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Small Solutions of ¢x3 + -+ + ¢, x2 = 0

Zhiming M. Ou and Kenneth S. Williams

Abstract. Let ¢y, ..., ¢n (n > 2) be nonzero integers such that the equation

n
2
S <o
i=1
is solvable in integers x1, . . . , x, not all zero. It is shown that there exists a solution satisfying

n
0< > gilad < 201+ ul,

i=1

and that the constant 2 is best possible.

1 Introduction

As a consequence of a more general result, Birch and Davenport [1] showed in 1958 that if

@1,y .-, ¢, (n > 2) are nonzero integers such that the equation
n

(1.1) D i =0

i=1
is solvable in integers x1, . . ., x, not all zero then there exists a solution satisfying

n
Lip— —

(12) 0< 3 [gil? < @Dy gy - g,

i=1

where 7,_; is Hermite’s constant, defined as the upper bound of the minima of positive
definite quadratic forms in n — 1 variables of determinant 1. It is known that

5 o/ 64
(1.3) Y =2/V3, p=V2 u=vV2, =vV8 ye={(

3 )

see for example 3, p. 36].
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In this paper we prove the following improvement of Birch and Davenport’s result.

Theorem Let ¢y, ..., ¢, (n > 2) be nonzero integers such that the equation (1.1) is solvable
in integers X, . . . , X, not all zero. Then there is a solution of (1.1) satisfying

n
(1.4) 0< > |gilx; < 2[¢hy-- dul.

i=1

Moreover the constant 2 on the right hand side of the inequality (1.4) is best possible in the
sense that equality can hold.

To see that 2 is the best possible constant in (1.4) it suffices to consider the equation

(1.5) xH+xg++x —x, =0.

A solution of (1.5) having the least possible nonzero value of x} +x3 + - - +x2_, +x2 = 2x2
is (x1,%2, -+, Xy_1,%,) = (1,0,...,0,1). Hence there is a solution of (1.5) with x? + x3 +
et xE =2,

We remark that our theorem is easily seen to be true for n = 2. In this case we may
suppose that ¢; > 0 and ¢, < 0. Set g = (¢1, ¢2). As the equation ¢;x} + x5 = 0 is
solvable nontrivially we see that (¢;/¢)(—¢2/g) = (¢2x,/gx1)? is a square. Hence there
exist positive integers u and v such that ¢, /g = u? and —¢, /g = v*. A nontrivial solution
of ¢1x7 + x5 = 01is (x1,x,) = (v, u) and this solution satisfies

2
0 < [ lxi + |¢ala; = 2¢u°v = §\¢1¢2\ < 2|¢n o]
When n = 3 it was shown by Mordell [4] that Legendre’s equation

17 + oxs + p3x3 = 0,

when solvable nontrivially, has a solution in integers (x;, x2, x3) # (0, 0, 0) satisfying

| < VI0gagsl, el < Viggsl, x| < Vgl

A small omission in Mordell’s proof was provided by Williams [5]. Such a solution satisfies

0 < |g1|x + 2] + |B3]x5 < 2|Pr12b5],

which is the assertion of our theorem when n = 3.

For n > 4 our theorem is new. The theorem is proved in Section 4 after a lemma is
proved in Section 2 and a preliminary form of the theorem is proved in Section 3. The
calculation of the determinant of a particular quadratic form needed in Section 3 is carried
out in Section 5.

We remark that as indefinite integral quadratic forms in 5 or more variables have non-
trivial integral solutions, we have the following corollary to our theorem.

Corollary Let ¢1,...,¢, (n > 5) be nonzero integers not all of the same sign. Then there is
a solution of (1.1) satisfying (1.4).
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2 A Preliminary Lemma

Letay,...,a, (n > 2) be nonzero integers such that

(2.1) (ar,...,a,) = 1.
We set
(22) di :(alvai)a i:2,...,1’l,
dy=1,
(2'3) {di _ a; L
i = Tnfaenan L= 3eom
(2.4) Di:a’fz(al,...,ai), i=1,...,n

We observe that

(2.5) Dy =a;'a =1,

(2.6) Dy = (a1,a;) = dy,

(2.7) D, = a{’_z(al, cey ) = a’f_2,
(2.8) Dila™', i=1,...,n,
(2.9) Dilai%a;, j=2,...,i.

Fori = 3,...,nwehave by (2.2)-(2.4)

(al a§2> _( a a )
d;’ Di_, (a1, a) (ar,...,ai—1)

— 4
[(alaai)a(ah"'aai—l)]
(ala[a27"'7ai])
—dl.
For i = 2 we have -,
ar ay a ,
-, =(-1)=1=d.
(di Di—l) (d2 ) :
Hence
a 42 .
(2.10) d‘!(di’Dl,-l)’ i=2,...,n

As a consequence of (2.10) we see that

(2.11) didllay, i=2,...,n
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Next, fori = 3, ..., n, we have
= (a1, [az,...,a]) (by(2.3))

a
da’

= [(ala ai), (ah Az, ..., ai—l)]

_ (ar,a;)(ai,az,...,a;_1)

(ahalv L 7ai)
di Di— i—3
= (%/f;) (by (2.2) and (2.4))
(Di/al )
D,
D;’

so that D; = d;d/D;_, fori = 3,...,n. Also D, = d, = d,d;D, by (2.3), (2.5) and (2.6).
Hence

= aldi

(2.12) D;=dd!D;_y, i=2,...,n
From (2.5) and (2.12) we deduce that
(2.13) D; = dydydsdy -+ - did!, i=2,...,n.
Finally, from (2.2) and (2.10), we see that

a; a; a2 a, a"l_2 , .
2.14 2L =2, =d, i=2,...,
(2.14) (di d; Dil) (di Dy potTS "
so that we can choose integers u; (i = 2,...,n) and v; (i = 2,...,n) such that

i—2
a a; a .

(2.15) d, = Zui— iivi, i=2,...,n.

We are now ready to prove the following lemma.

Lemma Leta,...,a, (n > 2) be nonzero integers satisfying (2.1). Defined; (i = 2,...,n),
dl (i=2,...,n)and D; (i = 1,2,...,n) asin (2.2)—(2.4). Fix integers u; (i = 2,...,n)
and v; (i = 2,...,n) satisfying (2.15). Let y; (i = 1,2,...,n)and z; (i = 2,...,n) be
integers such that

(2.16) ay;i —aiyy =diziy, i=2,...,n.
Then there exists integers x; (i = 1,2, ..., n) such that
n_ k-1
(2.17) M= etk
k=1 K
n k—2
a;a )
(2.18) yi = wixi_1 + Z lDl VirlXe, 1=2,...,1,
k=i K
i—2 k-1
a; a .
(2.19) z; = —j Il)—kvk+1xk+di’x,~_1, i=2,...,n,
1

k=1
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where v,.1 = 1. In particular we have

V) X1
(2.20) =P : |,

Zn Xn—1
where P is a lower triangular integral matrix with
(2.21) det(P) = d>dy---d!.

Proof The proof shows how to construct recursively the required integers x1, . .., x,. The
first step determines integers x; and #; in terms of y1, ¥,, 2, such that

y1 =X + pt,
(2.22) Y2 = uxx) + %221‘1,

2y = djx;.
The second step determines integers x, and t, in terms of y3 and #; such that

2

a

= + A + 3
V1 VaX1 + p,V3X2 D3t2’

= Upxy + Bvyx, + Ut
V2 2X1 T+ p,V3Xy T Tp i,

(2.23) y3 = uzxy + Ly,

Z) = d2’x1,

z3 = —Fvx + djx;.
The i-th step (i = 2,...,n — 1) determines integers x; and #; in terms of y;,; and #;_; such
that

ikl i
_ 9 D 4.
}’1 - I; Dy Vi+1Xk t Dint tl7

a,arZ
D,

araifl .
" Vk+1Xk+Tlﬂt,‘, TZZ,...,1+1,

i
(2.24) V= X1+ D
k=r

r—2

a
& =—7 Z
k=1

—1

k
4
Dy

VirXg +dlx—1, r=2,...,0+1.

Step 1 The first step determines x; and ;. We choose
X1 = 2.

From
a

az ap az
d—z}’z - d—z)/l =2 =X = (d—2142 - d—2Vz> X1
we obtain
a a
d—z(}/z — X)) = d_z()’l — Vx1).
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RN £) = 1 there exists an integer #; such that y; — v,x; = —t1 and y, — upx) = ;—ztl.
Recalhng that d, = D, and d; = 1 we obtain (2.22). This completes the first step.

As (&

Step 2 The second step determines x, and t,. We choose

a a3alt
X2 = 7 Y3 — .
d3d§ Ds
From
aly as fl1 —dlx, — alu as d; v ) x
V3 — 3 = | 7 U3 — T —V3|X2
ds ds Dz ds d; D,
we obtain
as dy

a;
—(y; — =——(t; — .
a (}’3 U3%;) s Dz( 1 — V3x2)

As (E, ;’f g—lz) = dj there exists an integer , such that t; — v3x; = ﬁi;tz and y; — usx; =

“;)Tt . We now have y, ,, y3 and z, in the form given in (2.23). Finally

1
z3 = d_((ll}’3 —asy1)
3

! ML + 4 +a2t
= —\|a Uz X — —da X V3X: —_—
d3 1 3A2 D3 2 3 241 D 3A2 D32

asvy + ajus as a;
=——xt (== - == |x
ds ds ds D,

as
= ——VX1 + d§X2.
3

This completes the second step.

Stepi(i=2,...,n—1) This step determines x; and ;. From step i — 1 we have
i—1 gk ai—l
a
1= E Vi1 Xk T ———ti—1
y Di + D, i—1»
k=1
-1 i
: a,a, 2 .
Vr = Uk 1+ Vk+1xk+Ttifla r=2,...,1,
1

-2 k-
_ 1— +d! =2 '
a=— g p Vet A, T =2,

k=1
We choose :
i
=" aj+10; "
i — i+1 — i—1-
d1+1d,+1 Di+1
From ) )
i—1 i—1
a“ aiv1 4, g x ( @ G a )x
——Virl — 5 o tic1 = digXi = | 57— Uiyl — 5 —— Vi1 | Xi
din dis1 Dj din div1 D;
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we obtain .
i
ay ) oy Ging ) L
(y1+1 — UinXi) = (ti—1 — Vi1 Xi).
dit1 div1 D;
i—1
a a4 — A/ : 3 .
As (7=, §#5-) = dj,, there exists an integer #; such that
t _ay
i—1 — Vis1Xi = L
dindj,,
and -
i
y X — aj+10; "
i1 — Wi X = ————1;.
Di+1
Hence
i-1 g i
a’f ! N a! LM
y1 = E —— Ve Xk + —— | ViaXi + ———t
—~ Di D; dind;,,
=1
P )
all‘ ! N aj ,
= E Vi1 Xk 1.
D D;
=1 k i+1
Also forr =2,...,i wehave

D; dind

i+1

i—1 — —
aat—? a~? a,
Vr= UXp—1 F § D Vk+1Xk + ar Viy1Xi t 7 ti
k
k=r

i _ i
aa? aa;”!
= UXr—1 t+ E Vi+1Xk + ti,
— Dy D11
=r
which also holds for r = i + 1 in view of
i—1
ai+10,
Yitl = Ui X + —— 1.
Di+1

Further

dis1Zis1 = @ Yin1 — AinYi

i—1 i k—1 i
_ ai10, a ay
=a; | Ui X t ——1 | — dit1 E ——Vk+1 Xk + — i

Diyy — Dk Diyy
i—1 gkl P
1 1
= —adij+1 E —Vk+1Xk T <a1ui+1 - ai+1vi+1> Xi
— Dx D;
=1
i—1 k1

a; /
= —aj4 E Do Vkr1 % +diad, X
=1 Ok

)

619



620

3

Zhiming M. Ou and Kenneth S. Williams

so that
i—1 k1
ai+l a] /
Ziel =~ —— Vi1 Xk + diy X
i1 = Dk
This concludes the i-th step.
After n — 1 steps we have determined integers x1, . . ., x,—; and ,_; such that
-1 j_ _
” a]f ! N ay lt
125 Vi1 Xk T In—1
y Dy + D, n—1;
k=1
-1 _ _
n arﬂ’f 2 n—2
Vr = UXr—1 + § Vi1 Xk + th—1, T =2, ) 1y
— Dk n
=r
=2 k-1
ar a; ,
Z, = —— —— Vg Xk +dix—y, T=2,...,n.
d, Dy
k=1
Setting x,, = t,—; and v,,4; = 1 we obtain the assertion of the lemma. [ |

A Preliminary Proposition

In this section we make use of the lemma proved in the previous section to prove the fol-
lowing result from which our theorem will be deduced in Section 4.

Proposition Let ¢, ..., ¢, (n > 2) be nonzero integers such that

(i) (1.1) is solvable in integers not all zero,
(ii) every solution (xy,...,x,) 7 (0,...,0) of (1.1) hasx; 0 (i = 1,...,n).

Then (1.1) has a solution (x, . .., x,) satisfying

n
0< Z |ilx} < 24"y i - - .

i=1

Proof Let (xi,...,x,) # (0,...,0) beasolution in integers of (1.1). Such a solution exists
by assumption (i). By assumption (ii) x; # 0,...,x, # 0. Clearly at least one of the ¢; is
positive and at least one of the ¢; is negative. Suppose that exactly r of the ¢; are positive
so that

1<r<n-—1.

Relabelling the ¢;, if necessary, we may suppose that

(31) ¢1>07"'7¢r>07 ¢r+1<07"'7¢n<0-
Weseta; = x;/(x1,...,%,) (i = 1,...,n)so that (aj,...,a,) is a solution of (1.1) satisfy-
ing

(3.2) a0 (i=1,...,n), (ar,...,a,) = 1.
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Let y1, ..., y, and d(5 0) be integers which will be chosen later. Set

(3.3) u=> ¢y, v=-2) ¢y
i=1 i=1
Choose d such that
(3.4) dlu, d]|w
Set
(3.5) e L
d
We will choose y1, ..., ¥4, d such that (by,...,b,) # (0,...,0). The b; are integers such
that
(3.6) > b} =0
i=1
since

a4 i pib? = i ¢i(ua; +vy;)*
i=1

i=1

n n n
=’ Z gbiaf + Zm/Z diaiyi + V2 Z ¢iyl-2
i=1 i=1 i=1
=120+ uv(—v) +v*u = 0.

Set

(3.7) A=D"gilad =D gl == ¢iad = |pilal.
i=1 i=1

i=r+l i=r+l

IfA < 23—n7,’::11|¢1 -+ ¢,| then (ay,...,a,) is a solution of (1.1) satisfying
n r
0< Y |dilal =23 ia; =24 <2 7"yi b1+ ¢l
i=1 i=1

establishing the proposition in this case. We therefore suppose that
(3.8) A> 27T
and show how to choose yi, ..., y, and d (with d|u and d|v) so that (by,...,b,) is a solu-

tion of (1.1) satistying

(3.9) 0< ) ¢ib} <A

i=1
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Iy, ¢ib7 < 23_n73:11|¢1 -+ ¢y| then (by, ..., b,) is a solution of (1.1) satisfying
n r
0< Z |¢1|h12 = 2Z¢,b12 < 24_"'}/;1:11‘¢1 oy
i=1 i=1

as required. If Y1 ¢;b? > 237"~ ||$; - - - $,| We repeat the process on the solution

(by,...,b,). Continuing in this way, after a finite number of steps, we obtain a solution
satisfying the inequalities given in the proposition.
The remainder of the proof is devoted to showing how to choose y1, . .., y, and d. First

we introduce some notation. We set

(3.10) B=Y ¢y,
i=1
(3.11) C=> ¢,
i=1
(3.12) tt=ayi—a;y; (i=1,...,n), sothatt; =0,

T r
(3.13) B, = Z¢iail‘i = Z¢iaiti7
im1 i—2
r r
(3.14) Cr=)Y ot} =) oitl,
-1 i—2
n n
(3.15) L=> ¢t =) ¢t
i=1 i=2

n n
(3.16) M = Z piait; = Z piait;.
i=1 i=2

Next we deduce some relations between the quantities in (3.10)—(3.16).
From (3.7), (3.10), (3.12) and (3.13), we obtain

d a;y, +t;
o (459
i=1

r r
b4 1
= > gial + P > giaiti,
17 17
1=1 1=1

so that

(3.17) B= 2y + 2.
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From (3.7) and (3.11)-(3.14), we have

C= Z@ (ay1+t> ylz¢11 ?i:(ﬁiaitﬂr%i:@tf,
i=1 1z

i=1

so that

A 2B C
(3.18) c=tpeBy,

a 1 a

From (3.17) and (3.18), we deduce that
1 1 1

3.19 C--B=—|(C —-B).
( ) A ﬂ% ( 1 A 1)

Next, from (3.3), (3.12), (3.15) and (3.16), we obtain

n 2 2 n n n
a;yr +t; A 1
0= Yo () =0 S o Yo
— a ay ay “— ay “—
i=1 i=1 i=1 i=1
so that
(3.20) U= M+ —

From (3.3), (3.12) and (3.16), we have

n n
aiy +t -2 2
v= -2 E ¢ia; ( ,)/; l) = alyl E pia; — o E piaiti,

i=1 1

so that
(3.21) v=—"M.

From (3.17), (3.20) and (3.21), we obtain

B 2y 1 2B 1 2
ut—v=-5M+—=5L—-—M= 5L+ —5-(Ay; — aiB)M,
A aj aj mA aj ajA
so that
B 1 2B,
(3.22) u+-—v=—5L— M.

Next, from (3.7), (3.13) and (3.16), we have

n

Z ¢;a; <tl — ) Z ¢ia;t; — Bl Z qﬁla =M—B; — %(—A) =

i=r+l i=r+l i=r+l



624

Zhiming M. Ou and Kenneth S. Williams

and, from (3.7) and (3.13)-(3.16), we have

Z ¢zaz <tl - ) Z ¢1 i & Z ¢zaztz A2 Z ¢z

i=r+l i=r+l i=r+l i=r+l

B B?
= (L-C) - M- B + L (-A)

2MB, 1,
—L— —(c, - =B).
A ( PTA 1)
Thus

- B, \° 2B < B 1,
(3.23) L= Z d),‘ <Z’,‘ — A(Z,‘) + 7 Z qS,-ai (ti — Z[l,' + | Cp — XBI

i=r+l

and

(3.24) M = Z ¢;a; (ti - %a,) .

i=r+1

Hence, from (3.21)—(3.24), we deduce that

2 B
(325) = - Z (blal <t1 - 1) - a Z |¢i|ai <ti - fﬂl,’)

i=r+1

and

2
(3.26) Z bi (tl -2t l) +% (cl - ;Bf) .

i=r+l 1

We are now ready to examine Zi:l ¢;b?. Appealing to (3.5), (3.7), (3.10), (3.19), (3.25)
and (3.26), we have

a4 i ¢ibF = i Gi(ua; +vy;)*
i=1

i=1

r r r
2 2 2 2
=u Z @ia; + 2uvz Qiaiyi +v Z iyi
i=1 i=1 i=1

= Au? + 2Buv + Cv?

:A<u+§v>2+<C—%B2>v2 |
45 - 2) - (o 34)
+— <zzr;l || a; (tl )) (cl —~ %Bf) :
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Now, by Cauchy’s inequality, we have
B, B\’
(2 |¢,a,<,~— )) (3 16de) (AZ 61 (ti—fal—) )
i=r+1 i=r+1 i=r+l

so that by (3.7) we have

IN
»—-m.:;| -

r n B 2 1 2
dzg@b? (i;1 |3 (l‘i - leli) — (C1 - XB%)>
2
(S (s ) ) (- 4)

2
A B\’ 1.,
= — il 6t — —a; +(C;, — —B .
(S5 (o )+ (e 5))

From (3.13) and (3.14) we have

Q

didsaia;
¢ - L5- Z¢,( )t,.z_ S G,
2<i,j<r
i
Hence

fltor ot = 3 1oil (1= B) + (ac — BY

i=r+1

= i |9i] (ti - %31)2 + % ((é ¢ia?> (kzrz ¢kt1§> - (kzrz ¢kaktk)2)

i=r+1
n r
a; 2 ¢la%
= Z |9i] (ti - X’Bl) 1 > oty
i=r+1 k=2
1 r r r r
A ( Gaiduts — Y > ¢iaiti¢kaktk)
i—2 k=2 i—2 k=2
n r
a: 2 ¢1a%
= Z |9l (ti - ZIBI) ] > ot
i=r+1 k=2
1

(pia; Pty + drapdit; — 2iait; Praxty)

1,k:2
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- ai \2 | hial O
= § |#i] (ti - KBI) + 1 E ¢ktlf
k=2

i=r+l

1 ¢ )
ey Z Pipi(aity — axti)”.
i,k=2
ik
Thus f(t,,...,1,) is a positive-definite quadratic form satisfying
(3.27) d’ Z ¢ib? < A (f(tay- - 1)
=4 ) )

i=1 1

It is shown in Section 5 that

2
(3.28) det(f) = “Hpr6z - .

Next, with the notation of Section 2, we have by the Lemma

t,':diZ,', 1=2,...,1,
and
22 X1
. —p ’
Zn Xn—1

where P is a lower triangular integral matrix with
detP=4d;---d.

In addition

n—1 _ —
aa"—2 aa)”? )
Vi = Uixj_1 + g Vi1 Xk + ———t—1, 1=2,...,1,
X Dk Dn
k=i
n—1 _ —
a’l‘ ! N ay 1t
1= — Vik#1 Xk T ——tn—1-
n=2, D, "

k=1

Thus

n n
Zfbiy? = Z@)ﬁ =Bixi +Byxa + - + By1 Xy + 1
i-1

i=1

n—2 1
"> 61 (mod2)
"=l

for some integers B;. Since 0 = Y.' ¢a? = > ., ¢ia; (mod2) we have u =
i, ¢y} = Bixi + Boxy + -+ + By_1x,1 (mod 2). If B,_; is odd, we choose x,_; =
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Bix; + Byxp + - + By_pxy—2 + 2x,_, so that u = 0 (mod 2) and in variables x; =
/ /
X1y ooy Xp_y = Xy—2,X,,_;, We have
Z) Xy
=P |,
/
Zy X

where P’ is another lower triangular integral matrix with

det(P’') = 2 det(P).
If B, is even and B,_; is odd, we choose x,,_, = Bix; + - - - + B,_3x,_3 + 2x],_, so that
# = 0 (mod 2) and in variables x; = x1,...,X,_ 5 = Xy—3,X%,_5,X,_| = X,_1, we have
the same result as above. Continuing in this way, if one of the B; is odd, we obtain a lower

triangular integral matrix P’ such that

z X

, det(P") =2d,d;---d),

and, for any integers x/, we have u = ZLI ¢iy} =0 (mod 2). If all of the B; are even we
have such a P’ with det(P’) = det(P) = did} - - - d.

Now f(ty,...,t,) is a positive definite quadratic form in the variables x{, x3, ..., x_,
and its determinant is by (3.28)

2
(3.29) det(f(x],x0 .., x0_ 1)) = %|¢1¢2-.-¢n|(2d2'---d,; dy--dy)? or
a% / / 2
Z‘¢1¢2"'¢n|(d2"'dnd2"'dn) .
By the definition of 7y, _1, there exist integers x{, . . ., x, _;, not all zero, such that
402 1/n—1
(3.30) 0< flta, .. tn) < Yuoa |:71|¢1¢2¢n|Di:| )

So taking d = 2, we have by (2.7), (3.27) and (3.30)

2/n—1
4a2(n 1)
Z(bl RS 4a4 V- 1{ ——d1¢ - ]

23—}’1 2/}’1 1
:A{A ’Yn1|¢¢2 @ <A.
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Moreover, as (x],...,x,_;) # (0,...,0), we have (f;,...,8,) # (0,...,0). We now show
that b; # 0. For if b; = 0 then, by (1.1), (3.3), (3.5) and (3.12), we have

n n n
Dottt = it =Y dilaryi —an)’
i=2 i=1 i=1
=ai Yy ¢iyi —2amy Yy diayityiy bl
i=1 i=1 i=1

=alu—2a,y, (_Tvl>

= ay(ua; +vy1)

= da1b1

=0.
Hence (1.1) has the solution (0,t,,...,t,) # (0,...,0) contradicting assumption (ii).
Thus b; # 0 and

0< Z pib? < A.
i=1
Hence (3.9) holds and the proposition follows. ]
4 Proof of Theorem

Let ¢1, ..., ¢, (n > 2) be nonzero integers such that the equation
(4.1) $1x] + -+ huxy =0
is solvable in integers X, ..., x, not all zero. Let ] be the largest integer for which there

exists a solution (xi,...,x,) # (0,...,0) in Z" of (4.1) with [ of the x; equal to 0. (If every
nonzero solution in Z” of (4.1) hasx; # 0 (i = 1,...,n) then I = 0). Clearly

(4.2) 0<I<n—2.
Relabelling ¢y, . . ., ¢y, if necessary, we may suppose that such a solution has
(43) Xp—ip1 =+ =X, = 0.

Set k = n — I so that from (4.2) we have
(4.4) 2<k<n.
Then the equation

(4.5) G1x +- o+ G = 0
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is solvable in integers not all zero, and moreover, by the maximality of I, every solution
(x1,...,x%) # (0,...,0) of (4.5) hasx; # 0 (i = 1,2,...,k). Reordering ¢y, ..., ¢, if
necessary, we may suppose that ¢; > 0 and ¢, < 0. Suppose k > 6. It is known (see for
example [2, pp. 69-70]), that there exist integers y, . . ., 5 not all zero such that

Gyttt syi = 0.

Then the equation (4.5) has the solution

(x5 oyxk) = (Y15 -+, ¥5,0,...,0) #£ (0,...,0)
a contradiction. Hence k < 5 so that (4.4) can be improved to

2 <k < min(5,n).
If k = 2 or 3 then, by the remarks in Section 1, (4.5) has a solution satisfying
{0 < (61l + 6213 < 2/616], k=2,
0 < [p1]xf + [2]x3 + |p3]x3 < 2|p1hagps|, ifk =3,

and thus

(x1,%,0,...,0), ifk =2,
(150 x0) = .
(XI,X2,)C3,0,...,0), lfk:3,

is a solution of (4.1) satisfying
(4.6) 0 < [l + - + [l < 2/~ bul-

If k = 4 or 5 then, by the Proposition of Section 3, (4.5) has a solution satisfying

0 < |1 |x% +eet \¢4|xi < ’733|¢1¢2¢3¢4| =2|P1203¢4|, ifk=4,
0 < |di|x] + -+ |ps]x3 < 27'v}|p12dspadds| = 2|pr1dagpsdups|, ifk =5,

by (1.3). Then, exactly as for k = 2 or 3, (4.1) has a solution satisfying (4.6). [ |

5 Calculation of det(f)
Recall from (3.13) that B; = Z::z ¢;a;t;. Under the transformation

ti, i=2,...,1,
T, = . .
{» 2B, i=r+1,...,n
the form

flta, .. tn)72|¢|( ——Bl) +Z¢,( )t 72¢¢1aa1 ),

i=r+l i,j=2

i#]
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which was defined in Section 3, becomes the form

B r (biaz ) n , r
oo T = Y00 (1= 20) 4 3 ot - Y
=2 i=r+1 i,j=2
i#]
Clearly we have
T, ty
=S
T, t,
where the (n — 1) X (1 — 1) matrix S is given by
I, 0
S= . eeeer
* Iﬂ—f’
Thus detS = 1 and so
(5.1) det(f) = deg(g).
Now
C : 0
det(g) — det .................. s
0 o
where C is the matrix of the form
r 2 T b
Yo (1= 1= 3 e
i=2 ij=2
i#]
and C’ is the matrix of the form
Z || T7.
i=r+l
Hence
(5.2) det(g) = detC detC’ = |¢y41| - - - || det C.
Now
C = (¢ij)ij=2,r>
where
Y
Cii(bi(l%)a i:2,...,r,
Cij - _¢i¢jaiaj7 _27 0 l # ]

¢i¢j:iaj T,
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Removing a common factor of ¢;a; /A from the i-th row of C fori = 2, ..., r, we obtain

(f2---¢)(az---ay)

e det D,

(5.3) detC =

where D = (d;}); j=2,...,r is given by

A
di == —¢ia;, i=2,...,1
ai
dij:—quaj, 1.7]':2,...,T7l.7£j.
Removing a common factor ¢;a; from the j-th column of D for j = 2,...,r, we have
(5.4) detD = (¢ - ¢y)(az - - - ar) detE,

where E = (e;j); j—2,..r is given by

ﬁ1=0, i:2,...,r,
fij=eij, 1, j=2,...,1

1

0
Clearly F is formed from E by adjoining a first column ( . ) and a first row (1 1...1).

0
Hence

(5.5) detE = detF.

Adding the first row of F to each of the other rows, we obtain

(5.6) det F = det G,

where G = (g;;)i,j=1,...,r is given by

gn=1, i=1,...,1
glj:j7 j:27"'7ra
gii:(j)i_aiz’ 727‘ y 1

gl]:07 i?j:27"'7r7
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Forming a new first column of G as
2 2
(col1) — ¢jf2 (col2) — - — ‘z’;‘“f (col 1),
we obtain
(5.7) det G = det H,
where H = (h;;) is given by
I ot
hil - 07 27 3 1
hl] - 17 ] - 2, )y
hii‘ﬁ, i=2,...,1
hij =0, L,j=2,...,1,1F# ]
Clearly, as H is upper triangular, we have
detH = 1_¢2_a% ..... i i i
A A )\ 6.3 Ga2 )
that is
a? _ _ _
(58) detH — (%) ANy 6) ).
From (5.1)—(5.8) we deduce that
2
a
(5.9) det(f):Xl|q§1-~-q§n\,
as asserted in (3.28). [ |
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