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Abstract 

An explicit integral basis of the form 

(1, (q + 0) /dl, (a2 + a30 + e2) ld2 ). 
w h m  a1 , 02, a3, dl, d2 arc integers, is given for a pure cubic field K = ~ ( 8 )  , 

whm e3 '+a0+ b =  0. 

.l. Introduction 

Every pure cubic field F over the rational field Q can be given in the form 

whcre a and b are integers such that the polynomial x3 + a X + b is irreducible in 

ax] and its discriminant is of the form - 3c2 for some positive integer c, that is, 

2 - 4a3 - 27b2 = -3c . (1 -2) 

In this note we obtain an explicit integral basis for F in the form 
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(1, (al  + €))/dl, (a2 + a30 + e2)/d2 ) for suitable integers al, a2, a3, dl, d2 . 

Such a basis has been given when a = 0 in which case K = 

Dedekind (see for example [2]), so we may assume that a # 0 .  Clearly b # 0 .  

Throughout this paper p denotes a prime and vp(m) denotes the unique nonnegative 

integer e such that pe 1 m , pe+l [ m (written pe 11 m ), where m is a nonzero 

integer. If vp(a) 2 2 and vp(b) 2 3 then F = Q(B l p ) ,  where 

(0 /p)) + (a /p2)(6 /p)  + (b /p3) = 0. Hence we may also assume that 

vp(a) < 2 or vp(b) < 3 for every prime p. 

From (1.2) we see that 

a =3A,  c = 3 C ,  

for some integers A and C, and (1.2) can be written in the form 

As a + 0 we see that A # 0, C + b # 0, and C - b # 0. Thus 

are nonzero integers satisfying 

and 

In view of (1.8) we can define squarefree, coprime, positive integers h and k by 

k = n - - 
P 

np 
P 

vp(R) = 2 (mod 3) vp(s) E 1 (mod 3) 
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We also define nonzero integers l and m by .... . , .", ! .  - .  

P P 
vp ( R )  - 0 (mod 3)  vp ( R )  = 1 (mod 3 )  

P 
vp  ( R )  - 2 (mod 3 )  

and 

From (1.9)-(1.12) we deduce that 

Appealing to (1.8) and ( 1.13), we obtain 

vp  (s) = 5 (mod 3 )  

Further, from ( l . 4 ) ,  (1.7) and ( l . l 3 ) ,  we have 

b = hk(ke3 - hm3) (1.15) 

and 

C = hk(k13 + hm3),  c = 3hk(k13 + hm3).  (1.16) 

From ( l . 3 ) ,  (1.14) and ( l . l 5 ) ,  we deduce that , ' - .  

(e ,  m)  = I .  (1.17) 

Thus we can choose u and v to be integers satisfying 

l u  + mv = 1 .  

It is also convenient to define an integer F by 

E = kt3 + hm3. 

From (1.16) and (1.19) we have 

C = hkE, c = 3hkE. 
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We also define E K  and 42  E K  by 

and 

Squaring (1.21) and (1.22), and appealing to (1.1), (1.14), (1.15) and (1.19), we 
obtain 

4 = k42, 42 = h41Y (1.23) 

so that 

4142=hk,  d = h k 2 ,  4: = h2k. (1.24) 

From (1.24) we see that and 42  are algebraic integers so that E OK, 

g2 E OK . Further, as h and k are squarefree, coprime, positive integers, we have 

hk2 = perfect cube =, h = k = 1 3  a = 3Cm, b =  e 3 - m 3  3 x 3  + a x +  b has 

root x = m - t contradicting that x3 + ax + b is irreducible. Hence hk2 is not a 

perfect cube so that [Q(+I) : Q] = 3 and 

for some cube root of unity m. Thus the discriminant d ( ~ )  of K  is given by 

2 2 2 4 - 2 7 h k ,  if h k  $ l (mod9) ,  
(1.26) 

2 2 -3h k ,  if h2k4 t 1 (mod 9), 

see for example [2: p. 3401. 
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The following proposition is proved in Section 2. 

Proposition 1 .  One and only one of the following cases occurs: 

It is clear that cases (A)-(I) are mutually exclusive. Table 1 below shows that they all 

occur. In Section 2 it is shown that they exhaust all possibilities. From Proposition 1 

and (l.2), we obtain 

[ c  = O(mod27). in case (A), 

I c = f12 (mod 27), in case (H), 

c = f 27 (mod 8 1) , in case (I). 

4 

The next proposition is proved in Section 3. 

c = fg (mod 27), in cases (B) , (G) , 

c = f 6 (mod 27), in cases (C) , (D) , (F) 
(1.27) 

c = k3 (mod 27), in case (E) , 
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Proposition 2. 

i 
0 (mod 9), mses (GI, (I), 

h2k4 = 1 (mod 9). Cases (A) (C) (El, 

4 or 7 (mod 9), cases (B) , ( D )  , (F) , (H) . 

In cases (A), (C), (E), Proposition 2 shows that we can define e = + 1 by 

hk2 I e (mod 9). 

The next proposition is proved in Section 4. 

Proposition 3. 1 + ekm bn 0 (mod 3) in cues (C) and (E). 

From (1.17) and Proposition 3, we see that 

(3m, C + ekm) = 1 in cases (C) and (E). 

Thus we can choose integers u' and v' in cases (C) and (E) such that 

3mu' + (e + &)v1 = 1. 

We note that Cv' = 1 (mod m) so that 

Ev' - kt2 = (kt3 + hm3)v' - kt2 r kt3v' - kt2 E kt2 - &t2-= 0 (mod m) , 

showing that 

Ev' - kt2 
is an integer in cases (C) and (E). 

m 

From (1.26) and Proposition 2 we have 
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Proposition 4. 

I 2 2 - 27h k 9 cases (B),  (Dl, ( F ) ,  (G), (H), ( I ) ,  
d ( ~ )  = 

The next proposition is proved in Section 5. 

Proposition 5. 

b + 8  
(0 3 E OK in case (A). 

(ii) E OK in all cases. 
E 

(iii) 
(kEv' + 2hMm) + ((Ev' - M2)/m)0 + e2 

3E 
E O K ,  in cases (C) , (E)  . 

From Propositions 4 and 5 we obtain immediately our main result since 

( 2 ,  
3 2 2 2  d 1 ,8 ,8  = -4a3 -276' = -3c2 = -3 h k E . 

Theorem. An integral basis for the pure cubic field K is given by 

b + 8 2hklm + (hm2u - kt2v)B + e2 
E 

in case (A), 

(kEvt + 2hhUm) + ((Ev' - kt2)/m)8 + 0' } 
in cases (C) , (E) . 

3E Ti 
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Table 1 illustrates each of the nine cases (A)-(I) 
Table 1 (values of parameters) 

Table 1 (cont'd) (discriminant and integral basis) 

c a s e a  

(A) 51 

b 

272 

c 

- 918 

A 

17 

S 

17 

C 

306 

R 

289 1 17 

h k e m u v  

1 1 1 0 

E U ' V '  E 

18 
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2. Proof of Proposition 1 

From (1.2) and (1.4) we have 

4(a /3).' + b2 = c2 = 0, l , 4  or 7 (mod 9) 

so that one of the following possibilities must occur : 

(a) a = 6 (mod 9), b = fi (mod 9), 

(p) a E 3 (mod 9), b r 0 (mod 3), 

(a) comprises cases (A) and (B). (p) comprises cases (C) and (D). (y) comprises 

cases (E), (F), (G), (HI, and 61 

a = 0 (mod 9), b = 0 (mod 9). (2.1) 

If (2.1) holds, by (1.3), we must have b r k9 (mod 27). Thus 3 1 A ,  32 11 b. From 

(1.5) we deduce that 32 1 C and 32 I A so that a = 0 (mod 27). Hence (2.1) is the 

case (I). 

3. Proof of Proposition 2 

Table 2 follows easily from (1.14)-(1.17) and the fact that h and k are coprime. 

Table 2 

h, k, e, m 

31hk 

3[hk, 31em 

3[hk,3[em 

a, b, c 

9 ( a ,  3 1b 

91a, 3[b, 31) c 

311 a, 3 1 b , 9 1 ~  

or 

31) a, 314 311 c 

cases 

(GI (1) 

(E) (F) (H) 

(A) (B) 

(C) (Dl 
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2 
If 31 1 then t6 = I (mod 9) and h2k4 ='h2k4t6 = R~ = (i(C+ b)) (mod 9). 

2 
1 f . 3 ~ 1  then 3!m so-m6=l(mod9)  and h4k2 = h4k2m6 =s2 =(f(C-b)) 

( mod 9 ) . Then, appealing to Table 2, we obtain 

2 

(E): (3!1) h 2 k 4 = ( i ( i 1 i 1 ) )  =l (mod9) ,  

2 

(H): ( 3 1 3  h 2 k 4 = ( i ( i 4 i 4 ) )  =7(mod9) ,  

(G) (1): h2k4 = 0 (mod 9), 

which completes the proof of Proposition 2. 

4. Proof of Proposition 3 

In case (C) we have 

A i 1 (mod3), b I ~ ( m o d g ) ,  C =  26 (modg), 
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where 6 = f 1. Then, fiom (1.14), (1.15), (1.16), we obtain 

hkCm EE 1 (mod 3), hk2t3 = 6 (mod 9)-, h2knt3 = 6 (mod 9). 

As hk2 = E (mod 9), where E = f 1, we have h = E (mod 3) so that 

( e&b(mod3) ,  knt t6(mod3) ,  and ~ + u b n = & 6 + & 6  = 2 ~ 6  $ o(mod3). 

In case (E) we have 3 1 hk, 3 1 t m  (Table 2). If 3 1 L then 3 1 m so 

L + ~ b n = u b n $ 0 ( m o d 3 ) .  If 3lm then 31L so L + ~ k n t =  L +  o(mod3). 
I .  

5,Proof of Proposition 5 
X 

(i) In case (A) we have a = 6 ( m o d 9 ) ,  b= f2 (mod9) ,b2=&z+ l  

(mod 27), so 

and 

a + 3b2 E 6 + 3(4) = 0 (mod 9) 

1 - a - b2 r 0 (mod 27) 

showing that (a + 3b2) /9 and (b - ab - b3) 127 are integers. Now 

4 = (b + 8) /3 (E K) satisfies the monic cubic equation 

so that 4 is an algebraic integer, and hence 4 E OK. 

(ii) Appealing to (1.18), (1.2 1) and (1.22) we have 
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(iii) In cases (C) and (E) we have hk2 = E (mod 9) (E = f 1) and we consider 

a = (k + + 42) 13 E K. Making use of (1.23) and (1.24), we fmd that a 

satisfies the monic cubic equation 

As h = E (mod 3), (1 - &) 13 is an integer. We show next that (h2 + k2 + ~ h k ~  

- 3&k2) 127 is also an integer. Clearly 3 / k so k2 = 1, 4, 7 (mod 9). Set 

k 2 =  r + 9 s ,  where r = 1, 4, 7 and s is an integer. Then h = h r 3 a  

hk2r2 = w2 (mod 9), so h = E r2 + 92 for some integer t. Hence 

h2 = r4 + 18w2t (mod 27), 

k4 = r2 + 18rs (mod 27), 

hk4 + ET4 + 9r2t + 18er3s (mod 27). 

Then, as r E 1 (mod 31, r2 r 2r - l(mod 9), and r3 5 3r - 2 (mod 27), we 

have 

i 0 (mod 27). 

We have now shown that a E OK . Finally, appealing to (1.19), (1.2 I), (1.22) and 

(1.30), we obtain 

(kEv' + 2 hMm) + ((Ev' - kt2 )/m)8 + e2 = v'a + ~ ' 4 ~  E OK. 
3E 
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6. Concluding Remarks 

The discriminant of an arbitrary cubic field has been given by Llorente and Nart 
[3] and an integral basis by Alaca jl]. From [3 : Theorem 21 in the case of a pure 
cubic field K given by (1 . I ) ,  we have 

I 1, cases (A), (C), (El, 

P = 3, cases (B), @I, ( 0 ,  (H), 

5 ,  cases (GI, (I). 

Combining (6.1) with Proposition 4, we see that 

where 

4 cases(A), (B), (C), @I, (El, (F), (H), 
= [ (6.4) 

1 cases(G), (I). 

We leave it to the reader to deduce (6.3) arithmetically fiom the properties of a, b, h, 

k given in Section 1. 
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