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Abstract

It is shown how to determine the unique quartic subfield of the splitting
field of an irreducible quintic polynomial with Galois group Fy.

Let f(X) e @[X] be a monic solvable irreducible quintic polynomial.
As f(X) is solvable its Galois group G is Zj (the cyclic group of order 5),
Dy (the dihedral group of order 10), or Fyy (the Frobenius group of order
20). Let L denote the splitting field of /. If G = Z5, then L does not
possess a quadratic subfield. If G = D5, then L possesses a unique

quadratic subfield k. The determination of this quadratic subfield % has
been treated by Jensen and Yui [3, 4], Williamson [7], and by Spearman,
Spearman and Williams [6] when f(X ) is a trinomial of the form

X% +aX +b.IfG = Fy, then L possesses a unique quadratic subfield &
(which must be real) and a unique quartic subfield K (which must be
cyclic and contains k). It is well known that & = Q(\/g ), where d(> 0) is
the discriminant of f(X). When f(X)=X®+aX +5b, Spearman,

Spearman and Williams [6] have given an explicit formula for K. In this
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paper we show how to determine K for an arbitrary monic irreducible
quintic polynomial f(X) with Galois group G = Fy.

If n is a positive integer, we write (n) to denote a monic irreducible
polynomial in Q[X] of degree n, and we set

ey) S = { p(prime) | p I d, f(X) = (1)(2)(2) (mod p) }.
Let pe S. The two irreducible quadratics in the factorization of
f(X)(mod p) are distinct (mod p) as pld. Hence p # 2 as there is a

unique irreducible quadratic polynomial (mod2) namely X2 + X +1.

Let D be the squarefree part of d. By Stickelberger’s theorem [5, p. 153],
we have

o e

p p
Hence for peS we can let E, denote an integer such that

D= Ef, (mod p). We prove

Theorem. Let f(X) be a monic irreducible quintic polynomial with
Galois group Fyq. Let d (> 0) be the discriminant of f(X). Let D (> 0) be

the squarefree part of d. Then there are unique integers A, B, C with the
following properties:

(3) A s squarefree and odd,
(4)D=B2+C2,B>0,C>O,

6) Ald,

[A(D+BEP)J _
(7) | ————=|=-1 forall pe S with p | C.

Then the unique quartic subfield K of the splitting field L of f(X) is

K:Q(Wj.
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Proof. The unique quadratic subfield of L is k = Q(w/g ) = Q(\/B ) As

K is a cyclic quartic field with quadratic subfield Q(\/B), where D is

squarefree, there exist unique integers A, B, C satisfying (3), (4), (5) and
(8) [2]. Let 6 be a root of f(X) and set M = Q(8) so that [M : Q]=5.

The compositum of K and M is L. Hence the set of primes dividing the
discriminant d(L) coincides with the set of primes dividing d(K)d(M)
[5, p. 167]. But L is the minimal normal extension of @ containing M so
d(M) and d(L) contain the same primes [5, p. 168]. Let g be a prime
such that g | A. As d(K) = 2eA2D3, where e = 0, 4, 6, 8, see [2], we
have q | d(K). Hence q | d(L) and so g | d(M). But A is squarefree so
A | d(M). Hence A | d, which is (6).

Now, let peS, pl/C. An easy -calculation shows that

pl A(D + BEp). As LBJ = +1, p splits completely in k, say p = PP'
p
The prime ideal P (and similarly for P’) splits in K if and only if

AlD + BVD
3 2

=+1

o [A(DHBEP)

2 } =+1,whereJBEsEp(modP),g::ﬂ,
2

O[ML s {A(D;BEP)L {A(D;BEP)]Z

= +1,

222
_[4*c?E}
P

o (M) e
b

A(D + BE,

Suppose [ )J = +1. Then, by the above, P and P’ split in K so
p
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that p splits completely in K. As L is a normal extension of K of degree 5,
p must factor either as P, Py Py Py with each N(P)=p% or as
P, Py---Pyy; with each N(P)=p. Now as peS, we have

P =@ @ Q3 in M with N(@,) = p, N(Q;) = N(Q3) = p%. Since L is a
quadratic extension of a quadratic extension of M, the prime ideal factors

of @ in L have norms p2, p* or p® a contradiction. Hence

[ﬂ;EE_p)) e

This theorem can easily be put in the form of an algorithm to
determine the unique quartic subfield of the splitting field of a given
irreducible quintic polynomial with Galois group Fj.

INPUT. f(X)-irreducible quintic with Galois group Fy.
STEP 1. Calculate discriminant d of f(X).

STEP 2. Calculate squarefree part D of d.
STEP 3. Determine all pairs of positive integers (B, C) such that
D = B? + C2.

STEP 4. Determine all odd squarefree divisors A of d which are
coprime with D.

STEP 5. For p = 3,5, 7,11, ... with p/dC
factor f(X)(mod p)

if /(X) = (1)(2)(2) (mod p)

- .. (A(D+ BE,)
eliminate (A, B, C) for which | ———

p
next p
else

next p
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OUTPUT. Stop when a single triple (A, B, C) remains.

Required quartic field is Q( y/AiD +BYD ’ )

Example.

f(X) = X5 + 250X2 + 625
d =5!9 .592

D=5
(B,C)=(,2),(21)

A =1%1 %59

primes p for which X° + 250X 2 + 625 = (1)(2)(3) (mod D)

are p =19, 29,79, 89, ...

p =19eliminates (4, B, C) = (-1, 1, 2), (1, 2, 1), (-59, 2,1), (59, 1, 2)
p = 29 eliminates (A4, B, C) = (1, 1, 2), (-59, 1, 2)

p = 89 eliminates (4, B, C) = (59, 2, 1)

surviving (A, B, C) is (-1, 2, 1).

Hence the unique quartic subfield of the splitting field of

X% +250X2 + 625 is Q(J— b +2v5) j
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