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Abstract

Simple congruence conditions are proved which ensure that the quintic

5

equation x° + ax + b =0, where a and b are nonzero integers, is not

solvable by radicals. For example, it is shown that if a =1 (mod 2) and

b = 2 (mod 4), then x5 +ax + b = 0 is not solvable by radicals.

5

Let a and b be nonzero integers such that x° +ax +b e Z[x] is

irreducible. In this note we are concerned with the insolvability of the
quintic equation

X’ +ax+b=0 (@)

by radicals. In 1942, Bhalotra and Chowla [2] [3, pp. 529-531] gave the
following three theorems.

Theorem A. If a = b = 1 (mod 2), then (1) is not solvable by radicals.

Theorem B. If a =1 (mod 2) and a is not divisible by any prime
= 3 (mod 4), then (1) is not solvable by radicals.
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Theorem C. If ais a prime # 1 (mod 5) and (a, b) = 1, then (1) is not

solvable by radicals.

Theorem B is mentioned in the obituary of Chowla by Ayoub, Huard
and Williams [1]. Unfortunately Theorem B is not correct [3, p. A3] as
shown by the example

x5—5x+12=0,

which has the solution in radicals
_1( 15 . pi5 1/5 5 )
x = E(Rl,l + RL 1+ R—l,l_ +R_1) _1},

where R, ; (g, 8 = +1) is given by

R, 5 = 625(- 5+ 2eV5) + 63—;5(2\/100 —£20v5 — 7100 + £20v5 )

see [4, p. 399], [6, p. 990]. In this note we correct Theorem B (see Theorem
1) and prove three results similar to Theorems A, B, C (see Theorems 2, 3,
4). We make use of the following two results.

Proposition 1 ([2, p. 110], [3, p. 529], [4, p. 389], [6, p. 988]). The
equation (1) is solvable by radicals if and only if the equation

% + 8ax® + 40a%x* +160a%c> + 400a%x? + (5124° - 31256 ) x
+(256a% - 9375ab%) = 0 2
has an integral root.

Proposition 2 [6, p. 987]. The equation (1) is solvable by radicals if
and only if there exist rational numbers g(= £1), c(> 0) and e(+ 0) such

that

5¢*(3 — 4ec) - 4€5(11¢ + 2¢)
a=>""—2, b=— 7% 3)
c“+1 c’+1

We begin by correcting Theorem B.

Theorem 1. If
. a>0, a=1(mod2), p(prime)|a = p # 3 (mod 4),

then (1) is not solvable by radicals.



INSOLVABLE QUINTICS x° + ax + b 211

Proof. As a is odd and the primes dividing a are # 3 (mod 4), all the
primes dividing @ must be = 1 (mod 4). Hence

a = +(4t; +1)--- (42, + 1),
where each 4¢; +1 is a prime. As a > 0 the + sign must hold so that

a = (4t +1)---(4t, +1) “@

and
=1 (mod 4). 6))

Suppose that (1) is solvable by radicals. Then, by Proposition 1, there
exists an integer r such that

r + 2a)*(r® + 16a2) - 5°b*(r + 3a) = 0. (6)
Set
z=r+3aeZ. @)

From (6) and (7) we deduce that
(= - a)*((z - 3a)® +16a?) = 55b%z. (8)

Clearly from (8) we deduce that
z > 0. 9

Also from (8) we see that
z | 25a5. (10)

From (4) and (10) we conclude that 2 is odd and divisible only by primes
=1 (mod 4). Thus, by (9), we have

z =1 (mod 4). 11
Hence, by (5) and (11), we have
(z - 3a)® + 1602 = 4 (mod 16)
so that

vo((z - 3a)® +16a2) = 2. (12)



212 BLAIR K. SPEARMAN and KENNETH S. WILLIAMS

From (8) we see that
4vg(z — a) + va((z - 3a)? +16a2) = 4vy(b)
so that
va((z = 3a)? +16a%) = 0 (mod 4),

which contradicts (12). Hence (1) is not solvable by radicals.

Our next result is an extension of Theorem A. Theorem A itself is

actually very easy to prove using Galois theory. For a = b = 1 (mod 2), we
have

P rax+b=x +x+1=(x%+x+1)(x3+ 2% +1) (mod 2),

and since xZ +x+1 and x% + x% +1 are both irreducible (mod2) the

Galois group of x® + ax + b is the symmetric group Sy, and so (1) is not
solvable by radicals. To prove our extension of Theorem A, we make use

of Proposition 2.
Theorem 2. If a =1 (mod2) and b =2 (mod4), then (1) is not
solvable by radicals.

Proof. Suppose that (1) is solvable by radicals. Then, by Proposition
2, there exist rational numbers g(= £1), ¢(> 0) and e(# 0) such that

- 5¢(3 — 4ec) _ = 4e5(11¢ + 2¢)

2 +1 ’ ?+1 ' (13
Set
e=rls, c¢=m/n, (14)
where r, s, m, n are integers satisfying
r#0, s>0, (r,s)=1, (15)

and

m=20, n>0, (mn)=1 (16)
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Substituting (14) into (13), we obtain

_ 5r*(Bn —4em)n

a7
st(m? + n?)
and
!
b - 4r5(11§n + zm)n . 18)
s’(m* + n®)

We note that 3n —4em # 0 as a # 0 and 1len+2m # 0 as b # 0. As
a =1 (mod2) and b = 2 (mod 4) we obtain from (17) and (18)

4vg(r) + vo(8n — 4em) + vy(n) — 4vg(s) - ve(m? +n?) =0, (19)

2 + 5vy(r) + vo(11en + 2m) + vy(n) — Hvg(s) - ve(m? +n2)=1. (20)

We consider nine cases as follows:

Case va(s)  va(n)
)] 0
(>i1) 1 0
(1i1) 1 1
(iv) 1 2
) 1 >3
(vi) > 2 0
(vii) > 2 1
(viii) > 2 2
(ix) > 2 >3

Case (i): In this case we have vy(s) = 0 so that (19) and (20) become
4vq(r) + v9(3n — 4em) + vg(n) - ve(m? +n?) =0, (21)

5u5(r) + vg(1len + 2m) + ve(n) — vg(m? +n?) = -1. (22)
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We consider three subcases.

Subcase (a): vg(m)=vy(n)=0. Here vy(3n—4em)=0 and ve(m? +n?)
=1, and (21) gives
(multiple of 4) + 0+ 0 -1 =0,

a contradiction.

Subcase (b): vo(m)=1, vy(n)=0. Here vg(llen+2m)=0, ve(m? +n?)
=0 and (22) gives
(0)+0+0-0=-1,

a contradiction.

Subcase (c): vy(m)=0, vy(n)>1. Here vg(3n—4em)=1, vg(m? +n?)
=0 and (21) gives
0)+(E=1)+(=1)-0=0,

a contradiction.
Thus Case (i) cannot occur.

Case (ii): In this case we have
va(s) =1, va(n) =0, va(r) =0,
ve(3n — 4em) = 0, vg(m% +n?)=0or1,

and (19) becomes
0+0+0-4-(0orl)=0,

which is impossible. Thus Case (ii) cannot occur.
Cas> (iii): In this case we have
va(s) =1, vg(n) =1, vy(r) =0, va(m) =0,
va(3n — 4em) = 1, vy(m? + n%) =0,
and (19) becomes
0+1+1-4-0=0,

which is impossible. Thus Case (iii) cannot occur.
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Case (iv): In this case we have
va(s) =1, ve(n)=2, ve(r)=0, ve(m)=0,
ve(m? +n?) =0, vy(3n —4em) > 3,

and (19) gives
0+(=3)+2-4-0=0,

which is impossible. Thus Case (iv) cannot occur.
Case (v): In this case we have
va(s) =1, vg(n) >3, ve(r)=0, vy(m)=0,
va(m? +n%) =0, vy(3n —4em) =2,
and (19) gives
0+2+(>3)-4-0=0,
which is impossible. Thus Case (v) cannot occur.
Case (vi): In this case we have
ve(s) > 2, ve(n) =0, ve(r) =0,
ve(3n — 4em) = 0, vy(m? +n?)=0or1,
and (19) becomes
0+0+0-(=8)-(0orl) =0,
which is impossible. Thus Case (vi) cannot occur.
Case (vii): In this case we have
va(s) = 2, ve(n) =1, ve(r)=0, vy(m)=0,
ve(3n — 4em) =1, ve(m? + n?) =0,

and (19) becomes
0+1+1-(>8)-0=0,

which is impossible. Thus Case (vii) cannot occur.
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Case (viii): In this case we have
va(s) 2 2, va(n) =2, va(r) =0, vy(m)=0,
vy(llen + 2m) = 1, vg(m? +n?) =0,

and (20) becomes

2+0+1+2-(>10)-0=1,
which is impossible. Thus Case (viii) cannot occur.
Case (ix): In this case we have
vg(s) = 2, vy(n) =3, ve(r)=0, vy(m)=0,
ve(3n — 4em) = 2, vp(llen + 2m) =1, ve(m? + n?) =0,

and (19) and (20) give

0+ 2+ vg(n) — 4vy(s) -0 = 0,
2+ 0+1+uvy(n)—5ve(s)—0=1,

so that
vg(n) — 4vg(s) = -2,
{vz(n) — bug(s) = -2.
Hence
ve(n) = =2, vg(s) =0,
contradicting

vg(n) = 3, vg(s) = 2.
Hence all nine cases cannot occur and the theorem is proved.
Theorem 3. If p is a prime = 3 (mod 4) such that
pla plb or p?|la p®|b or p*|a p*lb, (23

then (1) is not solvable by radicals.
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Proof. Suppose that (1) is solvable by radicals. Then, by Proposition
2, there exist rational numbers g(= +1), ¢(> 0), e(# 0), such that

4
q = e (3 — 4ec)

_ —4e%(11e + 2¢)
?+1

, b
41

(29

If ¢ = 0, then
a =15¢e*, b = —44eed. (25)

As a is an integer, from (25) we see that e must be an integer. Further, as
a # 0, we must have e # 0. If p | e, then v,(a) > 4, contradicting vp(a)

=1,2 or 3. Hence p [ e. Since p|a =15¢* and p | e, we must have

p|15. But p=3(mod4) so p=3. Thus v,(a)=v3(a)=1 and so
vp(b) = v3(b) 2 2. Clearly 3 | b = —44ee®, a contradiction. Hence ¢ > 1.

Set ¢ = m/n and e = r/s, where m, n, r, s are integers with m > 0,

n>0,r#0,s>0 and (m, n)=(r, s) =1. Thus

vp(m) =0 or v,(n)=0
and
vp(r) =0 or vy(s) = 0.

From (24), we obtain
(m? +n?)as? = ~5r*(4em - 3n)n, (26)
(m?% + n?)bs® = —4er®(2em + 11n)n. 27

Clearly from (26) and (27) we see that 4em — 3n # 0 and 2em + 11n # 0.
Now p = 3(mod 4) and ged(m, n) = 1, so that

vp(m,2 +n?)=0. (28)
From (26)-(28), we obtain
vp(@) + dvp(s) = 4v,(r) + v, (4em - 3n) + vp(n), (29)

vp(b) + 5v,(s) = 5up(r) + v, (2em + 11n) + vp(n). (30)
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We consider two cases:
@ vy(n) = 0,
(i) v,(m) = 0, vp(n) 2 1.
Case (i): In this case (29) and (30) become
vp(@) + 4vp(s) = 4v,(r) + v, (4em — 3n), 31
vp(b) + 5v,(s) = 5u,(r) + vy(2em + 11n). (32)

If v,(4em - 3n) = 0, then (31) gives 4 | vy(a) contradicting v,(a) = 1, 2

or 3. Thus v,(4em - 3n) > 1. From

2(2em + 11n) = (4em — 3n) + 25n,
we deduce that v,(2em +11n) = 0. Hence (32) gives

vp(b) + 5uy(s) = 5up(r).
If v,(r) =0, then v,(b) = 0, contradicting v,(b) > 2. If v,(r) 21, then
vp(s) = 0 and (31) gives
vp(@) = 4v,(r) + v,(4em - 3n) > (4x1) +1 = 5,
contradicting v,(a) =1, 2 or 3.
Case (ii): In this case we have

vp(4em —3n) = v,(2em +11n) = 0
so that (29) and (30) become

vp(@) + 4vp(s) = 4v,(r) + v, (n), (33)

vp () + 5vp(s) = 5uy(r) + vp(n). (34)

If vy(r)=vp(s)=0, then (33) and (34) give wvp(a)=v,(b), a
contradiction. If v,(r) 21, v,(s) =0, then (33) gives v,(a) = 4v,(r)
+v,(1) 2 (4 x1) +1 = 5, a contradiction. If v,(r) = 0, v,(s) 2 1, then (33)
and (34) give
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vp(@) + 4vp(s) = vy(n) = vy(b) + 5up(s)
S0
vp(a@)—vy(d) = vy(s) 21
giving
vp(a) > v, (b),
a contradiction.

Hence neither Case (i) nor Case (ii) can occur and this completes the
proof that (1) is not solvable by radicals.

Theorem 4. If b | a, then (1) is not solvable by radicals.

Proof. Suppose that (1) is solvable by radicals. Then, by Proposition
2, there exist rational numbers g(= +1), ¢(> 0), and e(# 0) such that

. 5¢(3 — 4ec) _ —4e°(11e + 2)

2 +1 ° 2 +1 35)
Set
c=m/n, m>0, n>0, (m,n)=1, (36)
and
e=rfs, r#0, s>0, (r,s)=1. 37
Further, as b | a, we have
a = bk, (38)
for some integer k& # 0. From (35)-(38), we obtain
a=5£;(3n;4emz)n =_4k§(llsr;+2n;)n. 39)
s* m°+n s m® +n

As a # 0, we have 3n —4em # 0 and 11len + 2m # 0. Solving (39) for s,

we obtain

sz_ikrllsn+2m. (40)
5 3n —4em
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Putting this value of s back into (39), we deduce

3 5°(3n — 4em)°n
28k4(11en + 2m)*(m? + n?)

55(3n — 4em)’r

> L = 27ak*(11en + 2m) (m? + n?)

is an integer, we have 2 | 55(3n — 4am)5n, so that

2.| n.
Next we show that

(11en + 2m, 3n — 4em) = 2°5P,

for nonnegative integers o and f. This follows from the identities

2¢(11en + 2m) + (3n — 4em) = 25n,
3(11en + 2m) — 11g(3n — 4em) = 50m,
as (m, n) =1.
Further, we show that
(m2 +n2 3n-— 4gm) = 57,
for a nonnegative integer y. This follows from the identities
9(m? + n?) - (3n — 4em) (3n + 4em) = 25m?,
16(m? + n2) + (3n — 4em) (3n + 4em) = 2512,
as (m, n) = 1.

Moreover,
(m?+n% n)=1
and
(len + 2m, n) =1 or 2

as (m, n) = 1.

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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From (41) we see that

55(3n — 4em)°n

= 28k
(11en + 2m)*(m? + n?)

is an integer. Hence, in view of (43), (46), (49), (50), we must have
|1len + 2m | = 2“5°, m? + n? = 5%, (51)
for nonnegative integers u, v, w. We now consider two cases:
@A) 4v+w > 5,
(i) 4v+w < 5.

Case (i): 4v + w > 5. In this case at least one of v and w is positive so
that either 5|1len+2m or 5| m2 + n2. By (49) and (50) both
possibilities imply that

5| n. (52)

Hence, as 5°%| (11en + 2m)*(m? + n?) (since 4v+w > 6) and a is an

integer, by (41) we must have

5| 3n — 4em. (53)

Then, by (45), we deduce that

5|11len + 2m. (54)

Hence, by (51) and (54), we have
v > 0. (55)

We show next that w < 3. Suppose on the contrary that w > 3, so that,

by (51), we have 5% | m? + n2. From the identity
4(m? + n?) + (11en + 2m)(11en — 2m) = 12512, (56)
we deduce that

53 | A1en + 2m)(11en — 2m). (57)



222 BLAIR K. SPEARMAN and KENNETH S. WILLIAMS
As (m, n) =1 and 5 | 11en + 2m, we have 5 | 11len — 2m, so that by (57),
we have

5% || 11en + 2m, (58)

that is, by (51),
v =3. 59)
From (52), (58) and the identity

(8n — 4em) + 2¢(11en + 2m) = 25n,

we deduce that
52 || 3n - 4em. (60)

Then, by (41), (51), (52), (59), (60) we see that

vs(a@)=3-w-4vs(k) <3-w <0,
as w > 4, a contradiction. Hence w < 3.

Case (ii): 4v + w < 5. In this case we have
w<4v+w <5,

Thus in both cases we have w < 5. We examine the possibilities
w=0,1, 2, 3, 4, 5 individually.

2

w=0. Here m?> +n® =1. As m >0 and 2|n we have (m, n)=

(1, 0), contradicting n > 0.

2

w=1. Here m2 + n? = 5. As m >0,n >0 and 2| n we have (m, n)

= (1, 2). Then, by (51), we have

24, if e =1,
25" =|1len + 2m | = | 228 + 2| ={
20, if € = -1,
55
so that e = -1, u =2, v=1. Hence, from (41), we have a = ——,
210k4

which is not an integer for any integer &, a contradiction.
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w=2. Here m? + n? = 5% In view of (36) and (42) we have (m, n) =

(3, 4). Then, by (51), we have

50, if €

1’

2usY :|11£n+2m|:|448+6|={

38, if ¢ = -1,

so that e=1, wu=1 v=2 Thus 3n-4em =0, so that a =0, a

contradiction.

w =3. Here m% + n? = 53. In view of (36) and (42) we have (m, n) =
(11, 2). Then, by (51), we have
44 if € =1,

25" = |1len + 2m | = |228+22|={
0, if e = -1,

a contradiction.

w=4. Here m? + n? = 5% In view of (36) and (42) we have (m, n) =
(7, 24). Then, by (51), we have
278,if £ =1,

2u5Y :|11£n+2m|=|264e+14|:{
250, 1if e =1,

so that € = -1, u =1, v = 3. Then, by (41), we have a = %, which is
5k

not an integer for any integer &, a contradiction.
w =5. Here m? + n? = 55, In view of (36) and (42) we have (m, n) =

(41, 38). Then, by (51), we have

500, if € =1,
2"5Y =|1len + 2m | = | 418¢ + 82| =
336, if € = -1,
-19 .
sothat e =1, u =2, v=3. Then, by (41), we have ¢ = —————, which
910524

is not an integer for any k, a contradiction.

This completes the proof of Theorem 4.
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We close with some examples. The second column of the Table
indicates the theorem (Theorems 1, 2, 3 or 4), which applies to the

polynomial x® + ax + b in the first column to ensure that the equation

x® + ax + b = 0 is insolvable by radicals. The third column gives the

Galois group of the polynomial x% + ax + b.

Table. Quintic trinomials x% + ax + b for which the quintic equation

x% + ax + b = 0 is insolvable by radicals.

x3 +ax+b Theorem Gal(x® + ax + b)
x% +145x + 232 Theorem 1 Ay
x + 239x + 956 Theorem 1 A
x5 + 545x + 872 Theorem 1 As

X0 +5x+1 Theorem 1 Sy

x5 +130x + 4 Theorem 1 Sy

x% +x+10 Theorem 2 Sy

x> +3x+6 Theorem 2 Sy

x®+3x+9 Theorem 3 Sy
x5 — 49x + 686 Theorem 3 Sy
x5 - 54x + 162 Theorem 3 Sy

x% +3x+3 Theorem 4 Sy

x% +72x - 36 Theorem 4 Sp




INSOLVABLE QUINTICS x° + ax + b 225

References

[1] R. G. Ayoub, J. G. Huard and K. S. Williams, Sarvadaman Chowla (1907-1995),
Notices Amer. Math. Soc. 45 (1998), 594-598.

[2] Y. Bhalotra and S. Chowla, Some theorem$ concerning quintics insoluble by
radicals, Math. Student 10 (1942), 110-112.

[3] S. Chowla, The Collected Papers of Sarvadaman Chowla, Vol. II, 1936-1961, Centre
de Recherches Mathématiques, Montréal, Canada, 1999.

[4] D.S. Dummit, Solving solvable quintics, Math. Comp. 57 (1991), 387-401.

[5] S. Kobayashi and H. Nakagawa, Resolution of solvable quintic equation, Math.
Japon. 37 (1992), 883-886.

[6] B. K. Spearman and K. S. Williams, Characterization of solvable quintics

x% 4+ ax + b, Amer. Math. Monthly 101 (1994), 986-992.

Department of Mathematics and Statistics
Okanagan University College

Kelowna, B.C.

Canada V1V 1V7

e-mail: bkspearm@okuc02.0kanagan.bc.ca

Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics

Carleton University

Ottawa, Ontario

Canada K1S 5B6

e-mail: williams@math.carleton.ca



