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Abstract

Asymptotic formulae are obtained for the number B(x) of positive
integers n < x which are discriminants of bicyclic quartic fields and the

number C(x) of those which are discriminants of cyclic quartic fields.
1. Notation

The fields of real numbers and rational numbers are denoted by R

and Q respectively, and the sets of integers, positive integers and

nonzero integers by Z, N and Z* respectively. If a € Z* and b e Z*, we
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denote their greatest common divisor by (@, b) and their least common
multiple by [a, b] so that (a, b)[a, b] = ab. For x € R, m € Z* and pa
prime, we set

o(m) = number of distinct prime factors of m,

d(m) = number of positive divisors of m,
vp(m) = largest integer ¢ such that p’|m,

m= (- 1)(m_1)/2m, if m is odd, so that i = 1(mod 4),

7(x) = number of primes p < x.
2. Introduction

Let K be a bicyclic or cyclic quartic extension field of Q. It is well
known that the discriminant d(K) of K is a positive integer. For n € N,

we let

1, if n = d(K) for some bicyclic quartic field K ,
0, otherwise,

b(n) = {

and
) {l, if n = d(K) for some cyclic quartic field K,
c(n) =

0, otherwise.

We determine asymptotic formulae for

B(x) = Z b(n) 2.1)
1<n<zx

and

C(x) = Z c(n) (2.2)
1<n<x
valid as x — +o. B(x) counts the number of positive integers n < x
such that n = d(K) for some bicyclic quartic field K and C(x) the number
of positive integers n < x such that n = d(K) for some cyclic quartic
field K.
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3. Some Asymptotic Formulae

As usual, for n € N, p(n) is the Mobius function and ¢(n) is Euler’s

totient function.

Lemma 1. Let k € N. Then

H@=%H[1———j Gj

1<d<x |k
(d, k)=1

as x — +mo, where the constant implied by the O-symbol is absolute.

Proof. We have
5 p(d) _ i pd) N @)
1<d<x dz d= d2 d>x d2
(d,k)=1 (d,k)=1 (d,k)=1
Now

and -

so the asserted formula follows.

Lemma 2. Let k € N. Then

DIREEE. ¢(k) + O(d(R),
1<e<x

(e, k)=1

as x — +o, where the constant implied by the O-symbol is absolute.
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Proof. We have

S1-% Tu

(fli)sle 1<e<x d|(e, k)
PCHR
d|k 1<e<x
dle

=D ud) Y1

d|k 1<f<x/d

NI ow

R

=z “T) + O(d(k)

a|

Bl

= = 28, o)

completing the proof of the lemma.

Lemma 3. Let k € N. Then

6 ¢
= 7711@—} +O0(xYd(k)),

1<e<x
e squarefree
(e, k)=1

as x — +o, where the constant implied by the O-symbol is absolute.

Proof. Appealing to Lemmas 1 and 2, we obtain

= D, Dua)

1<e<x l<e<x d2 le
e squarefree (e, k)=1
(e, k)=1
= Y u@
lsdzesx

(d%e, k)=1
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Z wd) Z 1

1Sdsxl/2 1<e<x /d?
(d,k)=1 (e,k)=1

x_ ¢(k)
n(d) =5 == + O(d(k))
lsdsxl/z {dz & }
(d, k)=1

k
”Eﬁe—) >

lsd5x1/2
(d,k)=1

BOEIOPICE o (PR T RNGE U | GRRTS
x= {nz plk[l pzj +O(x1/2j} O(x7“d(k))

=1
%@ (1-%] + O(=Y2d(k)),
Ik

% + O(x2d(k))

Il
8

as asserted.

Lemma 4.

Y 1=Zxio0E),
T

1<e<x
e squarefree
eodd

as x —> +oo, where the constant implied by the O-symbol is absolute.

Proof. By Lemma 3 with k& = 2, we obtain

=1
_ 6 ¢(2) 1 1/2 _ 4 1/2
1= -_—I I 1-— 0] =—x+0 )
x ( sz + O(x*) n2x+ (x7#)

l<e<x
esquarefree
eodd

as asserted.

In the proof of the next lemma, we make use of the following weak

form of the prime number theorem

n(x) = —=— + O( x2 ], as x — +oo. (3.1)
log x log” x
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Lemma 5.
4 x X
1=—2x- + O 53— | asx > +o.
l<esx T log x log“ x
e squarefree
eodd
o(e)22
Proof. We have
THD R EED MEEE) J"
1<e<x 1<e<x I<e<x l1<e<x
e squarefree e squarefree e squarefree e squarefree
eodd eodd eodd eodd
o(e)=2 o(e)=0 ofe)=1

By Lemma 4 the first sum on the right hand side is

1=2 ¢4 0("2).
nZ

1<e<x
e squarefree
eodd

Clearly the second sum is

e squarefree
eodd
o(e)=0

and the third sum is

1= Z 1=1r(x)—1=logx+0[ - j,

2
l<e<x 3<p<x IOg x
e squarefree Dpprime
eodd
o(e)=1

by (3.1). The asserted asymptotic formula now follows.
Lemma 6.
d(n
Z % = 0(xY* 1og x).
1<n<x

Proof. By partial summation, see for example [1, Theorem 421], we
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have

Z ig%) = 3/4 Z d(m) + _[ ZN;/?

1<n<x T 1<n<x

A very weak form of Dirichlet’s divisor problem estimate is [1, Theorem
320]

Z d(n) = O(x log x).

1<n<x
Using this estimate and the evaluation

*logt

dt = 4xV/* log x - 16xY% + 16,
L 134

we obtain the asserted estimate.
4. Bicyclic Quartic Fields
Every bicyclic quartic field K can be expressed in the form
K = Q(Vm, Vn),
where m and n are distinct squarefree integers # 1. We let
= (m, n), m; = m/l, n; = n/l,
so that (m;, n;) = 1. Since

Q(Vm, Yn) = Q(Wn, Ym) = Q(Vm, Jmin; ) = Q(Ymyny, Jm)
= Q(Vn, ymng ) = Q(ymyny, Vn),

without loss of generality we may suppose throughout this section that
(m,n)=(1,1), @1 2), (2 3) or (3, 3)(mod 4).

Williams [4, Theorem 3, p. 525] has determined the discriminant of K.

Theorem 1. The discriminant d(K) of K = Q(vm, ¥n) is given by

d(K) = 2%[m, n]?,
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where
0, if (m, n) = (1, 1) (mod 4),

o =14, if (m, n) = (1, 2)or (3, 3) (mod 4),
6, if (m, n) = (2, 3)(mod 4).

As an immediate consequence of Theorem 1, we have

Corollary 1. Let K be a bicyclic quartic field. Then d(K) is a perfect

square and vy(d(K)) = 0, 4, 6 or 8.

From Theorem 1 and Corollary 1 we deduce a necessary and sufficient

condition for a positive integer N to be the discriminant of a bicyclic

quartic field, see Theorem 2. It is convenient to define

A = {a € N|a odd, a squarefree, o(a) > 2}

and for x € R,

Ax) = Z 1.

asx
acA

By Lemma 5 we know that

A(x):iqx— L 20| —2 ). as & > +eo,
- log x log? x

We prove
Theorem 2. Let N € N. Then
N = d(K) for some bicyclic quartic field K,

if and only if
N = 256,

or

N = 16p2, 64p2 or 256p2, where p is an odd prime,

or

N = a2, 16a2, 64a? or 256a> for some a € A.

4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

4.7

Proof. If (4.5) holds, then, by Theorem 1, N = 256 = d(K) for K =

Q(2, v=1).
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If the first equality holds in (4.6), then, by Theorem 1, for some odd
prime p, N = 16p® = d(K) for K = Q(J= p, v=1).

If the second equality holds in (4.6), then, by Theorem 1, for some odd
prime p, N = 64p? = d(K) for K = Q(/7, J2).

If the third equality holds in (4.6), then, by Theorem 1, for some odd

prime p, N = 256p2 = d(K) for K = Q(y2p, V- 1).

If (4.7) holds, then N = 2%a? for some a € A and k = 0, 4, 6 or 8.

As a € A we have a = bc, where

b, c € N, b, ¢ odd, squarefree, o(b) > 1, o(c) > 1, (b, c) = 1.

Set
= @(Jb_*, \/c_)
where
b* = b, ct=¢, if k=0,
b* = -b, ¢t =-¢, if k=4,
b* = b, ¢* = 2, if k = 6,
b* = 2b, ¢t =-¢, if k= 8.

Clearly, in all four cases b* and c¢* are squarefree, coprime integers # 1.

Moreover
b* =1(mod 4), ¢* =1(mod 4), if k=0,
b* = 3(mod 4), ¢* = 3 (mod 4), if £ =4,
b* = 1(mod 4), ¢* = 2(mod 4), if k =6,

b* = 2(mod 4), ¢* = 3(mod 4), if & = 8.
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Let
0, if £ =0,
g =44, if & =4, 6,
6, if & = 8.

Hence, by Theorem 1, we have
N = 2ka? = 2%(be)? = 29(b*c*)? = 29[b%, ¢* = d(K).

Conversely, now suppose that N = d(K) for some bicyclic quartic field
K. By Corollary 1, we have

d(K) = a?, 24a?, 2842 or 2842,
for some odd positive integer a.

If dK) = a2, then, by Theorem 1, K = Q(¥m, Jn) for distinct
squarefree integers m # 1 and n # 1 with m = n = 1l(mod4) and a =
[m, n] e N. As m and n are squarefree and odd so is a. If @(a) = 0, then
a=1and (m,n)=(@1,1), (1, -1),(-1,1) or (-1, —1), none of which satisfy
the conditions on m and n. If w(a) =1, then a = p, where p is an odd
prime, so that (m, n) = (p, 1), (p, - 1), (-p, 1), (-, - 1), (L p), (L, - p),
(-1 p), (-1, - p), (p, P), (P, - p). (=P, P) or (- p, - p) and again none of

these satisfy the conditions on m and n. Hence w(a) > 2 and a € A.

If d(K) = 16a2, then, by Theorem 1, K = Q(«/E, w/;) for distinct
squarefree integers m and n with m = n = 3(mod 4) and a=[m,n]eN.
As m and n are squarefree and odd so is a. If o(a) =0, then @ =1 and
(m,n)=(@1,1), @1 -1), (-1, 1) or (-1, -1), all of which cannot occur. If
o(a) = 1, then a = p, where p is an odd prime, so that (m, n) = (p, 1),
(p,-1), -p,1), (~p,-1), @, p), @, - p), (-1, p). (-1, - ), (. P), (P, - P),
(-p, p) or (- p, = p). All of these cannot occur except (m, n) = (- p, - 1)
and (-1, p). These give K =Q(+V=1,{/-p) and N = d(K) = 16p2, which
is the first possibility in (4.6). Otherwise o(a) > 2 and a € A.
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If d(K) = 64a®, then, by Theorem 1, K = Q(m, Yn) for distinct
squarefree integers m # 1 and n with m = 1(mod 4), n = 2n; = 2(mod 4)
and a = [m, n;] e N. As m and n; are squarefree and odd so is a. If
o(a) =0, then @ =1 and (m, n;) = (L, 1), (1, -1), (-1, 1) or (-1, - 1), all
of which cannot occur. If w(a) = 1, then a = p, where p is an odd prime,
so that (m, my) = (p, 1), (p, -1), (-p, 1), (-p, -1), @, p), @, - p), (-1, D),
(-1, - p), (p, p), (p, - p), (-=p, p) or (- p, — p). All of these cannot occur
except (m, n;) = (p, £1) and (p, + p). These give K = Q(Wp, v+ 2) and
N = d(K) = 64p?, which is the second possibility in (4.6). Otherwise
o(a) > 2 and a € A.

If d(K) = 256a?, then, by Theorem 1, K = Q(«vm, Yn) for distinct
squarefree integers m and n with m = 2m; = 2(mod 4), n = 3(mod 4) and
a =[my, n] € N. As m; and n are squarefree and odd so is a. If o(a) = 0,
then a=1 and (ny,n)=(+1,-1), K =Q(v£2,V-1) and N =d(K) = 256,
which is (4.5). If o(a) =1, then a = p, where p is an odd prime, so that
(my,n)=(xp,-1),(#1,-Dp) or (+ p, - p). These give K = Q(Jz_, «/j)
or K = Q(W£ 2, - p) and both possibilities give N = d(K) = 256p2,
which is the third possibility in (4.6). Otherwise o(a) > 2 and a € A.

We are now ready to determine an asymptotic formula for B(x), which
was defined in (2.1).

Theorem 3.

B - 2 gtz 2 of 2
4n? log x log? x ’

as x —> +o.
Proof. By Theorem 2, for x sufficiently large, we have
B(x) = A(xY2) + A(xY2/4) + A(x%/8) + A(xY?/16)

+(n(xY2/4) = 1) + (n(x¥2/8 )= 1) + (n(x¥?/16 ) - 1) + 1,
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so that
B(x) = A(xY%) + A(xY?/4) + A(xY2/8) + A(xY%/16)
+ n(x1/2/4) + n(x1/2/8) + n(x1/2/16) -2
Appealing to (3.1) and (4.3), we obtain the asserted result.

5. Cyclic Quartic Fields

Every cyclic quartic field K can be expressed uniquely in the form

K = Q(A(D + BVD)), (5.1)

where A, B, D are integers such that

A is squarefree and odd, (56.2)
B=>1D > 2, (5.3)
D is squarefree and D — B? isa square, (5.4)
(4, D) =1, (5.5)

and the discriminant d(K) of K is given by
AP 9 if D =0(mod 2),
28 42p% if D =1(mod2), B =1(mod2),

24 A2D8, if D =1(mod2), B=0(mod2), A+ B =3(mod4),
A?D3, if D =1(mod2), B=0(mod2), A+ B =1(mod4),

see for example [2]. Let
PQl,4)={neN|n=p;-p, m=21,
D1, -, Py distinct primes = 1(mod 4)}.
We note that 1 ¢ P(1, 4). For D € P(1, 4) we define
S(D) = {n € N|n squarefree, (n, 2D) = 1}.

We note that 1 € S(D). If D is odd and satisfies (5.3) and (5.4), then
D € P(1, 4) and conversely. If D is even and satisfies (5.3) and (5.4), then
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D/2 e P(1, 4)U {1} and conversely. From (5.1)-(5.5) and the formula for
d(K) we obtain the following result.

Theorem 4. Let n € N. Then
n = d(K) for some cyclic quartic field K,
if and only if
n = 211 A2 for some odd positive squarefree integer A,
or
n=AZD3, 24 A2D3, 2642D% or 211A2D3
for some D € P(1, 4) and some A € S(D).

It is convenient to define

T(x) = Z 1.

1<A<x
AeS(D)

The following estimate for 7'(x) follows from Lemma 3 (with & = 2D),

i -1
T(x) = xii’% I1 (1 . sz + 0(Y2d(D)). 5.6)

= pl2D
We are now ready to determine an asymptotic formula for C(x),

which was defined in (2.2).

Theorem 5.
C(x) = 1—12 M [1+;)—1 xY/2 +O(3c1/3 log x),
2n 88 p=1(mod 4) (p v 1)\/]_)

as x — +o,
Proof. By Theorem 4, we have

Clx) = Z z T(xY/2D3227%) 4 E(x¥2271Y2)  (5.7)

szl/3

11
aE{O,Z,S,?} et )
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where

E(x) = Z 1.

1<A<x
A squarefree
Aodd
By Lemma 4 we have
E(xY22711/2) L 12, oY), (5.8)
o712 2

For a € {0, 2, 3, %} we have by (5.6) and Lemma 5

T(x1/2 D—3/2 2—&)

szl/3
DeP(1,4)
-1
_ Z V2 p-3/29-a _37 &(D) H [1 _izj + 0(xY4D3/44(D))
Dpes/3 w Dojiap\ P
DeP(1,4)
-1
4xY? o(D) 1 1/4 d(D)
Y Z D5/2H 1_? +0|x Z D34
DD}sJ:(cllli) p|D 1<D<x!/3
4x'/? o(D) [ 1 ]_1 13
= 1-—| +0(x7°logx).
00 2 D;ﬁ EE ;—1[) )
DeP(1,4)
Now, as
1
o(D) = DH (1 = —),
p|D
we have
o< 4311 AV (e ) < (5.9)
Do/2 5 p? = D32 15 p) D2
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so that

N H(D)

S ah-L)
D=1 p|D
DeP(1,4)

converges. Remembering that 1 ¢ P(1, 4), we see that

= WD) ( J [H;]_l
DE%I;.AQ DY I”HD pzlgd 4) Pl/z(P +1)

Also, by (5.9), we have

S O3] < T e o)

D>x13 p|D D>x1/3
DeP(1,4)
Hence
Z T(xl/ZD—3/2 2—0.)
szl/3
DeP(1, 4)
4xl/2 1 1/3
= 20« 5 { H [l+mj—l}+0(x logx).
n p=1(mod 4) p p
Thus

T(xl/?. D—3/2 2—& )

aef0,2,3,11/2} p<yl/3
DeP(1,4)

(88 + V2) 1
:;xl/z{ H [1+pT2(p+—1)j—1}+O(xl/3logx).

2
16m p=1(mod 4)

The theorem now follows from (5.7) and (5.8).

Ou and Williams [3] have shown that the number of cyclic quartic
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fields with discriminant < x is

3 |24 ++2 ( 2 j
SN Pl ]_ 4+
n? | 24 pslgd o\ (P+1NP

b2y O(xl/3 log® x).

Thus the “average number of cyclic quartic fields per discriminant” is

24 + V2 2
{ “1 1. 1<mod4>( o+ WP ]‘1}
11 88 + 2 1
2 { 5 1L 1(md4)( (p+1)ﬁj'1}

’

which is approximately 1.27.
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[3]

(4]

References

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4t ed.,
Oxford Univ. Press, 1960.

R. H. Hudson and K. S. Williams, The integers of a cyclic quartic field, Rocky
Mountain J. Math. 29 (1990), 145-150.

7. M. Ou and K. S. Williams, On the density of cyclic quartic fields, Canad. Math.
Bull. 44 (2001), 97-104.

K. S. Williams, Integers of biquadratic fields, Canad. Math. Bull. 13 (1970), 519-526.
|



