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Abstract

Let K be a cyclic quartic field. A necessary and sufficient condition is
given for K to belong to the splitting field of some quintic trinomial

%% + ax + b with Galois group Fyg .

1. Introduction

We denote the splitting field of f(x) € @[x] by SF(f(x)). Recently a
characterization was given by Spearman, Spearman and Williams [5] for

a quadratic field & to belong to SF (x5 +ax +b) for some quintic

trinomial x® + ax + b with Galois group Dy (the dihedral group of order

10). In this paper, we consider the analogous problem for cyclic quartic

5

fields and quintic trinomials x° + ax + b with Galois group Fyy (the

Frobenius group of order 20).
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We recall that a cyclic quartic field K can be given uniquely in the
following standard form [1]:

K= Q(JA(D + BYD) j 1.1)

where A, B, C, D are integers such that

A 1s squarefree and odd, (1.2)
D=B2+C%is squarefree, B > 0, C > 0, (1.3)
(4, D) =1. (1.4)

An algorithm to put a cyclic quartic field in standard form is given in [2].
We make use of this algorithm in proving the following theorem in
Section 2.

Theorem. Let K be a cyclic quartic field given in standard form (1.1)
with A, B, C, D as specified in (1.2)-(1.4) except that if B-2C =

0 (mod 5), we choose C < 0 instead of C > 0. Then there exists a quintic
trinomial x® + ax + b e Q[x] with Galois group Fsy such that K <
SF(x5 + ax + b) if and only if

A <0, p(prime)| A = p =1(mod 4). (1.5)

If (1.5) holds, then there are integers X and Y such that

|A|=X%+Y?% X -2Y # 0(mod5), (1.6)
and
K c SF(x® + ax + b) 1.7
with
o - o(bo— 42), b - —4(11e + 20), (1.8)
c” +1 c”+1
m (m
c=|— € = sgnL— , (1.9)
n n
and

m+ni = (2-1)(B+ Ci)(X +Yi)? (1.10)



CYCLIC QUARTIC SUBFIELDS OF THE SPLITTING FIELD ... 661

2. Proof of Theorem

Suppose x° +ax +b e Q[x] has Galois group Fyy and K c

SF(x% + ax + b). Then, by [3, Theorem], there exist ¢ (= 0) € @, e (= 0)
€ @ and € = +1 such that

5¢4(3 - 4ec) ~ 4e%(11e + 2¢)
a = —— = e

> , b = 2.1)
c”+1 c“+1
where
¢ +1 =52 for any t € Q. (2.2)
By [4, Theorem], we have
- e
A:Q'J—5—(l+28€) : }
c“+1
\
As K is cyclic
K=Q \/—5i(1+2£c) 2 2.3)
c”+1

for both choices of sign. Setting ec = m/n, where m and n are coprime

5
-5—(2m + n) ,*
‘/ m? + n? ]
so that as \/5(7712 + n.2) e K, we have
K = Q[\/— 25(m? + n?) - aom + 5n)\/'5(m2 +n?) ]

integers, we obtain

K=Q

Writing

Q(J— 5(5(7712 +n2)+(2m + 71)\/5(7712 + n2) ) ], if(2m+n,2n-m)=1,
i m?2

g

o : .

+n%  (2m+n) [m?+n? .

— - . if@2m+n,2n-m)=5,
5 5 5
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we see that A = —5 in step 1 of the algorithm in [2]. Since the algorithm

can only change A by primes congruent to 1 modulo 4 and does not

change the sign of A, we see that K satisfies (1.5).

Now, suppose that K is a cyclic quartic field given in the standard
form (1.1) with A, B, C, D satisfying (1.2)-(1.5) with the modification to

the sign of C specified in the theorem. In view of (1.5), we can define

integers X and Y by
|a|=X2%+Y2
As A is squarefree, we have

(X,Y)=1.

Further, if X - 2Y = 0(mod 5), we replace Yby — Y so that

X —2Y # 0(mod 5).
Since
2+ijlu+ive 5|lu-2v
our choices for C and Y ensure that
2+1 1 B+Ci, 2+1) X +Y1.

Define (m, n) € @ x @ by

m+ni = (2-1)(B+Ci)(X +Yi)>

Clearly,
2+t m+m
in view of (2.7). Taking norms in (2.8), we obtain
m? +n? =54°D.
Next, we show that

(m, n)=1.

(2.4)

(2.5)

(2.6)

2.7

(2.8)

(2.9

(2.10)

(2.11)
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First we suppose that 2| (m, n). From (2.10) we see that 22 | 5A%D,

which is impossible as A is odd and D is squarefree. Secondly, we suppose
that 5 | (m, n). Then we see that 2 + ¢ | m + nt, contradicting (2.9). Next

we suppose that q | (m, n), where q is a prime with ¢ = 3(mod 4). Then
from (2.8) we see that ¢ |(B,C) or gq|(X,Y), -contradicting
(B,C)=(X,Y) =1. Finally, we suppose that p | (m, n), where p is a
prime with p = 1I(mod 4) and p # 5. Then p = nt, where n and T are
conjugate Gaussian primes not associated with 2 + ¢. Thus, from (2.8), as
(B,C)=(X,Y) =1, we have, after interchanging the roles of n and 7 if
necessary, © | B+Ci and 7| X +Y:. Taking norms we deduce that
p|B>+C? and p|X%?+YZ% Hence p|(A, D), contradicting that
(A, D) = 1. This completes the proof of (2.11).

Next, we show that

m=#0,n=0. (2.12)

If m =0, (2.10) gives n? =5A42D. Since D is squarefree, we must have
D=5 and n=1+5A4. Thus (m,n)=(0, £+5A4) =5/ A| contradicting
(2.11). The argument is exactly the same if n = 0

We now choose

g = sgn(%j (=+1), ¢ = n (> 0), (2.13)
o= 5(39— 4ec) R 4(1918 + 2c) , (2.14)
c“+1 ¢ +1
and set
fx)=x% +ax+b (2.15)

First we show that f(x) is irreducible over @. If not, by [5, Prop. 2.4],

we have

() c=3/4,e=1 or (i)c=11/2,¢=-1
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In case (i) we have m/n = 3/4 and so, as (m, n) =1, (m, n) = (3, 4) or
(-3,-4). Since 2+1 |3+ 41 we have 2+1|m+ ni, which contradicts
(2.9). In case (i) we have m/n = -11/2 so that (m, n)=(-11, 2) or
(11, - 2). Since 2+ i |11 -2 we have 2+i|m +ni, which contradicts

(2.9). Hence f(x) is irreducible over Q.

Secondly, we show that the Galois group of f(x) is Faqy. Since

9 m? +n? 5A%D
c“+1= 5 = 5 #
n n

5t2 forany t e @,

this follows from [3, p. 990].

Now, by [4, Theorem], the unique (cyclic) quartic subfield of SF (f(x))

L:Q[‘/;—(1+Zsc) 25 }
c“+1
=Q £5i(1+2£c) 25 ]
c“+1
=Q "—5+(2m+n) ——25—9]
m- +n”

= Q(\/— 25(m? + n?) + (10m + 571,)\}5(1112 +n?) j

1S

We now apply the algorithm of [2] to express L in standard form. We use
the notation of [2] in what follows. We choose

o 2 2 . =2 2
a=-25(m~+n),b=10m+5n,c=>5m"+n"),
so that

k =10n —5m.

As (m, n) = 1, we have

2m +n, 2n—m) =1 orb.
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If 2m +n, 2n — m) = 5, then from

@m + n)+ (2n - m)i = (2 - i) (m + ni) = (2 - )*(B + Ci) (X + Yi)?,

we see that 2+1i|(B+Ci)(X + Yi)2, contradicting (2.7). Hence

(2m +n, 2n —m) =1 and

(b, k) = (10m + 5n, 10n — 5m) = 5(2m +n, 2n —m) = 5.
Stepl. A'=-5 B =2m+n,C' =2n-m, D' = 5(m% + n?).

Step 2. Squarefree part of B'+Ci = (2m +n)+ 2n-m)i = (2 - i)2

x (B + Ci)(X +Yi)? is B+ Ci as B% + C% = D is squarefree. Thus

A'z(-5‘/52|A|2j - )= 4,
B =|B|=B,

c=|C],

D'=B>+C%=D.

Step 3 and 4. Done.

Hence

which completes the proof of the theorem.

3. Examples

Example 1. K = Q/ V-5 - J5 ] Here

A=-1,B=1,C=2D-=5.

From (1.6) we see that we can choose

X=1LY =0.
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Then, by (1.10), we have
m+ni=2-1)Q+2)=4+31
sothat m = 4, n = 3. Hence, by (1.9), ¢ = 4/3 and € = 1. Then, by (1.8),

we have a = —2—51 and b = —%. The theorem gives

( \
Q( —5—\/gngF|x5—2—1x—ﬂ].
\ 5 25 )

\

Example 2. K = Q[\/— 5(2 + \/5) J Here

A=-5B=1C=1D=2.

From (1.6) we see that we can choose
X=2Y-=-1.
Then, by (1.10), we have
m+ni=2-9)1+i)@2-i)%=13-9i

so that m =13, n = -9. From (1.9) we deduce that ¢ = 13/9 and ¢ = 1.
Then, from (1.8), we obtain

711 1314
a=—,, b=——

50 © 125
so by the theorem

Q(J— 52 + ¥2) j c SF(x5 s LI +55).
50 125
Applying PARI we find that

711 1314

SF [x5 & o j = SF(x% +10x® - 60x2 + 95x — 44).
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