AN EXPLICIT INTEGRAL BASIS FOR A PURE CUBIC FIELD

BLAIR K. SPEARMAN and KENNETH S. WILLIAMS

(Received July 31, 1997)

Submitted by K. K. Azad

Abstract

An explicit integral basis of the form

$$\{1, (a_1 + \theta)/d_1, (a_2 + a_3\theta + \theta^2)/d_2\},\$$

where a_1 , a_2 , a_3 , d_1 , d_2 are integers, is given for a pure cubic field $K = Q(\theta)$, where $\theta^3 + a\theta + b = 0$.

1. Introduction

Every pure cubic field F over the rational field Q can be given in the form

$$F = Q(\theta), \quad \theta^3 + a\theta + b = 0, \quad (1.1)$$

where a and b are integers such that the polynomial $X^3 + aX + b$ is irreducible in Q[X] and its discriminant is of the form $-3c^2$ for some positive integer c, that is,

$$-4a^3 - 27b^2 = -3c^2. (1.2)$$

In this note we obtain an explicit integral basis for F in the form

ł

¹⁹⁹¹ Mathematics Subject Classification: Primary 11R16, 11R04, 11R29.

Key words and phrases : pure cubic field, integral basis.

Research of the second author supported by a Natural Sciences and Engineering Research Council of Canada Grant A-7233.

 $\{1, (a_1 + \theta)/d_1, (a_2 + a_3\theta + \theta^2)/d_2\}$ for suitable integers a_1, a_2, a_3, d_1, d_2 . Such a basis has been given when a = 0 (in which case $K = Q(\sqrt[3]{-b})$) by Dedekind (see for example [2]), so we may assume that $a \neq 0$. Clearly $b \neq 0$. Throughout this paper p denotes a prime and $v_p(m)$ denotes the unique nonnegative integer e such that $p^e | m, p^{e+1} \nmid m$ (written $p^e \parallel m$), where m is a nonzero integer. If $v_p(a) \ge 2$ and $v_p(b) \ge 3$ then $F = Q(\theta / p)$, where $(\theta / p)^3 + (a / p^2)(\theta / p) + (b / p^3) = 0$. Hence we may also assume that

$$v_p(a) < 2$$
 or $v_p(b) < 3$ for every prime p. (1.3)

From (1.2) we see that

$$a = 3A, \quad c = 3C,$$
 (1.4)

for some integers A and C, and (1.2) can be written in the form

$$(C+b)(C-b) = 4A^3.$$
 (1.5)

As $a \neq 0$ we see that $A \neq 0$, $C + b \neq 0$, and $C - b \neq 0$. Thus

$$R = \frac{1}{2}(C+b), \qquad S = \frac{1}{2}(C-b), \qquad (1.6)$$

are nonzero integers satisfying

$$R - S = b, \quad R + S = C,$$
 (1.7)

and

$$RS = A^3 = (a/3)^3.$$
 (1.8)

In view of (1.8) we can define squarefree, coprime, positive integers h and k by

$$h = \prod_{\substack{p \\ v_p(R) \equiv 1 \pmod{3}}} p = \prod_{\substack{p \\ v_p(S) \equiv 2 \pmod{3}}} p, \qquad (1.9)$$

$$k = \prod_{\substack{p \\ v_p(R) \equiv 2 \pmod{3}}} p = \prod_{\substack{p \\ v_p(S) \equiv 1 \pmod{3}}} p. \qquad (1.10)$$

We also define nonzero integers ℓ and m by

$$\ell = \operatorname{sgn}(R) \prod_{\nu_p(R)=0 \pmod{3}} p^{\nu_p(R)/3} \prod_{\nu_p(R)=1 \pmod{3}} p^{(\nu_p(R)-1)/3} \prod_{\nu_p(R)=2 \pmod{3}} p^{(\nu_p(R)-2)/3} (1.11)$$

and

$$m = \operatorname{sgn}(S) \prod_{v_p(S) \equiv 0 \pmod{3}} p^{v_p(S)/3} \prod_{v_p(R) \equiv 1 \pmod{3}} p^{(v_p(S)-1)/3} \prod_{v_p(S) \equiv 2 \pmod{3}} p^{(v_p(S)-2)}.$$
 (1.12)

From (1.9)-(1.12) we deduce that

$$R = hk^2 \ell^3, \quad S = h^2 km^3. \tag{1.13}$$

Appealing to (1.8) and (1.13), we obtain

$$A = hk\ell m, \quad a = 3hk\ell m. \tag{1.14}$$

Further, from (1.4), (1.7) and (1.13), we have

$$b = hk\left(k\ell^3 - hm^3\right) \tag{1.15}$$

and

$$C = hk(k\ell^{3} + hm^{3}), \quad c = 3hk(k\ell^{3} + hm^{3}).$$
 (1.16)

From (1.3), (1.14) and (1.15), we deduce that

$$\left(\ell, m\right) = 1. \tag{1.17}$$

States -

Thus we can choose u and v to be integers satisfying

$$\ell u + mv = 1. \tag{1.18}$$

It is also convenient to define an integer F by

$$E = k\ell^3 + hm^3. (1.19)$$

From (1.16) and (1.19) we have

$$C = hkE, \quad c = 3hkE. \tag{1.20}$$

e Ì

•

We also define $\phi_1 \in K$ and $\phi_2 \in K$ by

$$\phi_1 = \frac{2hk\ell m^2 - k\ell^2\theta + m\theta^2}{E}$$
(1.21)

and

$$\phi_2 = \frac{2hk\ell^2m + hm^2\theta + \ell\theta^2}{E}.$$
 (1.22)

Squaring (1.21) and (1.22), and appealing to (1.1), (1.14), (1.15) and (1.19), we obtain

$$\phi_1^2 = k\phi_2, \quad \phi_2^2 = h\phi_1,$$
 (1.23)

so that

$$\phi_1 \phi_2 = hk$$
, $\phi_1^3 = hk^2$, $\phi_2^3 = h^2k$. (1.24)

From (1.24) we see that ϕ_1 and ϕ_2 are algebraic integers so that $\phi_1 \in O_K$, $\phi_2 \in O_K$. Further, as h and k are squarefree, coprime, positive integers, we have hk^2 = perfect cube $\Rightarrow h = k = 1 \Rightarrow a = 3\ell m$, $b = \ell^3 - m^3 \Rightarrow x^3 + ax + b$ has root $x = m - \ell$ contradicting that $x^3 + ax + b$ is irreducible. Hence hk^2 is not a perfect cube so that $[Q(\phi_1):Q] = 3$ and

$$K = Q(\theta) = Q(\phi_1) = Q(\omega\sqrt[3]{hk^2}), \qquad (1.25)$$

for some cube root of unity ω . Thus the discriminant d(K) of K is given by

$$d(K) = d\left(Q\left(\omega^{3}\sqrt{hk^{2}}\right)\right)$$

= $d\left(Q\left(\sqrt[3]{hk^{2}}\right)\right)$
= $\begin{cases} -27h^{2}k^{2}, & \text{if } h^{2}k^{4} \neq 1 \pmod{9}, \\ -3h^{2}k^{2}, & \text{if } h^{2}k^{4} \equiv 1 \pmod{9}, \end{cases}$ (1.26)

see for example [2: p. 340].

The following proposition is proved in Section 2.

Proposition 1. One and only one of the following cases occurs:

(A)
$$a \equiv 6 \pmod{9}, b \equiv \pm 2 \pmod{9}, b^2 \equiv -a + 1 \pmod{27},$$

- (B) $a \equiv 6 \pmod{9}, b \equiv \pm 2 \pmod{9}, b^2 \not\equiv -a + 1 \pmod{27},$
- (C) $a \equiv 3 \pmod{9}, \quad b \equiv 0 \pmod{9},$
- (D) $a \equiv 3 \pmod{9}, \quad b \equiv \pm 3 \pmod{9},$
- (E) $a \equiv 0 \pmod{9}, \quad b \equiv \pm 1 \pmod{9},$
- (F) $a \equiv 0 \pmod{9}, \quad b \equiv \pm 2 \pmod{9},$
- (G) $a \equiv 0 \pmod{9}, \quad b \equiv \pm 3 \pmod{9},$
- (H) $a \equiv 0 \pmod{9}, \quad b \equiv \pm 4 \pmod{9},$

(I)
$$a \equiv 0 \pmod{27}, b \equiv \pm 9 \pmod{27}.$$

It is clear that cases (A)-(I) are mutually exclusive. Table 1 below shows that they all occur. In Section 2 it is shown that they exhaust all possibilities. From Proposition 1 and (1.2), we obtain

$$\begin{cases} c \equiv 0 \pmod{27}, & \text{in case (A)}, \\ c \equiv \pm 9 \pmod{27}, & \text{in cases (B)}, (G), \\ c \equiv \pm 6 \pmod{27}, & \text{in cases (C)}, (D), (F) \\ c \equiv \pm 3 \pmod{27}, & \text{in case (C)}, \\ c \equiv \pm 12 \pmod{27}, & \text{in case (E)}, \\ c \equiv \pm 12 \pmod{27}, & \text{in case (H)}, \\ c \equiv \pm 27 \pmod{81}, & \text{in case (I)}. \end{cases}$$

The next proposition is proved in Section 3.

Proposition 2.

$$h^{2}k^{4} \equiv \begin{cases} 0 \pmod{9}, & cases (G), (I), \\ 1 \pmod{9}, & cases (A), (C), (E), \\ 4 \text{ or } 7 \pmod{9}, & cases (B), (D), (F), (H). \end{cases}$$

In cases (A), (C), (E), Proposition 2 shows that we can define $\varepsilon = \pm 1$ by

$$hk^2 \equiv \varepsilon \pmod{9}. \tag{1.28}$$

The next proposition is proved in Section 4.

Proposition 3. $\ell + \varepsilon km \neq 0 \pmod{3}$ in cases (C) and (E).

From (1.17) and Proposition 3, we see that

$$(3m, \ell + \varepsilon km) = 1$$
 in cases (C) and (E). (1.29)

Thus we can choose integers u' and v' in cases (C) and (E) such that

$$3mu' + (\ell + \varepsilon km)v' = 1. \qquad (1.30)$$

We note that $\ell v' \equiv 1 \pmod{m}$ so that

$$Ev'-k\ell^2=\left(k\ell^3+hm^3\right)v'-k\ell^2\equiv k\ell^3v'-k\ell^2\equiv k\ell^2-k\ell^2\equiv 0 \pmod{m},$$

showing that

$$\frac{Ev' - k\ell^2}{m}$$
 is an integer in cases (C) and (E). (1.31)

From (1.26) and Proposition 2 we have

Proposition 4.

$$d(K) = \begin{cases} -27h^2k^2, & cases (B), (D), (F), (G), (H), (I), \\ -3h^2k^2, & cases (A), (C), (E). \end{cases}$$

The next proposition is proved in Section 5.

Proposition 5.

(i)
$$\frac{b+\theta}{3} \in O_K$$
 in case (A).

(ii)
$$\frac{2hk\ell m + (hm^2u - k\ell^2v)\theta + \theta^2}{E} \in O_K \text{ in all cases.}$$

(iii)
$$\frac{(kEv'+2hk\ell m)+((Ev'-k\ell^2)/m)\theta+\theta^2}{3E} \in O_K, \text{ in cases (C), (E).}$$

From Propositions 4 and 5 we obtain immediately our main result since $d(1, \theta, \theta^2) = -4a^3 - 27b^2 = -3c^2 = -3^3h^2k^2E^2.$

Theorem. An integral basis for the pure cubic field K is given by

3*E*

$$\begin{cases} 1, \frac{b+\theta}{3}, \frac{2hk\ell m + (hm^2 u - k\ell^2 v)\theta + \theta^2}{E} \end{cases} \text{ in case (A),} \\ \begin{cases} 1, \theta, \frac{2hk\ell m + (hm^2 u - k\ell^2 v)\theta + \theta^2}{E} \end{cases} \text{ in cases (B), (D), (F), (G), (H), (I),} \\ \\ \begin{cases} 1, \theta, \frac{(kEv' + 2hk\ell m) + ((Ev' - k\ell^2)/m)\theta + \theta^2}{3E} \end{cases} \text{ in cases (C), (E).} \end{cases} \end{cases}$$

BLAIR K. SPEARMAN and KENNETH S. WILLIAMS

case	a	Ь	C	A	С	R	S	h	k	l	m	u	v	ε	u'	<i>v</i> ′	E
(A)	51	272	918	17	306	289	17	1	17	1	1	1	0				18
(B)	6	2	18	2	6	4	2	1	2	1	1	1	0				3
(C)	30	90	330	10	110	100	10	1	10	1	1			1	4	-1	11
(D)	30	15	195	10	65	40	25	5	1	2	1	0	1				13
(E)	90	-170	1110	30	370	100	270	1	10	1	3			1	7	-2	37
(F)	36	92	372	12	.124	108	16	1	2	3	2	1	-1				62
(G)	27	240	738	9	246	243	3	1	3	3	1	0	1				82
(H)	36	22	258	12	86	54	32	2	1	3	2	1	-1				43
(I)	27	72	270	9	90	81	9	3	1	3	1	0	1				30

Table 1 illustrates each of the nine cases (A)-(I) Table 1 (values of parameters)

Table 1 (cont'd) (discriminant and integral basis)

case	d(K)	integral basis
(A)	$-3 \cdot 17^{2}$	1, $(272 + \theta)/3$, $(34 + \theta + \theta^2)/18$
(B)	$-2^2 \cdot 3^3$	1, θ , $\left(4 + \theta + \theta^2\right)/3$
(C)	$-2^2 \cdot 3 \cdot 5^2$	1, θ , $\left(-90 - 21\theta + \theta^2\right)/33$
(D)	$-3^3 \cdot 5^2$	1, θ , $\left(20-4\theta+\theta^2\right)/13$
(E)	$-2^2\cdot 3\cdot 5^2$	1, θ , $\left(-680 - 28\theta + \theta^2\right)/111$
(F)	$-2^2\cdot 3^3$	1, θ , $\left(24 + 22\theta + \theta^2\right)/62$
(G)	-3 ⁵	1, θ , $(18 - 27\theta + \theta^2)/82$
(H)	$-2^2\cdot 3^3$	1, θ , $(24 + 17\theta + \theta^2)/43$
(I)	-3 ⁵	1, θ , $(18 - 9\theta + \theta^2)/30$

2. Proof of Proposition 1

From (1.2) and (1.4) we have

$$4(a/3)^3 + b^2 = C^2 \equiv 0, 1, 4 \text{ or } 7 \pmod{9}$$

so that one of the following possibilities must occur :

(a) $a \equiv 6 \pmod{9}, b \equiv \pm 2 \pmod{9},$ (b) $a \equiv 3 \pmod{9}, b \equiv 0 \pmod{3},$ (c) $a \equiv 0 \pmod{9}.$

(α) comprises cases (A) and (B). (β) comprises cases (C) and (D). (γ) comprises cases (E), (F), (G), (H), and

$$a \equiv 0 \pmod{9}, b \equiv 0 \pmod{9}. \tag{2.1}$$

If (2.1) holds, by (1.3), we must have $b \equiv \pm 9 \pmod{27}$. Thus $3|A, 3^2 \| b$. From (1.5) we deduce that $3^2 | C$ and $3^2 | A$ so that $a \equiv 0 \pmod{27}$. Hence (2.1) is the case (I).

3. Proof of Proposition 2

Table 2 follows easily from (1.14)-(1.17) and the fact that h and k are coprime.

_		
h, k, l, m	a, b, c	cases
3 h k	9 a,3 b	(G) (I)
31 hk, 3 lm	9 a, 3 b, 3 c	(E) (F) (H)
3 hk, 3 lm	$3 \ a, 3 b, 9 c$ or	(A) (B)
	$3 \ a, 3 b, 3 \ c$	(C) (D)

Table 2

If
$$3 \nmid \ell$$
 then $\ell^6 \equiv 1 \pmod{9}$ and $h^2 k^4 \equiv h^2 k^4 \ell^6 = R^2 = \left(\frac{1}{2}(C+b)\right)^2 \pmod{9}$.
If $3 \mid \ell$ then $3 \nmid m$ so $m^6 \equiv 1 \pmod{9}$ and $h^4 k^2 \equiv h^4 k^2 m^6 = S^2 = \left(\frac{1}{2}(C-b)\right)^2$

(mod 9). Then, appealing to Table 2, we obtain

(A) (C):
$$h^2 k^4 \equiv \left(\frac{1}{2}(0 \pm 2)\right)^2 \equiv 1 \pmod{9},$$

(B) (D):
$$h^2 k^4 \equiv \left(\frac{1}{2}(\pm 3 \pm 2)\right)^2 \equiv 4 \text{ or } 7 \pmod{9},$$

(E):
$$(3 \mid \ell) \quad h^2 k^4 \equiv \left(\frac{1}{2} (\pm 1 \pm 1)\right)^2 \equiv 1 \pmod{9},$$

(3|
$$\ell$$
) $h^4k^2 \equiv \left(\frac{1}{2}(\pm 1 \mp 1)\right)^2 \equiv 1 \pmod{9}$, so $h^2k^4 \equiv 1 \pmod{9}$,

(F):
$$(3 \nmid \ell) \quad h^2 k^4 \equiv \left(\frac{1}{2} (\pm 2 \pm 2)\right)^2 \equiv 4 \pmod{9},$$

(3|
$$\ell$$
) $h^4k^2 \equiv \left(\frac{1}{2}(\pm 2 \mp 2)\right)^2 \equiv 4 \pmod{9}$, so $h^2k^4 \equiv 7 \pmod{9}$,

(H):
$$(3 \nmid \ell) \quad h^2 k^4 \equiv \left(\frac{1}{2}(\pm 4 \pm 4)\right)^2 \equiv 7 \pmod{9},$$

(G) (I):
$$h^{4}k^{2} \equiv \left(\frac{1}{2}(\pm 4 \mp 4)\right)^{2} \equiv 7 \pmod{9}$$
, so $h^{2}k^{4} \equiv 4 \pmod{9}$,
 $h^{2}k^{4} \equiv 0 \pmod{9}$,

which completes the proof of Proposition 2.

4. Proof of Proposition 3

In case (C) we have

$$A \equiv 1 \pmod{3}, b \equiv 0 \pmod{9}, C \equiv 2\delta \pmod{9},$$

where $\delta = \pm 1$. Then, from (1.14), (1.15), (1.16), we obtain

$$hk\ell m \equiv 1 \pmod{3}, \quad hk^2\ell^3 \equiv \delta \pmod{9}, \quad h^2km^3 \equiv \delta \pmod{9}$$

As $hk^2 \equiv \varepsilon \pmod{9}$, where $\varepsilon = \pm 1$, we have $h \equiv \varepsilon \pmod{3}$ so that $\ell \equiv \varepsilon \delta \pmod{3}$, $km \equiv \delta \pmod{3}$, and $\ell + \varepsilon km \equiv \varepsilon \delta + \varepsilon \delta = 2\varepsilon \delta \neq 0 \pmod{3}$.

In case (E) we have $3 \nmid hk$, $3 \mid \ell m$ (Table 2). If $3 \mid \ell$ then $3 \nmid m$ so $\ell + \epsilon km \equiv \epsilon km \neq 0 \pmod{3}$. If $3 \mid m$ then $3 \nmid \ell$ so $\ell + \epsilon km \equiv \ell \neq 0 \pmod{3}$.

5. Proof of Proposition 5

A

(i) In case (A) we have $a \equiv 6 \pmod{9}$, $b \equiv \pm 2 \pmod{9}$, $b^2 \equiv \frac{5}{2}a + 1 \pmod{27}$, so

$$a+3b^2\equiv 6+3(4)\equiv 0 \pmod{9}$$

and

$$1-a-b^2\equiv 0\ (\mathrm{mod}\ 27)$$

showing that $(a + 3b^2)/9$ and $(b - ab - b^3)/27$ are integers. Now $\phi = (b + \theta)/3$ ($\in K$) satisfies the monic cubic equation

$$\phi^3 - b\phi^2 + \frac{(a+3b^2)}{9}\phi + \frac{(b-ab-b^3)}{27} = 0,$$

so that ϕ is an algebraic integer, and hence $\phi \in O_K$.

(ii) Appealing to (1.18), (1.21) and (1.22) we have

$$\frac{2hk\ell m + \left(hm^2 u - k\ell^2 v\right)\theta + \theta^2}{E} = v\phi_1 + u\phi_2 \in O_K.$$

(iii) In cases (C) and (E) we have $hk^2 \equiv \varepsilon \pmod{9}$ ($\varepsilon = \pm 1$) and we consider $\alpha = (k + \varepsilon k \phi_1 + \phi_2)/3 \in K$. Making use of (1.23) and (1.24), we find that α satisfies the monic cubic equation

$$\alpha^3 - k\alpha^2 + \frac{k^2(1-\varepsilon h)}{3}\alpha - \frac{k(h^2 + k^2 + \varepsilon hk^4 - 3\varepsilon hk^2)}{27} = 0.$$

As $h \equiv \varepsilon \pmod{3}$, $(1 - \varepsilon h)/3$ is an integer. We show next that $(h^2 + k^2 + \varepsilon hk^4 - 3\varepsilon hk^2)/27$ is also an integer. Clearly $3 \nmid k$ so $k^2 \equiv 1, 4, 7 \pmod{9}$. Set $k^2 \equiv r + 9s$, where $r \equiv 1, 4, 7$ and s is an integer. Then $h \equiv hr^3 \equiv hk^2r^2 \equiv \varepsilon r^2 \pmod{9}$, so $h = \varepsilon r^2 + 9t$ for some integer t. Hence

$$h^{2} \equiv r^{4} + 18\varepsilon r^{2}t \pmod{27},$$

$$k^{4} \equiv r^{2} + 18rs \pmod{27},$$

$$hk^{4} \equiv \varepsilon r^{4} + 9r^{2}t + 18\varepsilon r^{3}s \pmod{27}.$$

Then, as $r \equiv 1 \pmod{3}$, $r^2 \equiv 2r - 1 \pmod{9}$, and $r^3 \equiv 3r - 2 \pmod{27}$, we have

$$h^{2} + k^{2} + \varepsilon h k^{4} - 3\varepsilon h k^{2}$$

= $(r^{4} + 18\varepsilon r^{2}t) + (r + 9s) + (r^{4} + 9\varepsilon r^{2}t + 18r^{3}s) - 3$
= $2r^{4} + r - 3 = 6r^{2} - 3r - 3 = 9r - 9$
= $0 \pmod{27}$.

We have now shown that $\alpha \in O_K$. Finally, appealing to (1.19), (1.21), (1.22) and (1.30), we obtain

$$\frac{(kEv'+2hk\ell m)+((Ev'-k\ell^2)/m)\theta+\theta^2}{3E}=v'\alpha+u'\phi_1\in O_K$$

6. Concluding Remarks

The discriminant of an arbitrary cubic field has been given by Llorente and Nart [3] and an integral basis by Alaca [1]. From [3 : Theorem 2] in the case of a pure cubic field K given by (1.1), we have

$$d(K) = -3^{\beta} \prod_{\substack{p \neq 3 \\ 1 \le v_p(b) \le v_p(a)}} p^2,$$
(6.1)

where

$$\beta = \begin{cases} 1, & \text{cases (A), (C), (E),} \\ 3, & \text{cases (B), (D), (F), (H),} \\ 5, & \text{cases (G), (I).} \end{cases}$$
(6.2)

Combining (6.1) with Proposition 4, we see that

$$hk = 3^{\gamma} \prod_{\substack{p \neq 3\\1 \le v_p(b) \le v_p(a)}} p, \tag{6.3}$$

where

$$\gamma = \begin{cases} 0, & cases(A), (B), (C), (D), (E), (F), (H), \\ 1, & cases(G), (I). \end{cases}$$
(6.4)

We leave it to the reader to deduce (6.3) arithmetically from the properties of a, b, h, k given in Section 1.

Acknowledgment

The second author acknowledges the hospitality of Okanagan University College, Kelowna, BC, Canada and Macquarie University, Sydney, Australia, where this paper was completed.

References

- [1] S. Alaca, *p*-integral bases of algebraic number fields, Ph. D. Thesis, Carleton University, Ottawa, Ontario, Canada, 1994.
- [2] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin Heidelberg, 1993.
- [3] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.

Department of Mathematics and Statistics Okanagan University College Kelowna, B. C. VIV 1V7 Canada e-mail : bkspearm@okanagan.bc.ca

Department of Mathematics and Statistics Carleton University Ottawa, Ontario K1S 5B6 Canada e-mail : williams@math.carleton.ca