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Abstract

An explicit integral basis of the form

{1, (ay +0) [dy, (a3 + 230 +02) [, }
where aj, ay, a3, d), dy are integers, is given for a pure cubic field K = Q(6),

where 6% + a0 + b= 0.
1. Introduction
Every pure cubic field F over the rational field Q can be given in the form

F=00), 0 +a0+b=0, | (1.1)

where a and b are integers such that the polynomial X 3 + aX +b is irreducible in

Q[X ] and its discriminant is of the form — 3¢ for some positive integer c, that is,

- 4a° - 27b?* = -3c2. (1.2)

In this note we obtain an explicit integral basis for F in the form
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{1, (aq) + 9)/d1, (a2 + a30 + 62 )/d2 } for suitable integers ay, a,, a3, 4y, d,.
Such a basis has been given when a = 0 (in which case K = Q(i/— b)) by

Dedekind (see for example [2]), so we may assume that a # 0. Clearly b # 0.

Throughout this paper p denotes a prime and v »(m) denotes the unique nonnegative

integer e such that p®|m, p®*! ' m (written p® | m), where m is a nonzero

integer. If v,(a)22 and v,(b)23 then F = Q(G /p),  where

(9 / p)3 + (a /p? )(9 / p) + (b /p ) = 0. Hence we may also assume that

vy(a) <2 or v,(b) <3 forevery prime p. (1.3)
From (1.2) we see that
a=34, «¢=3C, (1.4)
for some integers 4 and C, and (1.2) can be written in the form
(C+b)(C-b)=44". (1.5)

As a#0 weseethat 4 #0,C+b#0,and C- b # 0. Thus
1 1
R=5(C+b), =~2—(C—b), (1.6)

are nonzero integers satisfying

R-S=b R+S=C, (1.7)
and
RS = 4% = (a )3)’. (1.8)

In view of (1.8) we can define squarefree, coprime, positive integers 4 and k by

h = 1 - I1» - (1.9)
P

vp(R) zll,_(mod 3)  vp(S) = 2 (mod 3)

k= H” Hp , (1.10)

vp(R) =€ (mod 3)  vp(S) = ’1’ (mod 3)
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We also define nonzero integers ¢ and m by
¢ = sgn(R) l—['pvp(R)/3 Hp(v,,(k)—l)/s | Hp(v,,(k)-z)/a (L.11)
vp(R)mO(mod3)  vy(R)=l(mod3)  vy(R)=2(mod3)
and
mesg(s) ] QU I1 HEp(8)-1)3 I1 S0 (g 19
vp(S)=b(mod3)  v,(R)=(mod3) V()= 2 (mod 3)

From (1.9)-(1.12) we deduce that
R=hk?e3, S =hum (i1'(.13)
Appealing to (1.8) and (1.13), we obtain | )
A= hkim, a=3hkim. (1."1~4)
Further, from (1.4), (1.7) and (1.13), we have

b= hk(k* - hm’) (1.15)
and |
C-= hk(ke3 + hm3), ¢ = 3hk(ke3 + hm3). (1.16)
From (1,.3), (1.14) and (1.15), we deduce that
(e,‘ m) =1. (1.17)
Thus we can choose u and v to be integers satisfying
u+mv =1, (1.18)
It is also convenient to define an integer F by
E = k® + hmt. (1.19)
From (1.16) and (1.19) we have
C=hkE, ¢ =3hkE. (1.20)
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We also define ¢; € K and ¢, € K by

_ 2hktm® - k%0 + mo?

b £ (1.21)
and
2hk*m + hm®0 + £62
bz = 5 : (1.22)

Squaring (1.21) and (1.22), and appealing to (1.1), (1.14), (1.15) and (1.19), we
obtain

0 = ks, 03 = hoy, (1.23)
so that

G1d2 = hk, o = k2, 3 = hk. (1.24)

From (1.24) we see that ¢; and ¢, are algebraic integers so that ¢, € O,
¢, € Ok . Further, as h and k are squarefree, coprime, positive integers, we have

hk? = perfect cube >h=k=1a=3m,b=0-m=x>+ax+b has

3

root x = m — £ contradicting that x” + ax + b is irreducible. Hence hk? is not a

perfect cube so that [Q(¢1) : @] = 3 and

K=00)=0(¢) = Q(m’\/;k—z), (1.25)

for some cube root of unity @. Thus the discriminant d(K) of X is given by

GAECCTD)
- o o{Uh#)

- 27122,  if K%k* #1(mod 9),
- (126)
-3r%2, i h%k* =1(mod 9),

see for example [2: p. 340].
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The following proposition is proved in Section 2.

Proposition 1. One and only one of the following cases occurs:

(A) a = 6(mod9),

(B) a=6(mod9),
(C)  a=3(mod9),
(D)  a=3(mod9),
(E) a=0(mod9),
(F)  a=0(mod9),
(G)  a=0(mod9),

(H) a =0(mod9),

b =12(mod9), b?=-a +1(mod 27),

b= +2(mod9), b2 # —a+1(mod27),
b =0(mod9),

b=13(mod9),

b = +1(mod9),

b =12(mod9),

b = +3(mod9),

b = t4(mod9),

) a = 0(mod 27), b = £9 (mod 27).

It is clear that cases (A)-(I) are mutually exclusive. Table 1 below shows that they all

occur. In Section 2 it is shown that they exhaust all possibilities. From Proposition 1

and (1.2), we obtain

The next proposition is proved in Section 3.

(¢ = 0(mod 27),

¢ = 9 (mod 27),
¢ = 16 (mod 27),
¢ = +3(mod 27),

¢ = 12 (mod 27),

| ¢ = 27 (mod 81),

in case (A),

in cases (B), (G),

in cases (C) ‘, (D), (F)
: (1.27)
in case (E),

in case (H),

in case (I). |
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Proposition 2.

0 (mod 9), cases (G), (I),

ikt

A,

1 (mod 9), cases (A), (O), (E),l

[40r7(mod 9), cases (B), (D), (F), (H).
In cases (A), (C), (E), Proposition 2 shows that we can define ¢ = *+1 by
hk* = € (mod 9). (1.28)
The next proposition is proved in Section 4.
Proposition 3. / + ekm # 0 (mod 3) in cases (C) and (E).
From (1.17) and Proposition 3, we see that
(3m, ¢ + ekm) = 1 in cases (C) and (E). (1.29)
Thus we can choose integers ¥’ and v’ in cases (C) and (E) such that
3mu’ + (€ + ekm)v' = 1. (1.30)
We note that £&v' =1 (mod m) so that
Ev' — ke? = (k€ + b}y’ - ke = ke’ — ke? = k% — k¥ = 0 (mod m),
showing that

Ev' — ke?
m

is an integer in cases (C) and (E). (13D

From (1.26) and Proposition 2 we have
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Proposition 4.

- 27h%k2, cases (B), (D),‘ F) (@), H), O,
d(K) = |
— 3h2%k2,  cases (A), (C), (E).

The next proposition is proved in Section 5.

Proposition S.

(i) b+9 € Ok in case (A).
2hkém + (hmzu - k[zv)e + 02
(ii) = € Ok in all cases.
, ' 1p2 2
(i) (KEV' + 2hktm) + ((EV ke ) m)e +9° . Ok, in cases (C), (E).

3E

From Propositions 4 and 5 we obtain immediately our main result since

d(l, 0, 92) = —4g% - 27p% = —3¢% = -33h22E2.

Theorem. An integral basis for the pure cubic field K is given by

b+0 2hkim+ (hmzu - ktzv)e + 62
1 3 £ in case (A),

2hkém + (hmzu - kt’zv)e + 62

1, 6,
E,

in cases (B), (D), (F), (G), (D), (1,

{1 o (KEV' + 2hktm) + ((Ev' ~ ke2)/m)6 + 62

SE } in» cases (C) ) (E) .
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Table 1 illustrates each of the nine cases (A)—(I)
Table 1 (values of parameters)

c

casef a | b A| C| R | S |h|k|¢g|m|u|v]e V| E
@A) s1|272] 918] 17 [306|289| 17| 1{17]1]1]1] 0 18
@ 6| 2]1826|[a]2]|1]2[t]1]|1]0 3
© 30| 90 [330{ 10 [110|100{ 10 [ 1] 10]1]1 1|4|-1{11
@ 30| 15| 195| 10| 65|40 |25[5]1[2]1]0]1 13
®) |} 90|-170]1110| 30 |370| 100|270| 1| 10] 1|3 1|7]-2|37
@ | 36| 92 | 372] 12 [124]108] 16 | 1| 2 {3]2]|1]1 62
@) 27] 240|738 | 9 |246]243] 3 | 1|3 |3|1]0]f 1 82
@ l36| 22 |258| 12|86 sa|32{2]1]|3]2]1]|=1 43
@f27) 72 ]270] 9 |o0|81| 93] 1]3]1]0]1 30
Table 1 (cont’d) (discriminant and integral basis)

case d(K) integral basis

W | -3172 | 1,2712+0)/3, B4+0+02)A8

® | -22.3 1,9,(4+e+92)/3

© [ -22.3.5| 1,0,(-90-210+6?) /33

O -33.5 1,9,(20 4e+92)/13

(B) | -22.3.52 1,9,( 680 — 2se+92)/111

® [ -22.3 | e,(24+2ze+92)

G -3 1,0, (18 - 270 + 6?) /82

@ -22-3 | 16,(24+170+0%)

| -3 1 e,( 9e+92)/3o
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2. Proof of Proposition 1
From (1.2) and (1.4) we have
4(a /3 + 5% = C* = 0,1, 4 or 7 (mod 9)
so that one of the fbllowing possibilities must occur :
(@) a=6(mod 9), b = +2 (mod 9),

(B) a=3(mod9), b= O(mod3)

(y) a=0(mod 9). " e
(o) comprises cases (A) and (B). (B) compnses cases (C) and (D) (y) comprises
cases (E), (F), (G), (H), and : "
a=0(mod9), b=0(mod9). 2.1)

If (2.1) holds, by (1.3), we must have b = 9 (mod'-27). Thus 3|4, 32 " b. From

(1.5) we deduce that 3% |C and 32| 4 so that a = 0 (mod 27). Hence (2.1) is the

case (I).
3. Proof of Proposition 2

Table 2 follows easily from (1.14)—(1.17) and the fact that /4 and & are coprime.

Table 2
hktm ab,c cases
3| hk 9|a,3|b G) (1)
3| hk, 3|tm 9la,31b, 3¢ (E) (F) (H)
3| hk,3tm 3)a, 31b,9]c (A) (B)
or
3| a, 315, 3| c (©) D)
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6 ¢ 1 2
If 3/¢ then €% =1(mod 9) and A%k* = W2k%° = R? = (—2-(C+ b)) (mod 9).

. : 2
If 3| ¢ then 3] m so-m® =1(mod 9) and A*k? = h*k?m® = §2 =_(%(c- b))

(mod 9) . Then, appealing to Table 2, we obtain

1 2
(A) (O h2k? = (_?(o + 2)) =1(mod 9),
1 2
(B) (D): Wit = (5 (£32 2)) =4 or 7 (mod 9),
SN
EB): (319 wr= (E(:I: 1+ 1)) = 1(mod 9),
1 2
(31¢) r'K* = (—2—(1 1¥ 1)) = 1(mod 9), so A%k* = 1(mod 9),
F): (31¢) rrt= (-2-(¢ 2+ 2)) = 4 (mod 9),
| (1 2
(Ble) K= 5 E27F 2)) = 4 (mod 9), so A*k* = 7 (mod 9),

(H) : (3Ie) W24 = ’% (z 4; ¢ 4))2 = 7 (mod 9),

7 7 2
(3l¢) A = lizasw 4)) = 7 (mod 9), so h%k* = 4 (mod 9),
G (): h*k* = 0 (mod 9),
which completes the proof of Proposition 2.

4. Proof of Proposition 3

In case (C) we have

A=1(mod3), b=0(mod9), C=25(mod9),
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where 8 = £1. Then, from (1.14), (1.15), (1.16), we obtain
hkém =1 (mod 3), hk?¢* =8 (mod 9), hZkm® =5 (mod 9).

As Wkl =¢ (mod 9), where €=11, we have h=¢ (mod 3) so that
¢ =¢d (mod 3), km =8 (mod 3), and ¢ + ekm = €5 + €5 = 2e5 # 0 (mod 3).

In case (E) we have 3} hk,3|¢m (Table 2). If 3|¢ then 3]/m so
¢ +ekm =ckm % 0 (mod 3). If 3| m then 3] ¢ so £+ ekm = ¢ # 0 (mod 3).

5. Proof of Proposition 5
A

(i) In case (A) we have a=6 (mod 9), b = + Amod9), b =Sa+1
(mod 27), so |
a +3b% = 6 + J4) = 0 (mod 9)
and

1-a- b = 0(mod 27)

showing that (a + 3b2) /9 and (b - ab - b3) /27 are integers. Now

¢ = (b + 6) /3 (€ K) satisfies the monic cubic equation

s o, (a+3?)  (b-ab-0)
-b =0,
¢ - bo? + b+
so that ¢ is an algebraic integer, and hence ¢ € O.
(i) Appealing to (1.18), (1.21) and (1.22) we have
2hkim + (hmzu - klzv)e + 62
= Vd)l + u¢2 € OK .

E
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(i1i) In cases (C) and (E) we have hkzi =g (mod 9) (a = :tl) and we consider
a = (k + ekd;, + ¢,) /3 € K. Making use of (1.23) and (1.24), we find that o

satisfies the monic cubic equation

2-e) k(hz + k2 + ehi® - 3ehk2) »
27 R

o’ - ka? +

As h=¢(mod 3), (1-eh)/3 is an integer. We show next that (h2 + k% + ehk?
- 3ehk2) /27 is also an integer. Clearly 3] kso k2=147 (mod 9). Set

k2= r+9s, where r = 1, 4, 7 and s is an integer. Then h=hr’ =
hk?r? = gr? (mod 9), so h=gr? +'9t for some integer ¢. Hence

h? = r* +18er’t (mod 27),

k* = r? + 18rs (mod 27),

hk* = er + 9r%t + 18er’s (mod 27).

Then, as r=1(mod 3), > =2r-1(mod 9), and r’ =3r -2 (mod 27), we
have

h? + k% + ehk® - 3ehk?
= (r4 + 188r2t) +(r+9s)+ (r4 +9erit + 18r3s) -3

=2t +r-3=6r2-3r-3=9r-9
= 0 (mod 27).

We have now shown that o € Oy . Finally, appealing to (1.19), (1.21), (1.22) and
(1.30), we obtain

(kEV' + 2hktm) + ((Ev' - ke? Mn)ﬁ +6?
3E

=va +u'd; € Og.
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6. Concluding Remarks

The discriminant of an arbitrary cubic field has been given by Llorente and Nart
[3] and an integral basis by Alaca [1]. From [3 : Theorem 2] in the case of a pure

cubic field K given by (1.1), we have
dx)=-* [ & (6.1)

#3
1< vp(;J)S vp(a)
where
1, cases(A), (C), (B)

B =43, cases(B), (D), (F), (H), (6.2)

5, cases (G), (.

Combining (6.1) with Proposition 4, we see that

hk = 3" H o (6.3)
#3
ISVP(;’)SV’,(a)
where
0, cases(A), (B), (C), (D), (E), (F), (H),

Y= (6:4)
L, cases(G), (D.

We leave it to the reader to deduce (6.3) arithmetically from the properties of a, b, h,
k given in Section 1.
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