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ABSTRACT

Let a, b, ¢ be real numbers with a # 0. The explicit evaluation of the
infinite series

=] oo
1 (-1
Z and+btn+e it Z an?+m+c
n=-—0co n=—0c

ani+bn+ec#0 an?+tn+c#0

is carried out and applied to the evaluation of double infinite series
of the type specified in the title.

1. Introduction

Recently Li Jian Lin[4] determined the sum S(a,bd) of the infinite
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: o —1)n+1 y
series 2, La?})lﬁ= where a and b are real numbers with a > & > 0.
n - _w e
n#0

Prior to this evaluation a number of authors [1}, [3], [5], [7] had found
the value of S(3, 1), which had occurred originally in the work of Turan

{9]-

We begin by giving a simpler determination of S(a,b) than that in
[4] by making use of the infinite partial fraction expansion of cscnz (2
a complex number):

I, &0 sl d 1
s ma= 5+ -1 ) ¢z @

z—n z+n
where Z denotes the set of integers.

Theorem. (Li Jian Lin [4]) Let a and b be real numbers with a # 0
and bfa ¢ Z. Then

i a_fa-;_-lk)%z- = -i—(a/b—-'n' csc brr/fa).

= -0

n#£0

Proof. We have
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= —%(W csc br/a — afb). O

Using the ideas of this proof and the infinite partial fraction expansion
of cot mz:

wcotn'z=%+i( - + : ) (z ¢ 2) (2)

i\z—n 2+4n
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we obtain the following generalization of Lin’s theorem.

Theorem 1. Let a,b, c be real numbers with a # 0. Let o and 3 be
the roots of the quadratic equation az® 4+ bz +c=0. Then

¢ —«(002&'”_;;“!3“)1 ifa:,éﬁ, (2% ¢ Z, ﬁ¢ Z,

a(alﬁ)?'l’zzj;&gg! ifa%ﬁ: a e Z= ﬁ¢ Zs

o0 1

> ey mar el Ty fa#p, a€Z BEeZ,
an® :-:u_::;eo 3 cs;:?mr’ if @ = 3 ¢ Z,
| Z, ifa=p¢€ 2z,
and
[ mleeamosefn) ifa#B, agZ B¢2
- LU+ IRl ifa#f, acZ (¢2
Lo o] _1 n 1a ~ P ) 3
Y It =) S ifa#p, a€2 fe2,
an®tintez 0 -,r?csca:'cotmr, ifa=ﬁ§éZ,
| (-1eHE, ifa=g¢Z
o0
Proof. We just treat _):_:_m e whena # f,a ¢ Z,8 ¢ Z,
am3+:n+cy£0
as the remaining cases are very similar. In this case we have
i 1
e an?t+bntc
an? +bn4cFE0
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oo a(n — a)(n — f)
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EE "Z( a)(n - 3) +(n+a)(n+6))
1 1 1 1
=aaﬁ_aa ﬁ)z(a n a+n_ﬁ—n“ﬁ+n)
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iy a;ﬁ _ a(al_ﬁ) ((ﬂ'cot - é) - (ﬂ'cot B — %)) (by (2))

_ —m(cot am — cot )
o=B) =

As a check on our calculations we note that Theorem 1 is consistent
with the relation

& LI S G\ PR 1
e an?+bntc L2 an?+bn+c L2 dan?+2m+c
an? $bn+ec#£ 0 an Fbnfec£d 4an? 4 Un+c#£ O

2. Applications of Theorem 1

As an application of Theorem 1, we make use of it in the evaluation
of the series

1)"‘

Ul(b) = m';:oc m2+b2n2:
) )m+n

) = 3 T
oo ( l)n

0'3(b) - mr;_rm m2+b2n21

where b is a positive real number and the prime (') indicates that
(m,n) = (0,0) is omitted. More general series than these have been
treated by Zucker and Robertson [11] and Zucker [12] by different tech-

niques. It should be noted that the series E 5 W diverges as
mn=—0od

i' 1,1 E' 1, 1 > 1
m,ﬂ-_-—oom2 + b2n? (1 = b2) mn=—ocd m? + n? = (1 + b?) p=1(mod 4) p}
since every prime p = 1 (mod 4) is the sum of two integral squares and

theseries Y 1 is known to be divergent.
p=1{mod 4) p
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The roots of 22 + b2n? = 0 are o = ibn and § = —ibn, which are
distinct and non-integral provided n # 0. Hence, by Theorem 1, we
have for n # 0

S DR T (esc(ibnn) - csc (—ibmn)
,,n=_c,c|'.*n?—i—b2'n_2 - 2b ¢ o (-~tbmn))
= % csc (tbmn)
B W
~  bnsinh(brn)’
and so ( 1y o o "
T
" ___zzm m;w mZ+ b2 b nz=:1 nsinh{brn)’
n#£0
Thus
asd _l)m oo o0 (_l)m e (_l)m
B B _m
0= ¥ rwms 2L et 2w
n#0 m#0
that is 5 | 5
T 1r
b -
a(5) = 3 Z:l nsinh(brn) 6 @)
Similarly we can show
_ : (_l)m-i-n _ _2E oo (_l)n N Zri
gy m’,fv;“_ om2+ b2 b :A:‘l nsinh(brn) 6 @
For o3(b) it is sufficient to observe that
: 1
a3(b) = z1(1/0). (5)

Next we evaluate Z mr— and E mnh(m We set A = b?, s0

that b = VA, andq=e ””—e‘“‘/— sothat0<q<1. Then
= 1 e 1 1
T = 9N
; nsinh(bmn) nz=:1 n (eb™ — e~¥™)

1
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= 92 i l i e—b‘rm{‘Zm—l)
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that is

oo %
Z:l nsinhl(b*rm) ——2log I:[l(l ")
Similarly we find
5" ol [T+ ).
= nsinh{brn) ']
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(7)

Ramanujan [6, eqns. (1), {2)] has defined positive algebraic numbers

gx and G, where A is a positive rational number, by

o0

H (1 - q2m—l) s 21/46_%@9,\, H (1 4 q2m—1) — 21/48'%4&ny (8)

m=1 m=1

and noted the properties [6, equns. (5), (6), (7))

gax = 2/4,G,
Gr = G, /gy = Ga/xs
(GG —9d) = 1/4

Thus, from (6), (7) and (8),we obtain

Theorem 2.
,12 nsioh(brn) 12 log(V/2 g&),
o0 _1 n bﬂ-
2. e log(vV2GZ).

nsinh(brn) 12

n=1

(10)

(11)
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Then appealing to (3), (4), (5), (9), (10) and (11), we deduce

Theorem 3.

L ) (L SO
m, nz—;.mmz + H2n2 b log(2g52), (12)
i! ( 1)m+n ___10 (2G ) (13)
mn——wm2+b2 2 g b2 /1y '
ey P T
mg’.mm%bw 7 108(6i2Gia). (14)

The quantities gy and G, are given by (see [6, p. 27])
a=2"1A(/=N), G=2Y(V-D), (15)

where the functions fi(z) and f(z) are defined in terms of the Dedekind
eta function

n(z) = e/ H — ™) (z=z+iy, y>0)  (16)
by
A=, j-ewlE DB

see for example [10, p. 114]. Tables of f,(v/—X) and f(v/=2X) for certain
positive integral values of A are given in [10, Table V1] and values of gy
and G, in [6, Table I]. From the last equation in (9), we see that the
quantities gy and G are not independent. Given one of them we show
how to find the other. Writing the last equation in (9) as

463G — 493°G5 -1 =0, (18)

and solving (18) for G}, we obtain

N 'L Sk

. 294
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However, G, is real so that
1/8

12+ 24.+1

2g%

Further, rewriting (18) as
4G30y° —4Gg3 +1 =0,
and solving for g8, we deduce

G2+, /G _1 20

8 —_—
9 2G1

We now determine the correct sign in (20). As g is real we must have
Gy 2 1. (21)

From this point on we assume that A > 1 since we shall apply our
results with X a positive integer. Clearly, from (8}, we see that g, is a
strictly increasing function of A so that

D>q (A>1). (22)

From Table VI in [10] we have f(v/=1) = 2'/% so that G; = 1 by (15).
Hence, by (20), g8 = 1/2 so gy = 27%/8, and thus (22) becomes

p>278  (A>1). (23)

Assume now that there is a value of A{> 1), say A = A, for which the
minus sign holds in (20). Then, appealing to (21), we deduce

o o OB OET 1
- 2G5, 2G4, (G2 + /6% - 1)
which contradicts (23). Hence the plus sign must hold in (20} for A > 1,

that is,
1/8
GR+/G¥ -1
g ( 2 A ) _ (24)

2G5

1
<_:
— 2
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Appealing to the first six values in Table VI of {10], we have

fVT) =24, (V=) =24, f(V=8) =217,
AN =28, f(V=E) = (L + VB4, fi(vV=6) = (4+2v2)/°

where the value of fi(v/—4) has been replaced by its correct value.
Thus, by (15), we deduce

Gi=1, go=1, Gy =2"",
Gy =28, Gy = 2741 + VB4, g =274 (4 +2v2)V8.

Appealing to (19) and (24), we obtain
g1 = 2-—1{8, G2 — 2—1{8(\/5_!_ 1)1/8, g3 = 2—1/6(2 + \/5)1/8,

Gy =2"31%1+V2)W4, gs = 9-1/4(3 4 V5 + 24 /9 + 2518,
Ge =271+ V2) (2 + VB (V2 + VB)E.

Making use of these values in Theorem 2 and 3, we deduce

o 1 m 1
V- St
né:l nsinh(7n} 12 4 o8 2,
> (=" o 1
A LT Zog 2
nzlnsinh(?m) g —g B
— =log 2,
nz_:lfn,smh V2 mn) B L e
& (-1)* NI 1
=Y Zlog(l+v32) — - log 2
nz__.:lnsmh(ﬂarm) 12" 40g( +V2) 4 8
= 1 v3_ 1
=Y Slog(2 ——1 2,
nz_:lnsinh(\/gqm) 2" 4 o8(2+v3) o8
i L =‘/§7r—--2-10g2
n_lnsmh(\/_ n) 3 ’
nz:nsmh(%m) _E"Zlog 2
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i nsfnhl()ztm) - % % log(1 + V2) — ﬂlog 9,
insmh\/gﬂn)z_l\/:g % 3+\/—+2\/£E_)
,,,21 nsmh(\/E,m) =127 "3 log(1 + v/5),
.,glnsinh(\/éﬂn) =137 5 og(4 + 2v/2),

) (~-1)" _ __\/E B l

nz-_-:l nsinh(vBwn) =357 71 log 2

1 1
+E log(1 + v2) — 1 log(2 + V/3) — i log(v2 + V/3),
and the following values of a1 (b), o2(b), 3(b) for b = Vi A=1,2,...,6

ai(l) = —% log 2,

01(\/5) = ——J-—log 2,

1(vV3) = 3\/glog 2~ 2\/_ log(2 + V/3),
a1(2) = —§£ log 2,

o1(VB) = —2—-\/—3 log(3 + V5 + 22 + 2V5),

27 m

o1(VB) = W log(1 + v2) — 7_610g 2,
g9(1) = -wlog 2,

(VD) = ~5oslog(2+2v2),

0a(V3) = —%log 2,
oa(2) = -% log 2 — —Elog(l +V2),

o2(VE) = ——%log(lﬂ/ﬁ),
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a2(vB) = —m'log 2+ W log(1 + v2) - mlog@ +v/3)
—mlog(\/i-f- \/5),

o3(l) = 7 log 2,

o3(v3) = —%10g(—2+2\/§),
o3(V3) = —%log2+%log(2+\/§),

o3(2) = -g log 2 + glog(l +v2),

a3(V5) = -% log 2 + E\E/_g log(3 + V5 +2v2 + 2v/5)

+-:/r—5log(l+\/5),

o3(v6) = Tovg 82t mlog(l +V2) + mlcg(z +3)

+§—% log(V2 + v/3).

The tables in [6] and [10] enable us to determine a4 (b), o2(b), o3(b),
where b = /), for all positive integers A in the range 1 < A < 100
(except X = 53,54, 59,61, 74, 79, 83, 86, 87, 89, 95) as well as for certain
values of A > 100. For example, as \/§f1(\/—58)2 =5+ /29 (10, p.
723], we have g2, = 5—":3@ by (15) so that log(2g8) = log(27 + 5+/29)
and thus by Theorem 3

= ‘ (_l)m T
= — 1 7 2
m‘?g_wm,‘, T > 0g(27 + 5v/29),

a result which is stated explicitly in [11, p. 1225).
We remark that by applying Theorem 2 to the obvious relation

5 ey St - £
a=1 nsinh(bmrn) <= nsinh(brn) = 4 nsinh(2bmn)’

we get the first of Ramanujan’s properties in (9), namely,
gar = 2'4g,G,. (25)
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Then, from (19) and (25), we obtain

1/8
812G + \[6agRC 4 1
s ( IS SY gy L _ (26)

4g1G4

Formulae (25) and (26), in conjunction with Theorem 3, allow us to

o0 o0 o]
" : —1ym F g_llm+n ’ E_lln
determine Z_: mr!+4,\n! 2 Z_: me4+4ine? d Z: mE+4An from
mn=—o0 mn=—oco mn=-—0c0

gx and G).
By subtracting (11} from (10) in Theorem 2, we obtain

= 1
2 Gnr Dembr@n D)~ CEGR/9)
so that for example
i . = -1—10 2
= n+ 1) sinh(w(2n + 1)) ;. B &

Adding (12), (13) and (14) in Theorem 3, we obtain

L=+ ]
(=)™ 4+ (=1 + (=1)™"  2n
T A S R

This result can also be obtained directly as a simple consequence of
Kronecker’s limit formula ([2] or [8, p. 14])

lim i’ -—-—1--*-— - 1 ist: 28
3_1.1+ W g (m2 + An?)s \/Xs 1 exists. (28)
For s > 1 we have
o) {14 =Lk (—1)"} ) 4 |
r e f
m,r&z=:—00 (m2 + /\1}.2)8 - m,n§=:—co ((2m)2 4 )\(Q-n,)2)s
1 s 1

—_ L
T 922 Z (m? + An2)®’

mn=—c0
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so that
a-o’ ((—1)m+(_1)n+("1)m+n) _ L _ m; 1
m,ng—-oo (m? + An?)* - (2"’"2 1) m,g_co (m? + An?)*’

Now for s close to 1 we have

1

T 1 = —2(log 2)(s — 1) + O({s — 1)?),

and by (28)

2, 1 _ 7 1
PO - Evo kv, SFE Rl

so that

oo

1 : 1 —2x log 2
(F=-1) Y = ol

mn=—oc

Letting s — 1% we obtain (27).

Finally we mention that by applying Theorem 1 to positive-definite,
binary quadratic forms am? + bmn + cn? other than m? + An? we can
obtain results like

= -1)™ 4
x i) L log 2.
3v3

2 2
ma=—oo T +mn-+n
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