| .

125

(225 + 72V'10 )1/5
U =|—m—m———] .

125

k = 625.

R, =V -25+10V5.

Ry =V -25-10V5.

5?

—25,

¢ — 1875¢* + 671875¢% — 35000004 — 19140625 = 0.

Concludes on next page
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Examples (continued)

Step 6
-5+ V-25+10V5 -5+ V-25-10V5 5+ V5
X= ) Y= ’ Z= ’
- 92 2 2
_/X2Y\¥5 25+ 15V5 + 5V —130 — 58V5
Uy =~ = .
Z2 4
Step 7
_25+15V5 -5V 130 - 58V5
4 4 .
Step 8
_ 25 -15V5 + 5V —130 + 58V5
Ug = .
4
Step 9
25— 15V5 — 5V —130 + 58V5
Uz = .
4
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