CONDITIONS FOR THE INSOLVABILITY OF THE QUINTIC EQUATION $x^5 + ax + b = 0$

BLAIR K. SPEARMAN and KENNETH S. WILLIAMS

Dedicated to the memory of Sarvadaman Chowla (1907-1995)

(Received October 21, 2000)

Submitted by K. K. Azad

Abstract

Simple congruence conditions are proved which ensure that the quintic equation $x^5 + ax + b = 0$, where a and b are nonzero integers, is not solvable by radicals. For example, it is shown that if $a \equiv 1 \pmod{2}$ and $b \equiv 2 \pmod{4}$, then $x^5 + ax + b = 0$ is not solvable by radicals.

Let a and b be nonzero integers such that $x^5 + ax + b \in \mathbb{Z}[x]$ is irreducible. In this note we are concerned with the insolvability of the quintic equation

$$x^5 + ax + b = 0 \tag{1}$$

by radicals. In 1942, Bhalotra and Chowla [2] [3, pp. 529-531] gave the following three theorems.

Theorem A. If $a \equiv b \equiv 1 \pmod{2}$, then (1) is not solvable by radicals.

Theorem B. If $a \equiv 1 \pmod{2}$ and a is not divisible by any prime $\equiv 3 \pmod{4}$, then (1) is not solvable by radicals.

2000 Mathematics Subject Classification: 12E05, 12E10.

Key words and phrases: quintic equations, insolvability by radicals.

© 2001 Pushpa Publishing House

Theorem C. If a is a prime $\not\equiv 1 \pmod{5}$ and (a, b) = 1, then (1) is not solvable by radicals.

Theorem B is mentioned in the obituary of Chowla by Ayoub, Huard and Williams [1]. Unfortunately Theorem B is not correct [3, p. A3] as shown by the example

$$x^5 - 5x + 12 = 0.$$

which has the solution in radicals

$$x = \frac{1}{5} \left(R_{1, 1}^{1/5} + R_{1, -1}^{1/5} + R_{-1, 1}^{1/5} + R_{-1, -1}^{1/5} \right),\,$$

where $R_{\varepsilon, \delta}$ ($\varepsilon, \delta = \pm 1$) is given by

$$R_{\epsilon, \delta} = 625(-5 + 2\epsilon\sqrt{5}) + \delta \frac{375}{2} \left(2\sqrt{100 - \epsilon 20\sqrt{5}} - \epsilon\sqrt{100 + \epsilon 20\sqrt{5}}\right)$$

see [4, p. 399], [6, p. 990]. In this note we correct Theorem B (see Theorem 1) and prove three results similar to Theorems A, B, C (see Theorems 2, 3, 4). We make use of the following two results.

Proposition 1 ([2, p. 110], [3, p. 529], [4, p. 389], [6, p. 988]). The equation (1) is solvable by radicals if and only if the equation

$$x^{6} + 8ax^{5} + 40a^{2}x^{4} + 160a^{3}x^{3} + 400a^{4}x^{2} + (512a^{5} - 3125b^{4})x + (256a^{6} - 9375ab^{4}) = 0$$
(2)

has an integral root.

Proposition 2 [6, p. 987]. The equation (1) is solvable by radicals if and only if there exist rational numbers $\epsilon(=\pm 1)$, $c(\geq 0)$ and $e(\neq 0)$ such that

$$a = \frac{5e^4(3 - 4\varepsilon c)}{c^2 + 1}, \qquad b = \frac{-4e^5(11\varepsilon + 2c)}{c^2 + 1}.$$
 (3)

We begin by correcting Theorem B.

Theorem 1. If

$$a > 0$$
, $a \equiv 1 \pmod{2}$, $p(prime) \mid a \Rightarrow p \not\equiv 3 \pmod{4}$,

then (1) is not solvable by radicals.

INSOLVABLE QUINTICS
$$x^5 + ax + b$$
 211

Proof. As a is odd and the primes dividing a are $\not\equiv 3 \pmod 4$, all the primes dividing a must be $\equiv 1 \pmod 4$. Hence

$$a = \pm (4t_1 + 1) \cdots (4t_n + 1),$$

where each $\,4t_i$ + 1 is a prime. As $\,\alpha>0\,$ the + sign must hold so that

$$\alpha = (4t_1 + 1)\cdots(4t_n + 1) \tag{4}$$

and

$$a \equiv 1 \pmod{4}. \tag{5}$$

Suppose that (1) is solvable by radicals. Then, by Proposition 1, there exists an integer r such that

$$(r+2a)^4(r^2+16a^2)-5^5b^4(r+3a)=0. (6)$$

Set

$$z = r + 3a \in \mathbb{Z}. (7)$$

From (6) and (7) we deduce that

$$(z-a)^4((z-3a)^2+16a^2)=5^5b^4z.$$
 (8)

Clearly from (8) we deduce that

$$z > 0. (9)$$

Also from (8) we see that

$$z \mid 25a^6. \tag{10}$$

From (4) and (10) we conclude that z is odd and divisible only by primes $\equiv 1 \pmod{4}$. Thus, by (9), we have

$$z \equiv 1 \pmod{4}. \tag{11}$$

Hence, by (5) and (11), we have

$$(z-3a)^2 + 16a^2 \equiv 4 \pmod{16}$$

so that

$$v_2((z-3a)^2+16a^2)=2.$$
 (12)

From (8) we see that

$$4v_2(z-a) + v_2((z-3a)^2 + 16a^2) = 4v_2(b)$$

so that

212

$$v_2((z-3a)^2+16a^2) \equiv 0 \pmod{4},$$

which contradicts (12). Hence (1) is not solvable by radicals.

Our next result is an extension of Theorem A. Theorem A itself is actually very easy to prove using Galois theory. For $a \equiv b \equiv 1 \pmod 2$, we have

$$x^5 + ax + b \equiv x^5 + x + 1 \equiv (x^2 + x + 1)(x^3 + x^2 + 1) \pmod{2}$$

and since $x^2 + x + 1$ and $x^3 + x^2 + 1$ are both irreducible (mod 2) the Galois group of $x^5 + ax + b$ is the symmetric group S_5 , and so (1) is not solvable by radicals. To prove our extension of Theorem A, we make use of Proposition 2.

Theorem 2. If $a \equiv 1 \pmod{2}$ and $b \equiv 2 \pmod{4}$, then (1) is not solvable by radicals.

Proof. Suppose that (1) is solvable by radicals. Then, by Proposition 2, there exist rational numbers $\varepsilon(=\pm 1)$, $c(\geq 0)$ and $e(\neq 0)$ such that

$$a = \frac{5e^4(3 - 4\varepsilon c)}{c^2 + 1}, \qquad b = \frac{-4e^5(11\varepsilon + 2c)}{c^2 + 1}.$$
 (13)

Set

$$e = r/s, \quad c = m/n, \tag{14}$$

where r, s, m, n are integers satisfying

$$r \neq 0, \quad s > 0, \quad (r, s) = 1,$$
 (15)

and

$$m \ge 0, \quad n > 0, \quad (m, n) = 1.$$
 (16)

INSOLVABLE QUINTICS
$$x^5 + ax + b$$
 213

Substituting (14) into (13), we obtain

$$a = \frac{5r^4(3n - 4\varepsilon m)n}{s^4(m^2 + n^2)}$$
 (17)

and

$$b = \frac{-4r^5(11\varepsilon n + 2m)n}{s^5(m^2 + n^2)}. (18)$$

We note that $3n - 4\varepsilon m \neq 0$ as $\alpha \neq 0$ and $11\varepsilon n + 2m \neq 0$ as $\beta \neq 0$. As $\alpha \equiv 1 \pmod{2}$ and $\beta \equiv 2 \pmod{4}$ we obtain from (17) and (18)

$$4v_2(r) + v_2(3n - 4\varepsilon m) + v_2(n) - 4v_2(s) - v_2(m^2 + n^2) = 0,$$
 (19)

$$2 + 5v_2(r) + v_2(11\varepsilon n + 2m) + v_2(n) - 5v_2(s) - v_2(m^2 + n^2) = 1.$$
 (20)

We consider nine cases as follows:

Case	$v_2(s)$	$v_2(n)$
(i)	0	
(ii)	1	0
(iii)	1	1
(iv)	1	2
(v)	1	≥ 3
(vi)	≥ 2	0
(vii)	≥ 2	1
(viii)	≥ 2	2
(ix)	≥ 2	≥ 3

Case (i): In this case we have $v_2(s) = 0$ so that (19) and (20) become

$$4v_2(r) + v_2(3n - 4\varepsilon m) + v_2(n) - v_2(m^2 + n^2) = 0, \tag{21}$$

$$5v_2(r) + v_2(11\varepsilon n + 2m) + v_2(n) - v_2(m^2 + n^2) = -1.$$
 (22)

We consider three subcases.

Subcase (a): $v_2(m) = v_2(n) = 0$. Here $v_2(3n - 4\varepsilon m) = 0$ and $v_2(m^2 + n^2) = 1$, and (21) gives

(multiple of 4)
$$+ 0 + 0 - 1 = 0$$
,

a contradiction.

214

Subcase (b): $v_2(m) \ge 1$, $v_2(n) = 0$. Here $v_2(11\varepsilon n + 2m) = 0$, $v_2(m^2 + n^2) = 0$ and (22) gives

$$(\geq 0) + 0 + 0 - 0 = -1,$$

a contradiction.

Subcase (c): $v_2(m) = 0$, $v_2(n) \ge 1$. Here $v_2(3n - 4\varepsilon m) \ge 1$, $v_2(m^2 + n^2)$ = 0 and (21) gives

$$(\geq 0) + (\geq 1) + (\geq 1) - 0 = 0,$$

a contradiction.

Thus Case (i) cannot occur.

Case (ii): In this case we have

$$v_2(s) = 1$$
, $v_2(n) = 0$, $v_2(r) = 0$,

$$v_2(3n-4\varepsilon m)=0, \ v_2(m^2+n^2)=0 \text{ or } 1,$$

and (19) becomes

$$0+0+0-4-(0 \text{ or } 1)=0$$
,

which is impossible. Thus Case (ii) cannot occur.

Case (iii): In this case we have

$$v_2(s) = 1$$
, $v_2(n) = 1$, $v_2(r) = 0$, $v_2(m) = 0$,

$$v_2(3n-4\varepsilon m)=1, \ v_2(m^2+n^2)=0,$$

and (19) becomes

$$0+1+1-4-0=0,$$

which is impossible. Thus Case (iii) cannot occur.

Case (iv): In this case we have

$$v_2(s) = 1$$
, $v_2(n) = 2$, $v_2(r) = 0$, $v_2(m) = 0$, $v_2(m^2 + n^2) = 0$, $v_2(3n - 4\varepsilon m) \ge 3$,

and (19) gives

$$0 + (\geq 3) + 2 - 4 - 0 = 0$$
,

which is impossible. Thus Case (iv) cannot occur.

Case (v): In this case we have

$$v_2(s) = 1$$
, $v_2(n) \ge 3$, $v_2(r) = 0$, $v_2(m) = 0$, $v_2(m^2 + n^2) = 0$, $v_2(3n - 4\varepsilon m) = 2$,

and (19) gives

$$0+2+(\geq 3)-4-0=0,$$

which is impossible. Thus Case (v) cannot occur.

Case (vi): In this case we have

$$v_2(s) \ge 2$$
, $v_2(n) = 0$, $v_2(r) = 0$, $v_2(3n - 4\varepsilon m) = 0$, $v_2(m^2 + n^2) = 0$ or 1,

and (19) becomes

$$0 + 0 + 0 - (\ge 8) - (0 \text{ or } 1) = 0$$
,

which is impossible. Thus Case (vi) cannot occur.

Case (vii): In this case we have

$$v_2(s) \ge 2$$
, $v_2(n) = 1$, $v_2(r) = 0$, $v_2(m) = 0$,
$$v_2(3n - 4\varepsilon m) = 1$$
, $v_2(m^2 + n^2) = 0$,

and (19) becomes

$$0+1+1-(\geq 8)-0=0$$
,

which is impossible. Thus Case (vii) cannot occur.

Case (viii): In this case we have

$$v_2(s) \ge 2$$
, $v_2(n) = 2$, $v_2(r) = 0$, $v_2(m) = 0$,

$$v_2(11\varepsilon n + 2m) = 1$$
, $v_2(m^2 + n^2) = 0$,

and (20) becomes

216

$$2+0+1+2-(\geq 10)-0=1$$
,

which is impossible. Thus Case (viii) cannot occur.

Case (ix): In this case we have

$$v_2(s) \geq 2, \ v_2(n) \geq 3, \ v_2(r) = 0, \ v_2(m) = 0,$$

$$v_2(3n - 4\varepsilon m) = 2$$
, $v_2(11\varepsilon n + 2m) = 1$, $v_2(m^2 + n^2) = 0$,

and (19) and (20) give

$$\begin{cases} 0 + 2 + v_2(n) - 4v_2(s) - 0 = 0, \\ 2 + 0 + 1 + v_2(n) - 5v_2(s) - 0 = 1, \end{cases}$$

so that

$$\begin{cases} v_2(n) - 4v_2(s) = -2, \\ v_2(n) - 5v_2(s) = -2. \end{cases}$$

Hence

$$v_2(n) = -2, \quad v_2(s) = 0,$$

contradicting

$$v_2(n) \ge 3, \quad v_2(s) \ge 2.$$

Hence all nine cases cannot occur and the theorem is proved.

Theorem 3. If p is a prime $\equiv 3 \pmod{4}$ such that

$$p \parallel a, p^2 \mid b \text{ or } p^2 \parallel a, p^3 \mid b \text{ or } p^3 \parallel a, p^4 \mid b,$$
 (23)

then (1) is not solvable by radicals.

Proof. Suppose that (1) is solvable by radicals. Then, by Proposition 2, there exist rational numbers $\varepsilon(=\pm 1)$, $c(\geq 0)$, $e(\neq 0)$, such that

$$a = \frac{5e^4(3 - 4\varepsilon c)}{c^2 + 1}, \qquad b = \frac{-4e^5(11\varepsilon + 2c)}{c^2 + 1}.$$
 (24)

If c = 0, then

$$a = 15e^4, \quad b = -44\varepsilon e^5. \tag{25}$$

As a is an integer, from (25) we see that e must be an integer. Further, as $a \neq 0$, we must have $e \neq 0$. If $p \mid e$, then $v_p(a) \geq 4$, contradicting $v_p(a) = 1$, 2 or 3. Hence $p \nmid e$. Since $p \mid a = 15e^4$ and $p \nmid e$, we must have $p \mid 15$. But $p \equiv 3 \pmod{4}$ so p = 3. Thus $v_p(a) = v_3(a) = 1$ and so $v_p(b) = v_3(b) \geq 2$. Clearly $3 \nmid b = -44\epsilon e^5$, a contradiction. Hence $c \geq 1$.

Set c = m/n and e = r/s, where m, n, r, s are integers with m > 0, n > 0, $r \neq 0$, s > 0 and (m, n) = (r, s) = 1. Thus

$$v_p(m) = 0$$
 or $v_p(n) = 0$

and

$$v_p(r)=0 \ \text{ or } \ v_p(s)=0.$$

From (24), we obtain

$$(m^2 + n^2)as^4 = -5r^4(4\varepsilon m - 3n)n, \tag{26}$$

$$(m^2 + n^2)bs^5 = -4\varepsilon r^5 (2\varepsilon m + 11n)n. \tag{27}$$

Clearly from (26) and (27) we see that $4\varepsilon m - 3n \neq 0$ and $2\varepsilon m + 11n \neq 0$. Now $p \equiv 3 \pmod{4}$ and $\gcd(m, n) = 1$, so that

$$v_p(m^2 + n^2) = 0. (28)$$

From (26)-(28), we obtain

$$v_p(\alpha) + 4v_p(s) = 4v_p(r) + v_p(4\varepsilon m - 3n) + v_p(n),$$
 (29)

$$v_p(b) + 5v_p(s) = 5v_p(r) + v_p(2\varepsilon m + 11n) + v_p(n).$$
 (30)

We consider two cases:

218

(i)
$$v_p(n) = 0$$
,

(ii)
$$v_p(m) = 0, v_p(n) \ge 1.$$

Case (i): In this case (29) and (30) become

$$v_p(a) + 4v_p(s) = 4v_p(r) + v_p(4\varepsilon m - 3n),$$
 (31)

$$v_p(b) + 5v_p(s) = 5v_p(r) + v_p(2\varepsilon m + 11n).$$
 (32)

If $v_p(4\varepsilon m-3n)=0$, then (31) gives $4\mid v_p(a)$ contradicting $v_p(a)=1$, 2 or 3. Thus $v_p(4\varepsilon m-3n)\geq 1$. From

$$2(2\varepsilon m + 11n) = (4\varepsilon m - 3n) + 25n,$$

we deduce that $v_p(2\varepsilon m + 11n) = 0$. Hence (32) gives

$$v_p(b) + 5v_p(s) = 5v_p(r).$$

If $v_p(r)=0$, then $v_p(b)=0$, contradicting $v_p(b)\geq 2$. If $v_p(r)\geq 1$, then $v_p(s)=0$ and (31) gives

$$v_p(a) = 4v_p(r) + v_p(4\varepsilon m - 3n) \ge (4 \times 1) + 1 = 5,$$

contradicting $v_p(a) = 1$, 2 or 3.

Case (ii): In this case we have

$$v_p(4\varepsilon m - 3n) = v_p(2\varepsilon m + 11n) = 0$$

so that (29) and (30) become

$$v_p(a) + 4v_p(s) = 4v_p(r) + v_p(n),$$
 (33)

$$v_p(b) + 5v_p(s) = 5v_p(r) + v_p(n).$$
 (34)

If $v_p(r)=v_p(s)=0$, then (33) and (34) give $v_p(a)=v_p(b)$, a contradiction. If $v_p(r)\geq 1$, $v_p(s)=0$, then (33) gives $v_p(a)=4v_p(r)+v_p(n)\geq (4\times 1)+1=5$, a contradiction. If $v_p(r)=0$, $v_p(s)\geq 1$, then (33) and (34) give

INSOLVABLE QUINTICS
$$x^5 + ax + b$$

219

$$v_{D}(a) + 4v_{D}(s) = v_{D}(n) = v_{D}(b) + 5v_{D}(s)$$

SO

$$v_p(a) - v_p(b) = v_p(s) \ge 1$$

giving

$$v_p(a) > v_p(b),$$

a contradiction.

Hence neither Case (i) nor Case (ii) can occur and this completes the proof that (1) is not solvable by radicals.

Theorem 4. If $b \mid a$, then (1) is not solvable by radicals.

Proof. Suppose that (1) is solvable by radicals. Then, by Proposition 2, there exist rational numbers $\varepsilon(=\pm 1)$, $c(\geq 0)$, and $e(\neq 0)$ such that

$$a = \frac{5e^4(3 - 4\varepsilon c)}{c^2 + 1}, \qquad b = \frac{-4e^5(11\varepsilon + 2c)}{c^2 + 1}.$$
 (35)

Set

$$c = m/n, m \ge 0, n > 0, (m, n) = 1,$$
 (36)

and

$$e = r/s, r \neq 0, s > 0, (r, s) = 1.$$
 (37)

Further, as $b \mid a$, we have

$$a = bk, (38)$$

for some integer $k \neq 0$. From (35)-(38), we obtain

$$a = 5\frac{r^4}{s^4} \frac{(3n - 4\varepsilon m)n}{m^2 + n^2} = -4k\frac{r^5}{s^5} \frac{(11\varepsilon n + 2m)n}{m^2 + n^2}.$$
 (39)

As $a \neq 0$, we have $3n - 4\varepsilon m \neq 0$ and $11\varepsilon n + 2m \neq 0$. Solving (39) for s, we obtain

$$s = -\frac{4}{5} kr \frac{11\varepsilon n + 2m}{3n - 4\varepsilon m}. (40)$$

Putting this value of s back into (39), we deduce

$$a = \frac{5^5 (3n - 4\varepsilon m)^5 n}{2^8 k^4 (11\varepsilon n + 2m)^4 (m^2 + n^2)}.$$
 (41)

As

$$\frac{5^{5}(3n-4\varepsilon m)^{5}n}{2}=2^{7}ak^{4}(11\varepsilon n+2m)^{4}(m^{2}+n^{2})$$

is an integer, we have $2 \mid 5^5(3n - 4\epsilon m)^5 n$, so that

$$2 \mid n. \tag{42}$$

Next we show that

$$(11\varepsilon n + 2m, 3n - 4\varepsilon m) = 2^{\alpha} 5^{\beta}, \tag{43}$$

for nonnegative integers α and β . This follows from the identities

$$2\varepsilon(11\varepsilon n + 2m) + (3n - 4\varepsilon m) = 25n, \tag{44}$$

$$3(11\varepsilon n + 2m) - 11\varepsilon(3n - 4\varepsilon m) = 50m, (45)$$

as (m, n) = 1.

Further, we show that

$$(m^2 + n^2, 3n - 4\varepsilon m) = 5^{\gamma},$$
 (46)

for a nonnegative integer γ . This follows from the identities

$$9(m^2 + n^2) - (3n - 4\varepsilon m)(3n + 4\varepsilon m) = 25m^2, \tag{47}$$

$$16(m^2 + n^2) + (3n - 4\varepsilon m)(3n + 4\varepsilon m) = 25n^2, \tag{48}$$

as (m, n) = 1.

Moreover,

$$(m^2 + n^2, n) = 1$$
 (49)

and

$$(11\varepsilon n + 2m, n) = 1 \text{ or } 2$$
 (50)

as (m, n) = 1.

From (41) we see that

$$\frac{5^5(3n - 4\varepsilon m)^5 n}{(11\varepsilon n + 2m)^4(m^2 + n^2)} = 2^8 k^4 a$$

is an integer. Hence, in view of (43), (46), (49), (50), we must have

$$|11\varepsilon n + 2m| = 2^{u}5^{v}, \quad m^{2} + n^{2} = 5^{w}, \tag{51}$$

for nonnegative integers u, v, w. We now consider two cases:

- (i) 4v + w > 5,
- (ii) $4v + w \le 5$.

Case (i): 4v + w > 5. In this case at least one of v and w is positive so that either $5 \mid 11\varepsilon n + 2m$ or $5 \mid m^2 + n^2$. By (49) and (50) both possibilities imply that

$$5 \nmid n$$
. (52)

Hence, as $5^6 | (11\varepsilon n + 2m)^4 (m^2 + n^2)$ (since $4v + w \ge 6$) and a is an integer, by (41) we must have

$$5 \mid 3n - 4\varepsilon m. \tag{53}$$

Then, by (45), we deduce that

$$5 \mid 11\varepsilon n + 2m. \tag{54}$$

Hence, by (51) and (54), we have

$$v > 0. ag{55}$$

We show next that $w \le 3$. Suppose on the contrary that w > 3, so that, by (51), we have $5^4 \mid m^2 + n^2$. From the identity

$$4(m^2 + n^2) + (11\varepsilon n + 2m)(11\varepsilon n - 2m) = 125n^2, \tag{56}$$

we deduce that

$$5^3 \parallel (11\varepsilon n + 2m)(11\varepsilon n - 2m).$$
 (57)

As (m, n) = 1 and $5 \mid 11\varepsilon n + 2m$, we have $5 \nmid 11\varepsilon n - 2m$, so that by (57), we have

$$5^3 \parallel 11\varepsilon n + 2m,$$
 (58)

that is, by (51),

$$v = 3. (59)$$

From (52), (58) and the identity

$$(3n - 4\varepsilon m) + 2\varepsilon(11\varepsilon n + 2m) = 25n,$$

we deduce that

$$5^2 \parallel 3n - 4\varepsilon m. \tag{60}$$

Then, by (41), (51), (52), (59), (60) we see that

$$v_5(a) = 3 - w - 4v_5(k) \le 3 - w < 0,$$

as $w \ge 4$, a contradiction. Hence $w \le 3$.

Case (ii): $4v + w \le 5$. In this case we have

$$w \le 4v + w \le 5.$$

Thus in both cases we have $w \le 5$. We examine the possibilities w = 0, 1, 2, 3, 4, 5 individually.

w = 0. Here $m^2 + n^2 = 1$. As $m \ge 0$ and $2 \mid n$ we have (m, n) = (1, 0), contradicting n > 0.

w = 1. Here $m^2 + n^2 = 5$. As $m \ge 0$, n > 0 and $2 \mid n$ we have (m, n) = (1, 2). Then, by (51), we have

$$2^{u}5^{v} = |11\varepsilon n + 2m| = |22\varepsilon + 2| = \begin{cases} 24, & \text{if } \varepsilon = 1, \\ 20, & \text{if } \varepsilon = -1, \end{cases}$$

so that $\varepsilon=-1$, u=2, v=1. Hence, from (41), we have $\alpha=\frac{5^5}{2^{10}k^4}$, which is not an integer for any integer k, a contradiction.

w = 2. Here $m^2 + n^2 = 5^2$. In view of (36) and (42) we have (m, n) = (3, 4). Then, by (51), we have

$$2^{u}5^{v} = |11\varepsilon n + 2m| = |44\varepsilon + 6| = \begin{cases} 50, & \text{if } \varepsilon = 1, \\ 38, & \text{if } \varepsilon = -1, \end{cases}$$

so that $\varepsilon = 1$, u = 1, v = 2. Thus $3n - 4\varepsilon m = 0$, so that a = 0, a contradiction.

w = 3. Here $m^2 + n^2 = 5^3$. In view of (36) and (42) we have (m, n) = (11, 2). Then, by (51), we have

$$2^{u}5^{v}=\left|\,11arepsilon n+2m\,
ight|=\left|\,22arepsilon+22\,
ight|=egin{dcases} 44, ext{ if } arepsilon=1, \ 0, ext{ if } arepsilon=-1, \end{cases}$$

a contradiction.

w = 4. Here $m^2 + n^2 = 5^4$. In view of (36) and (42) we have (m, n) = (7, 24). Then, by (51), we have

$$2^{u}5^{v} = |11\varepsilon n + 2m| = |264\varepsilon + 14| =$$

$$\begin{cases} 278, & \text{if } \varepsilon = 1, \\ 250, & \text{if } \varepsilon = -1, \end{cases}$$

so that $\varepsilon = -1$, u = 1, v = 3. Then, by (41), we have $a = \frac{2 \cdot 3}{5k^4}$, which is not an integer for any integer k, a contradiction.

w = 5. Here $m^2 + n^2 = 5^5$. In view of (36) and (42) we have (m, n) = (41, 38). Then, by (51), we have

$$2^{u}5^{v} = |11\varepsilon n + 2m| = |418\varepsilon + 82| = \begin{cases} 500, & \text{if } \varepsilon = 1, \\ 336, & \text{if } \varepsilon = -1, \end{cases}$$

so that $\varepsilon = 1$, u = 2, v = 3. Then, by (41), we have $a = \frac{-19}{2^{10}5^2k^4}$, which is not an integer for any k, a contradiction.

This completes the proof of Theorem 4.

We close with some examples. The second column of the Table indicates the theorem (Theorems 1, 2, 3 or 4), which applies to the polynomial $x^5 + ax + b$ in the first column to ensure that the equation $x^5 + ax + b = 0$ is insolvable by radicals. The third column gives the Galois group of the polynomial $x^5 + ax + b$.

Table. Quintic trinomials $x^5 + ax + b$ for which the quintic equation $x^5 + ax + b = 0$ is insolvable by radicals.

$x^5 + ax + b$	Theorem	$Gal(x^5 + ax + b)$
$x^5 + 145x + 232$	Theorem 1	A_5
$x^5 + 239x + 956$	Theorem 1	A_5
$x^5 + 545x + 872$	Theorem 1	A_5
$x^5 + 5x + 1$	Theorem 1	S_5
$x^5 + 130x + 4$	Theorem 1	S_5
x^5+x+10	Theorem 2	S_5
$x^5 + 3x + 6$	Theorem 2	S_5
$x^5 + 3x + 9$	Theorem 3	S_5
$x^5 - 49x + 686$	Theorem 3	S_5
$x^5 - 54x + 162$	Theorem 3	S_5
$x^5 + 3x + 3$	Theorem 4	S_5
$x^5 + 72x - 36$	Theorem 4	S_5

References

- R. G. Ayoub, J. G. Huard and K. S. Williams, Sarvadaman Chowla (1907-1995), Notices Amer. Math. Soc. 45 (1998), 594-598.
- [2] Y. Bhalotra and S. Chowla, Some theorems concerning quintics insoluble by radicals, Math. Student 10 (1942), 110-112.
- [3] S. Chowla, The Collected Papers of Sarvadaman Chowla, Vol. II, 1936-1961, Centre de Recherches Mathématiques, Montréal, Canada, 1999.
- [4] D. S. Dummit, Solving solvable quintics, Math. Comp. 57 (1991), 387-401.
- [5] S. Kobayashi and H. Nakagawa, Resolution of solvable quintic equation, Math. Japon. 37 (1992), 883-886.
- [6] B. K. Spearman and K. S. Williams, Characterization of solvable quintics $x^5 + ax + b$, Amer. Math. Monthly 101 (1994), 986-992.

Department of Mathematics and Statistics Okanagan University College Kelowna, B.C. Canada V1V 1V7

e-mail: bkspearm@okuc02.okanagan.bc.ca

Centre for Research in Algebra and Number Theory School of Mathematics and Statistics Carleton University Ottawa, Ontario Canada K1S 5B6 e-mail: williams@math.carleton.ca