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Absf ract 

An elementary proof of Jacobi's eight squares theorem is g.lven. 

0. Notation 

Let n and s  denote positive integers. We let rs(n) denote the number 

of representations of n as the sum of s  squares. We also let 

where d runs through the positive integers dividing n. If x is not a 
positive integer, we set os(x)  = 0. We also define 

As (n)  = ~ ( k )  ~ ( n  - sk), 
k o t / s  

where the summation is over all integers k  satisfying 1 .S k  < n/s. 

Finally, we set 
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1, i f s i n ,  
Fs(n) = 

0 ,  i f s r n .  

1. Introduction 

The formula 

a (n )  = 16(- 1)" (- 1ld d3 

first appeared implicitly in the work of Jacobi [5] ,  [6, Sections 40-421 and 

explicitly in the work of Eisenstein [2] ,  [3, p. 5011. The standard 

arithmetic proof of ( 1 )  uses an  elementary identity due to Liouville [8] ,  
see [ l o ,  p. 4021, to show that  the function on the right hand side of ( 1 )  
satisfies the same recurrence relation as rs(n) with the same initial 

conditions so that the two functions are the same, see, for example, [ l o ,  
pp. 441-4451. I t  is the purpose of this note to give a different arithmetic 

proof of ( 1 ) .  Our starting point is the following elementary identity due to 

Huard, Ou, Spearman and Williams [4], which is an  extension of a n  

identity of Liouville [7, p. 2841. 

Huard-OuSpearman-Williams Identity. Let f : z4 + C be such 

that  

f ( a , b , x , y ) - f ( x ,  y, a , b ) = f ( - a , - b , x ,  y ) - f ( x ,  y, - a ,  - b )  

for all integers a ,  b, x and y. Then 

where the sum on the left hand side of (2)  is over all positive integers 

a, b, x, y satisfying ax + by = n, the inner sum on the right hand side is 
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over all positive integers x satisfying x < d, and the outer sum on the 

right hand side is over all positive integers d &viding n. 

The proof in [4,  Section 21 of this identity is completely elementary as 

it only involves the rearrangement of terms in finite sums. The choice 

f(a,  b, x ,  y )  = xy in (2 )  yields the identity [4,  eqn. (16)] 

1 
(n )  = (503 ( n )  + (1 - 6n)  o(n)) ,  

which originally appeared in a letter from Besge to Liouville [I]. The 

choice f(a,  b, x ,  y )  = (2a2 - b 2 )  F4(x)  yields the identity [4,  Theorem 41 

which is an  extension of a result of Melfi [9, eqn. ( l l ) ] .  The choice 

(Legendre-Jacobi-Kronecker symbol) gives Jacobi's 

four squares formula [4,  Section 7] 

r4 ( n )  = 8o(n)  - 32o(n/4).  

Another arithmetic proof of (5) has been given by Spearman and Williams 

[ l l ] .  Thus formulae (3),  (4),  (5)  can all be proved by entirely elementary 

means. We now use these three results to give an  arithmetic proof of (1).  

2 .  Arithmetic Proof of Jacobi's Eight Squares Theorem 

We have 

.- - 
= C r q ( k ) q ( n  - k )  = 2r4(n) + x r 4 ( k ) r 4 ( n  - k ) ,  

as r4 ( 0 )  = 1. Appealing to (5),  we obtain 
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where 
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Sl = o(k)  o(n - k ) ,  

S2 = o(k /4)  o(n - k ) ,  
k=l 

Clearly Sl = Al(n) and changing the summation variable in ( 1 0 )  from k 

to n - k shows that S3 = S2. Since the only terms in S2 and S4 which 

do not vanish are those for which 4 1 k ,  replacing k b y  4k. in ( 9 )  and ( 1  l ) ,  

we find that  S2 = &(n) and S4 = Al(n/4). Appealing to (3) and ( 4 )  for 

the values of Al(n) and A4(n), and to ( 5 )  for the value of r4(n), we obtain 

from ( 6 ) - ( 1 1 )  

Examining the three possibilities 2 1 n, 2 11 n and 4 1 n individually, we 

find that the right hand side of ( 1 2 )  is the same as  the right hand side of 

(1). 
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