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CUBIC FIELDS WITH A POWER BASIS

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

ABSTRACT. It is shown that there exist infinitely many
cubic fields L with a power basis such that the splitting field
M of L contains a given quadratic field K.

1. Introduction. We prove the following result, which answers a
question posed to the authors by James G. Huard.

Theorem. Let K be a fixed quadratic field. Then there exist infinitely
many cubic fields L with a power basis such that the splitting field M
of L contains K.

We remark that Dummit and Kisilevsky [2] have shown that there
exist infinitely many cyclic cubic fields with a power basis.

2. Squarefree values of quadratic polynomials. The following
result is due to Nagel [5]. We quote it in the form given by Huard [3].

Proposition 2.1. Let f(x) be a polynomial with integer coefficients
such that

(i) the degree of f(x) = k,

(ii) the discriminant of f(x) is not equal to zero,

(iii) f(x) is primitive,

(iv) f(x) has no fixed divisors which are kth powers of primes.

Then infinitely many of f(1), f(2), f(3), . . . are kth power free.

We recall that a positive integer d > 1 is called a fixed divisor of
the primitive polynomial f(x) ∈ Z[x] if f(k) ≡ 0 (mod d) for all
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k ∈ Z. Thus, for example, 2 is a fixed divisor of x2 + x. Since the
only possible fixed divisor of a primitive quadratic polynomial with
integer coefficients is 2, the case k = 2 of Proposition 2.1 gives

Proposition 2.2. Let a, b, c be integers such that

a �= 0, b2 − 4ac �= 0, gcd (a, b, c) = 1.

Then
{k ∈ Z+ : ak2 + bk + c is squarefree}

is an infinite set.

If a > 0, then ak2 + bk + c ≤ 1 holds for only finitely many integers
k so that Proposition 2.2 gives

Proposition 2.3. Let a, b, c be integers such that

a > 0, b2 − 4ac �= 0, gcd (a, b, c) = 1.

Then
{k ∈ Z+ : ak2 + bk + c is squarefree and > 1}

is an infinite set.

3. The discriminant of a cubic field. Throughout this paper p
denotes a prime. If m is a nonzero integer such that pk | m, pk+1 � m,
we write pk‖m and set vp(m) = k. The following result is due to
Llorente and Nart [4], see also Alaca [1].

Proposition 3.1. Let a and b be integers such that the cubic
polynomial x3 − ax + b is irreducible and such that either vp(a) < 2
or vp(b) < 3 for all primes p. Let θ be a root of x3 − ax + b, and
set K = Q(θ) so that [K : Q] = 3. Let sp = vp(4a3 − 27b2) and
∆p = (4a3 − 27b2)/psp . Then the discriminant d(K) of the cubic field
K is given by

d(K) = sgn (4a3 − 27b2)2α3β
∏
p>3

sp≡1 (mod2)

p
∏
p>3

1≤vp(b)≤vp(a)

p2,
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where

α =




3, if s2 ≡ 1 (mod 2),

2, if 1 ≤ v2(b) ≤ v2(a), or

s2 ≡ 0 (mod 2) and ∆2 ≡ 3 (mod 4),

0, otherwise,

β =




5, if 1 ≤ v3(b) < v3(a),

4, if v3(a) = v3(b) = 2, or

a ≡ 3 (mod 9), 3 � b, b2 �≡ 4 (mod 9),

3, if v3(a) = v3(b) = 1, or

3 | a, 3 � b, a �≡ 3 (mod 9), b2 �≡ a + 1 (mod 9), or

a ≡ 3 (mod 9), b2 ≡ 4 (mod 9), b2 �≡ a + 1 (mod 27),

1, if 1 = v3(a) < v3(b), or

3 | a, a �≡ 3 (mod 9), b2 ≡ a + 1 (mod 9), or

a ≡ 3 (mod 9), b2 ≡ a + 1 (mod 27), s3 ≡ 1 (mod 2),

0, if 3 � a, or

a ≡ 3 (mod 9), b2 ≡ a + 1 (mod 27), s3 ≡ 0 (mod 2).

4. Proof of theorem. Let K be a quadratic field so that
K = Q(

√
d) for a unique squarefree integer d �= 1. (We remark that

our proof is also valid when d = 1 giving another proof that there are
infinitely many cyclic cubic fields with a power basis, see Dummit and
Kisilevsky [2].) We now describe briefly how our theorem is proved.
We construct infinitely many cubic polynomials {fk(x) : k ∈ S} in such
a way that the corresponding cubic fields {Lk = Q(θk) : k ∈ S}, where
θk is a root of fk(x), are all distinct and satisfy d(Lk) = disc (fk(x))
and d(Lk)/d = square. Thus {Lk : k ∈ S} is an infinite set of cubic
fields containing Q(

√
d), each of which has a power basis.
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We consider the following ten cases:

Case 1 : d ≡ 2 (mod 4), d �≡ 0 (mod 3).
Case 2 : d ≡ 2 (mod 4), d ≡ 0 (mod 3).
Case 3 : d ≡ 3 (mod 4), d �≡ 0 (mod 3).
Case 4 : d ≡ 3 (mod 4), d ≡ 0 (mod 3).
Case 5 : d ≡ 1 (mod 8), d �≡ 0 (mod 3).
Case 6 : d ≡ 1 (mod 8), d ≡ 0 (mod 3).
Case 7 : d ≡ 5 (mod 16), d �≡ 0 (mod 3).
Case 8 : d ≡ 5 (mod 16), d ≡ 0 (mod 3).
Case 9 : d ≡ 13 (mod 16), d �≡ 0 (mod 3).

Case 10 : d ≡ 13 (mod 16), d ≡ 0 (mod 3).

In cases 7 and 8 we let q be a prime such that

q ≡ 11 (mod 16), q � d.

We define

p(k) =




36d2k2 + 12dk + (3d + 1), case 1,
81d2k2 + 54dk + (9 + (d/3)), case 2,
36d2k2 + 24dk + (4 + 3d), case 3,
324d2k2 + 216dk + (36 + (d/3)), case 4,
36d2k2 + 6dk + ((1 + 3d)/4), case 5,
324d2k2 + 54dk + ((27 + d)/12), case 6,
648d2k2 + 18qdk + ((q2 + 3d)/8), case 7,
72d2k2 + 18qdk + ((27q2 + d)/24), case 8,
72d2k2 + 6dk + ((1 + 3d)/8), case 9,
648d2k2 + 54dk + ((27 + d)/24). case 10.

It is easily checked that in all cases the coefficients of p(k) are integers
so that p(k) ∈ Z for all k ∈ Z. Moreover,

gcd (p(k), 6d) = 1 for all k ∈ Z.

Further, the conditions stated in Proposition 2.3 are satisfied by the
coefficients of p(k) in every case. Thus, by Proposition 2.3, the set

S = {k ∈ Z+ : p(k) is squarefree and > 1}
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is infinite. Moreover, no two distinct values of k in S can give the same
value to p(k).

For k ∈ S, we set

fk(x) = x3 − ax + b,

where

(a, b) = (a(k), b(k)) =




(3p(k), 2(6dk + 1)p(k)), case 1,
(3p(k), 2(9dk + 3)p(k)), case 2,
(3p(k), 2(6dk + 2)p(k)), case 3,
(3p(k), 2(18dk + 6)p(k)), case 4,
(3p(k), (12dk + 1)p(k)), case 5,
(3p(k), (36dk + 3)p(k)), case 6,
(6p(k), 2(72dk + q)p(k)), case 7,
(6p(k), 6(8dk + q)p(k)), case 8,
(6p(k), 2(24dk + 1)p(k)), case 9,
(6p(k), 2(72dk + 3)p(k)), case 10.

It is easy to check that gcd (b(k)/p(k), p(k)) = 1 in all cases so that
fk(x) is p-Eisenstein for every prime p | p(k). Thus fk(x) is irreducible.
Let θk be a root of fk(x), and set Lk = Q(θk) so that [Lk : Q] = 3.
Clearly there does not exist a prime p such that vp(a) ≥ 2 so that we
can apply Proposition 3.1 to determine the discriminant d(Lk) of the
cubic field Lk. We note that

disc (fk(x)) = 4a3 − 27b2 =




22 · 34p(k)2d, case 1,
22 · 32p(k)2d, case 2,
22 · 34p(k)2d, case 3,
22 · 32p(k)2d, case 4,

34p(k)2d, case 5,
32p(k)2d, case 6,

22 · 34p(k)2d, case 7,
22 · 32p(k)2d, case 8,
22 · 34p(k)2d, case 9,
22 · 32p(k)2d, case 10.
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We have

s2 = 3, cases 1, 2,

a ≡ 3 (mod 4), b ≡ 0 (mod 4), cases 3, 4,

b ≡ 1 (mod 2), cases 5, 6,

a ≡ 0 (mod 2), b ≡ 2 (mod 4), cases 7, 8, 9, 10,

so that, by Proposition 3.1, we have

v2(d(Lk)) =




3, cases 1, 2,

2, cases 3, 4, 7, 8, 9, 10,

0, cases 5, 6.

Next,

a ≡ 3 (mod 9), b �≡ 0 (mod 3),
b ≡ 2−3d (mod 9), b2 ≡ 4−3d �≡ 4 (mod 9), case 1,

v3(a) = v3(b) = 1, cases 2, 4, 6, 8, 10,

a ≡ 3 (mod 9), b �≡ 0 (mod 3),
b ≡ 3d−2 (mod 9), b2 ≡ 4−3d �≡ 4 (mod 9), cases 3, 5, 9,

a ≡ 3 (mod 9), b �≡ 0 (mod 3),
b ≡ 3qd−2q3 (mod 9), b2 ≡ 4−3d �≡ 4 (mod 9), case 7,

so that, by Proposition 3.1, we have

v3(d(Lk)) =
{

4, cases 1, 3, 5, 7, 9,

3, cases 2, 4, 6, 8, 10.

Easy calculations show that in all cases
∏
p>3

1≤vp(b)≤vp(a)

p2 = p(k)2,

and
sgn (4a3 − 27b2)

∏
p>3

sp≡1 (mod2)

p =
d

gcd (d, 6)
.
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Hence, by Proposition 3.1, we deduce that

d(Lk) = disc (fk(x)), for all k ∈ S.

Thus, Lk has a power basis for each k ∈ S. For k1, k2 ∈ S with
k1 �= k2 we have p(k1) �= p(k2) and p(k1) > 1, p(k2) > 1, so that
p(k1)2 �= p(k2)2, and thus d(Lk1) �= d(Lk2) proving that Lk1 �= Lk2 .
Thus, {Lk : k ∈ S} is an infinite set of distinct cubic fields, each with
a power basis. Since each d(Lk)/d is a square, the splitting field Mk of
Lk contains Q(

√
d).
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