AN EXPLICIT INTEGRAL BASIS FOR A PURE CUBIC FIELD

BLAIR K. SPEARMAN and KENNETH S. WILLIAMS

(Received July 31, 1997)

Submitted by K. K. Azad

Abstract

An explicit integral basis of the form $$
\left\{1,\left(a_{1}+\theta\right) / d_{1},\left(a_{2}+a_{3} \theta+\theta^{2}\right) / d_{2}\right\}
$$ where $a_{1}, a_{2}, a_{3}, d_{1}, d_{2}$ are integers, is given for a pure cubic field $K=Q(\theta)$, where $\theta^{3}+a \theta+b=0$.

1. Introduction

Every pure cubic field F over the rational field Q can be given in the form

$$
\begin{equation*}
F=Q(\theta), \quad \theta^{3}+a \theta+b=0 \tag{1.1}
\end{equation*}
$$

where a and b are integers such that the polynomial $X^{3}+a X+b$ is irreducible in $Q[X]$ and its discriminant is of the form $-3 c^{2}$ for some positive integer c, that is,

$$
\begin{equation*}
-4 a^{3}-27 b^{2}=-3 c^{2} \tag{1.2}
\end{equation*}
$$

In this note we obtain an explicit integral basis for F in the form

[^0]Key words and phrases : pure cubic field, integral basis.
Research of the second author supported by a Natural Sciences and Engineering Research Council of Canada Grant A-7233.
$\left\{1,\left(a_{1}+\theta\right) / d_{1},\left(a_{2}+a_{3} \theta+\theta^{2}\right) / d_{2}\right\}$ for suitable integers $a_{1}, a_{2}, a_{3}, d_{1}, d_{2}$. Such a basis has been given when $a=0$ (in which case $K=Q(\sqrt[3]{-b}))$ by Dedekind (see for example [2]), so we may assume that $a \neq 0$. Clearly $b \neq 0$. Throughout this paper p denotes a prime and $\nu_{p}(m)$ denotes the unique nonnegative integer e such that $p^{e} \mid m, p^{e+1} \nmid m$ (written $p^{e} \| m$), where m is a nonzero integer. If $\quad v_{p}(a) \geq 2$ and $v_{p}(b) \geq 3$ then $F=Q(\theta / p)$, where $(\theta / p)^{3}+\left(a / p^{2}\right)(\theta / p)+\left(b / p^{3}\right)=0$. Hence we may also assume that

$$
\begin{equation*}
v_{p}(a)<2 \text { or } v_{p}(b)<3 \text { for every prime } p \tag{1.3}
\end{equation*}
$$

From (1.2) we see that

$$
\begin{equation*}
a=3 A, \quad c=3 C, \tag{1.4}
\end{equation*}
$$

for some integers A and C, and (1.2) can be written in the form

$$
\begin{equation*}
(C+b)(C-b)=4 A^{3} \tag{1.5}
\end{equation*}
$$

As $a \neq 0$ we see that $A \neq 0, C+b \neq 0$, and $C-b \neq 0$. Thus

$$
\begin{equation*}
R=\frac{1}{2}(C+b), \quad S=\frac{1}{2}(C-b), \tag{1.6}
\end{equation*}
$$

are nonzero integers satisfying

$$
\begin{equation*}
R-S=b, \quad R+S=C \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
R S=A^{3}=(a / 3)^{3} \tag{1.8}
\end{equation*}
$$

In view of (1.8) we can define squarefree, coprime, positive integers h and k by

$$
\begin{align*}
& h=\prod_{\substack{p \\
v_{p}(R) \equiv 1(\bmod 3)}} p=\prod_{\substack{p \\
v_{p}(S) \\
\equiv 2(\bmod 3)}} p, \tag{1.9}\\
& k=\prod_{\substack{p \\
v_{p}(R) \equiv 2(\bmod 3)}} p=\prod_{p} p . \\
& v_{p}(S)=1(\bmod 3) \tag{1.10}
\end{align*}
$$

We also define nonzero integers ℓ and m by

$$
\begin{equation*}
\ell=\operatorname{sgn}(R) \quad \prod_{\substack{p}} p^{v_{p}(R) / 3} \prod_{p} p^{\left(v_{p}(R)-1\right) / 3} \prod_{p} p^{\left(v_{p}(R)-2\right) / 3} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.m=\operatorname{sgn}(S) \quad \prod_{\substack{p \\ v_{p}(S)=0(\bmod 3)}} p^{v_{p}(S) / 3} \prod_{p} p_{p}(R)=1(\bmod 3) \quad \prod_{p}(S)-1\right) / 3 \quad \sum_{p}(S)=2(\bmod 3) . \tag{1.12}
\end{equation*}
$$

From (1.9)-(1.12) we deduce that

$$
\begin{equation*}
R=h k^{2} \ell^{3}, \quad S=h^{2} \mathrm{~km}^{3} . \tag{1.13}
\end{equation*}
$$

Appealing to (1.8) and (1.13), we obtain

$$
\begin{equation*}
A=h k \ell m, \quad a=3 h k \ell m . \tag{1.14}
\end{equation*}
$$

Further, from (1.4), (1.7) and (1.13), we have

$$
\begin{equation*}
b=h k\left(k \ell^{3}-h m^{3}\right) \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
C=h k\left(k \ell^{3}+h m^{3}\right), \quad c=3 h k\left(k \ell^{3}+h m^{3}\right) . \tag{1.16}
\end{equation*}
$$

From (1.3), (1.14) and (1.15), we deduce that

$$
\begin{equation*}
(\ell, m)=1 . \tag{1.17}
\end{equation*}
$$

Thus we can choose u and v to be integers satisfying

$$
\begin{equation*}
\ell u+m v=1 . \tag{1.18}
\end{equation*}
$$

It is also convenient to define an integer F by

$$
\begin{equation*}
E=k \ell^{3}+h m^{3} . \tag{1.19}
\end{equation*}
$$

From (1.16) and (1.19) we have

$$
\begin{equation*}
C=h k E, \quad c=3 h k E . \tag{1.20}
\end{equation*}
$$

We also define $\phi_{1} \in K$ and $\phi_{2} \in K$ by

$$
\begin{equation*}
\phi_{1}=\frac{2 h k l m^{2}-k \ell^{2} \theta+m \theta^{2}}{E} \tag{1.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{2}=\frac{2 h k \ell^{2} m+h m^{2} \theta+\ell \theta^{2}}{E} . \tag{1.22}
\end{equation*}
$$

Squaring (1.21) and (1.22), and appealing to (1.1), (1.14), (1.15) and (1.19), we obtain

$$
\begin{equation*}
\phi_{1}^{2}=k \phi_{2}, \quad \phi_{2}^{2}=h \phi_{1} \tag{1.23}
\end{equation*}
$$

so that

$$
\begin{equation*}
\phi_{1} \phi_{2}=h k, \quad \phi_{1}^{3}=h k^{2}, \quad \phi_{2}^{3}=h^{2} k . \tag{1.24}
\end{equation*}
$$

From (1.24) we see that ϕ_{1} and ϕ_{2} are algebraic integers so that $\phi_{1} \in O_{K}$, $\phi_{2} \in O_{K}$. Further, as h and k are squarefree, coprime, positive integers, we have $h k^{2}=$ perfect cube $\Rightarrow h=k=1 \Rightarrow a=3 \ell m, b=\ell^{3}-m^{3} \Rightarrow x^{3}+a x+b$ has root $x=m-\ell$ contradicting that $x^{3}+a x+b$ is irreducible. Hence $h k^{2}$ is not a perfect cube so that $\left[Q\left(\phi_{1}\right): Q\right]=3$ and

$$
\begin{equation*}
K=Q(\theta)=Q\left(\phi_{1}\right)=Q\left(\omega \sqrt[3]{h k^{2}}\right) \tag{1.25}
\end{equation*}
$$

for some cube root of unity ω. Thus the discriminant $d(K)$ of K is given by

$$
\begin{align*}
d(K) & =d\left(Q\left(\omega \sqrt[3]{h k^{2}}\right)\right) \\
& =d\left(Q\left(\sqrt[3]{h k^{2}}\right)\right) \\
& = \begin{cases}-27 h^{2} k^{2}, & \text { if } h^{2} k^{4} \not \equiv 1(\bmod 9), \\
-3 h^{2} k^{2}, & \text { if } h^{2} k^{4} \equiv 1(\bmod 9)\end{cases} \tag{1.26}
\end{align*}
$$

see for example [2: p. 340].

The following proposition is proved in Section 2.
Proposition 1. One and only one of the following cases occurs:
(A)

$$
a \equiv 6(\bmod 9), \quad b \equiv \pm 2(\bmod 9), \quad b^{2} \equiv-a+1(\bmod 27),
$$

$$
\begin{equation*}
a \equiv 6(\bmod 9), \quad b \equiv \pm 2(\bmod 9), \quad b^{2} \not \equiv-a+1(\bmod 27), \tag{B}
\end{equation*}
$$

(C)
$a \equiv 3(\bmod 9), \quad b \equiv 0(\bmod 9)$,
(D) $\quad a \equiv 3(\bmod 9), \quad b \equiv \pm 3(\bmod 9)$,

$$
\begin{equation*}
a \equiv 0(\bmod 9), \quad b \equiv \pm 1(\bmod 9) \tag{E}
\end{equation*}
$$

$$
\begin{equation*}
a \equiv 0(\bmod 9), \quad b \equiv \pm 2(\bmod 9), \tag{F}
\end{equation*}
$$

 \(a \equiv 0(\bmod 9), \quad b \equiv \pm 3(\bmod 9)\),
 \(a \equiv 0(\bmod 9), \quad b \equiv \pm 4(\bmod 9)\),
 $$
\begin{equation*}
a \equiv 0(\bmod 27), b \equiv \pm 9(\bmod 27) . \tag{H}
\end{equation*}
$$

It is clear that cases (A)-(I) are mutually exclusive. Table 1 below shows that they all occur. In Section 2 it is shown that they exhaust all possibilities. From Proposition 1 and (1.2), we obtain

$$
\begin{cases}c \equiv 0(\bmod 27), & \text { in case }(\mathrm{A}) \tag{1.27}\\ c \equiv \pm 9(\bmod 27), & \text { in cases }(\mathrm{B}),(\mathrm{G}) \\ c \equiv \pm 6(\bmod 27), & \text { in cases }(\mathrm{C}),(\mathrm{D}),(\mathrm{F}) \\ c \equiv \pm 3(\bmod 27), & \text { in case }(\mathrm{E}) \\ c \equiv \pm 12(\bmod 27), & \text { in case }(\mathrm{H}) \\ c \equiv \pm 27(\bmod 81), & \text { in case }(\mathrm{I})\end{cases}
$$

The next proposition is proved in Section 3.

Proposition 2.

$$
h^{2} k^{4} \equiv \begin{cases}0(\bmod 9), & \operatorname{cases}(\mathrm{G}),(\mathrm{I}) \\ 1(\bmod 9), & \operatorname{cases}(\mathrm{A}),(\mathrm{C}),(\mathrm{E}) \\ 4 \operatorname{or} 7(\bmod 9), & \operatorname{cases}(\mathrm{B}),(\mathrm{D}),(\mathrm{F}),(\mathrm{H})\end{cases}
$$

In cases (A), (C), (E), Proposition 2 shows that we can define $\varepsilon= \pm 1$ by

$$
\begin{equation*}
h k^{2} \equiv \varepsilon(\bmod 9) \tag{1.28}
\end{equation*}
$$

The next proposition is proved in Section 4.
Proposition 3. $\ell+\varepsilon k m \not \equiv 0(\bmod 3)$ in cases (C) and (E).
From (1.17) and Proposition 3, we see that

$$
\begin{equation*}
(3 m, \ell+\varepsilon k m)=1 \text { in cases }(\mathrm{C}) \text { and }(\mathrm{E}) . \tag{1.29}
\end{equation*}
$$

Thus we can choose integers u^{\prime} and v^{\prime} in cases (C) and (E) such that

$$
\begin{equation*}
3 m u^{\prime}+(\ell+\varepsilon k m) v^{\prime}=1 . \tag{1.30}
\end{equation*}
$$

We note that $\ell v^{\prime} \equiv 1(\bmod m)$ so that

$$
E v^{\prime}-k \ell^{2}=\left(k \ell^{3}+h m^{3}\right) v^{\prime}-k \ell^{2} \equiv k \ell^{3} v^{\prime}-k \ell^{2} \equiv k \ell^{2}-k \ell^{2} \equiv 0(\bmod m),
$$

showing that

$$
\begin{equation*}
\frac{E v^{\prime}-k \ell^{2}}{m} \text { is an integer in cases (C) and (E). } \tag{1.31}
\end{equation*}
$$

From (1.26) and Proposition 2 we have

Proposition 4.

$$
d(K)= \begin{cases}-27 h^{2} k^{2}, & \operatorname{cases}(\mathrm{~B}),(\mathrm{D}),(\mathrm{F}),(\mathrm{G}),(\mathrm{H}),(\mathrm{I}) \\ -3 h^{2} k^{2}, & \operatorname{cases}(\mathrm{~A}),(\mathrm{C}),(\mathrm{E})\end{cases}
$$

The next proposition is proved in Section 5.

Proposition 5.

(i) $\frac{b+\theta}{3} \in O_{K} \quad$ in case (A).
(ii) $\frac{2 h k \ell m+\left(h m^{2} u-k \ell^{2} v\right) \theta+\theta^{2}}{E} \in O_{K} \quad$ in all cases.
(iii) $\frac{\left(k E v^{\prime}+2 h k \ell m\right)+\left(\left(E v^{\prime}-k \ell^{2}\right) / m\right) \theta+\theta^{2}}{3 E} \in O_{K}$, in cases (C), (E).

From Propositions 4 and 5 we obtain immediately our main result since $d\left(1, \theta, \theta^{2}\right)=-4 a^{3}-27 b^{2}=-3 c^{2}=-3^{3} h^{2} k^{2} E^{2}$.

Theorem. An integral basis for the pure cubic field K is given by

$$
\begin{aligned}
& \left\{1, \frac{b+\theta}{3}, \frac{2 h k \ell m+\left(h m^{2} u-k \ell^{2} v\right) \theta+\theta^{2}}{E}\right\} \text { in case (A), } \\
& \left\{1, \theta, \frac{2 h k \ell m+\left(h m^{2} u-k \ell^{2} v\right) \theta+\theta^{2}}{E}\right\} \text { in cases (B), (D), (F), (G), (H), (I), } \\
& \left\{1, \theta, \frac{\left(k E v^{\prime}+2 h k \ell m\right)+\left(\left(E v^{\prime}-k \ell^{2}\right) / m\right) \theta+\theta^{2}}{3 E}\right\} \text { in cases (C),(E). }
\end{aligned}
$$

Table 1 illustrates each of the nine cases (A)-(I) Table 1 (values of parameters)

case	a	b	c	A	C	R	S	h	k	ℓ	m	u	v	ε	u^{\prime}	v^{\prime}	E
(A)	51	272	918	17	306	289	17	1	17	1	1	1	0				18
(B)	6	2	18	2	6	4	2	1	2	1	1	1	0				3
(C)	30	90	330	10	110	100	10	1	10	1	1			1	4	-1	11
(D)	30	15	195	10	65	40	25	5	1	2	1	0	1				13
(E)	90	-170	1110	30	370	100	270	1	10	1	3			1	7	-2	37
(F)	36	92	372	12	124	108	16	1	2	3	2	1	-1				62
(G)	27	240	738	9	246	243	3	1	3	3	1	0	1				82
(H)	36	22	258	12	86	54	32	2	1	3	2	1	-1				43
(I)	27	72	270	9	90	81	9	3	1	3	1	0	1				30

Table 1 (cont'd) (discriminant and integral basis)

case	$d(K)$	integral basis
(A)	$-3 \cdot 17^{2}$	$1,(272+\theta) / 3,\left(34+\theta+\theta^{2}\right) / 18$
(B)	$-2^{2} \cdot 3^{3}$	$1, \theta,\left(4+\theta+\theta^{2}\right) / 3$
(C)	$-2^{2} \cdot 3 \cdot 5^{2}$	$1, \theta,\left(-90-21 \theta+\theta^{2}\right) / 33$
(D)	$-3^{3} \cdot 5^{2}$	$1, \theta,\left(20-4 \theta+\theta^{2}\right) / 13$
(E)	$-2^{2} \cdot 3 \cdot 5^{2}$	$1, \theta,\left(-680-28 \theta+\theta^{2}\right) / 111$
(F)	$-2^{2} \cdot 3^{3}$	$1, \theta,\left(24+22 \theta+\theta^{2}\right) / 62$
(G)	-3^{5}	$1, \theta,\left(18-27 \theta+\theta^{2}\right) / 82$
(H)	$-2^{2} \cdot 3^{3}$	$1, \theta,\left(24+17 \theta+\theta^{2}\right) / 43$
(I)	-3^{5}	$1, \theta,\left(18-9 \theta+\theta^{2}\right) / 30$

2. Proof of Proposition 1

From (1.2) and (1.4) we have

$$
4(a / 3)^{3}+b^{2}=C^{2} \equiv 0,1,4 \text { or } 7(\bmod 9)
$$

so that one of the following possibilities must occur :

$$
\begin{aligned}
& \text { (} \alpha) \quad a \equiv 6(\bmod 9), b \equiv \pm 2(\bmod 9), \\
& (\beta) \quad a \equiv 3(\bmod 9), b \equiv 0(\bmod 3), \\
& (\gamma) \quad a \equiv 0(\bmod 9) .
\end{aligned}
$$

(α) comprises cases (A) and (B). (β) comprises cases (C) and (D). (γ) comprises cases (E), (F), (G), (H), and

$$
\begin{equation*}
a \equiv 0(\bmod 9), b \equiv 0(\bmod 9) . \tag{2.1}
\end{equation*}
$$

If (2.1) holds, by (1.3), we must have $b \equiv \pm 9(\bmod 27)$. Thus $3 \mid A, 3^{2} \| b$. From (1.5) we deduce that $3^{2} \mid C$ and $3^{2} \mid A$ so that $a \equiv 0(\bmod 27)$. Hence (2.1) is the case (I).

3. Proof of Proposition 2

Table 2 follows easily from (1.14)-(1.17) and the fact that h and k are coprime.
Table 2

h, k, ℓ, m	a, b, c	cases		
$3 \mid h k$	$9\|a, 3\| b$	$(\mathrm{G})(\mathrm{I})$		
$3 \nmid h k, 3 \mid \ell m$	$9 \mid a, 3 \backslash b, 3 \\| c$	$(\mathrm{E})(\mathrm{F})(\mathrm{H})$		
$3 \backslash h k, 3 \backslash \ell m$	$3 \\| a, 3 \backslash b, 9 \mid c$	(A) (B)		
or				
$3\\|a, 3 \mid b, 3\\| c$	$(\mathrm{C})(\mathrm{D})$			

If $3 \backslash \ell$ then $\ell^{6} \equiv 1(\bmod 9)$ and $h^{2} k^{4} \equiv h^{2} k^{4} \ell^{6}=R^{2}=\left(\frac{1}{2}(C+b)\right)^{2}(\bmod 9)$. If $3 \mid \ell$ then $3 \mid m$ so $m^{6} \equiv 1(\bmod 9)$ and $h^{4} k^{2} \equiv h^{4} k^{2} m^{6}=S^{2}=\left(\frac{1}{2}(C-b)\right)^{2}$ $(\bmod 9)$. Then, appealing to Table 2, we obtain
(A) (C):

$$
h^{2} k^{4} \equiv\left(\frac{1}{2}(0 \pm 2)\right)^{2} \equiv 1(\bmod 9)
$$

(B) (D): $\quad h^{2} k^{4} \equiv\left(\frac{1}{2}(\pm 3 \pm 2)\right)^{2} \equiv 4$ or $7(\bmod 9)$,
(E): $\quad(3 \nmid \ell) \quad h^{2} k^{4} \equiv\left(\frac{1}{2}(\pm 1 \pm 1)\right)^{2} \equiv 1(\bmod 9)$,
(3|e) $h^{4} k^{2} \equiv\left(\frac{1}{2}(\pm 1 \mp 1)\right)^{2} \equiv 1(\bmod 9)$, so $h^{2} k^{4} \equiv 1(\bmod 9)$,
(F): $\quad(3 \backslash \ell) \quad h^{2} k^{4} \equiv\left(\frac{1}{2}(\pm 2 \pm 2)\right)^{2} \equiv 4(\bmod 9)$,
(3| $) \quad h^{4} k^{2} \equiv\left(\frac{1}{2}(\pm 2 \mp 2)\right)^{2} \equiv 4(\bmod 9)$, so $h^{2} k^{4} \equiv 7(\bmod 9)$,
(H): (3\ध) $\quad h^{2} k^{4} \equiv\left(\frac{1}{2}(\pm 4 \pm 4)\right)^{2} \equiv 7(\bmod 9)$,
(3| $) \quad h^{4} k^{2} \equiv\left(\frac{1}{2}(\pm 4 \mp 4)\right)^{2} \equiv 7(\bmod 9)$, so $h^{2} k^{4} \equiv 4(\bmod 9)$,
(G) (I): $\quad h^{2} k^{4} \equiv 0(\bmod 9)$,
which completes the proof of Proposition 2.

4. Proof of Proposition 3

In case (C) we have

$$
A \equiv 1(\bmod 3), b \equiv 0(\bmod 9), C \equiv 28(\bmod 9)
$$

where $\delta= \pm 1$. Then, from (1.14), (1.15), (1.16), we obtain

$$
h k \ell m \equiv 1(\bmod 3), \quad h k^{2} \ell^{3} \equiv \delta(\bmod 9), \quad h^{2} k m^{3} \equiv \delta(\bmod 9) .
$$

As $h k^{2} \equiv \varepsilon(\bmod 9)$, where $\varepsilon= \pm 1$, we have $h \equiv \varepsilon(\bmod 3)$ so that $\ell \equiv \varepsilon \delta(\bmod 3), k m \equiv \delta(\bmod 3)$, and $\ell+\varepsilon k m \equiv \varepsilon \delta+\varepsilon \delta=2 \varepsilon \delta \equiv 0(\bmod 3)$.

In case (E) we have $3 \backslash h k, 3 \mid \ell m$ (Table 2). If $3 \mid \ell$ then $3 \mid m$ so $\ell+\varepsilon k m \equiv \varepsilon k m \not \equiv 0(\bmod 3)$. If $3 \mid m$ then $3 \backslash \ell$ so $\ell+\varepsilon k m \equiv \ell \neq 0(\bmod 3)$.

5. Proof of Proposition 5

(i) In case (A) we have $a \equiv 6(\bmod 9), b \equiv \pm 2(\bmod 9), b^{2} \equiv a+1$ $(\bmod 27)$, so

$$
a+3 b^{2} \equiv 6+3(4) \equiv 0(\bmod 9)
$$

and

$$
1-a-b^{2} \equiv 0(\bmod 27)
$$

showing that $\left(a+3 b^{2}\right) / 9$ and $\left(b-a b-b^{3}\right) / 27$ are integers. Now $\phi=(b+\theta) / 3(\in K)$ satisfies the monic cubic equation

$$
\phi^{3}-b \phi^{2}+\frac{\left(a+3 b^{2}\right)}{9} \phi+\frac{\left(b-a b-b^{3}\right)}{27}=0
$$

so that ϕ is an algebraic integer, and hence $\phi \in O_{K}$.
(ii) Appealing to (1.18), (1.21) and (1.22) we have

$$
\frac{2 h k \ell m+\left(h m^{2} u-k \ell^{2} v\right) \theta+\theta^{2}}{E}=v \phi_{1}+u \phi_{2} \in O_{K} .
$$

(iii) In cases (C) and (E) we have $\boldsymbol{h k ^ { 2 }} \equiv \varepsilon(\bmod 9)(\varepsilon= \pm 1)$ and we consider $\alpha=\left(k+\varepsilon k \phi_{1}+\phi_{2}\right) / 3 \in K$. Making use of (1.23) and (1.24), we find that α satisfies the monic cubic equation

$$
\alpha^{3}-k \alpha^{2}+\frac{k^{2}(1-\varepsilon h)}{3} \alpha-\frac{k\left(h^{2}+k^{2}+\varepsilon h k^{4}-3 \varepsilon h k^{2}\right)}{27}=0 .
$$

As $h \equiv \varepsilon(\bmod 3),(1-\varepsilon h) / 3$ is an integer. We show next that $\left(h^{2}+k^{2}+\varepsilon h k^{4}\right.$ $\left.-3 \varepsilon h k^{2}\right) / 27$ is also an integer. Clearly $3 \nmid k$ so $k^{2} \equiv 1,4,7(\bmod 9)$. Set $k^{2}=r+9 s$, where $r=1,4,7$ and s is an integer. Then $h \equiv h r^{3} \equiv$ $h k^{2} r^{2} \equiv \varepsilon r^{2}(\bmod 9)$, so $h=\varepsilon r^{2}+9 t$ for some integer t. Hence

$$
\begin{aligned}
& h^{2} \equiv r^{4}+18 \varepsilon r^{2} t(\bmod 27) \\
& k^{4} \equiv r^{2}+18 r s(\bmod 27) \\
& h k^{4} \equiv \varepsilon r^{4}+9 r^{2} t+18 \varepsilon r^{3} s(\bmod 27)
\end{aligned}
$$

Then, as $r \equiv 1(\bmod 3), r^{2} \equiv 2 r-1(\bmod 9)$, and $r^{3} \equiv 3 r-2(\bmod 27)$, we have

$$
\begin{aligned}
& h^{2}+k^{2}+\varepsilon h k^{4}-3 \varepsilon h k^{2} \\
\equiv & \left(r^{4}+18 \varepsilon r^{2} t\right)+(r+9 s)+\left(r^{4}+9 \varepsilon r^{2} t+18 r^{3} s\right)-3 \\
\equiv & 2 r^{4}+r-3 \equiv 6 r^{2}-3 r-3 \equiv 9 r-9 \\
\equiv & 0(\bmod 27) .
\end{aligned}
$$

We have now shown that $\alpha \in O_{K}$. Finally, appealing to (1.19), (1.21), (1.22) and (1.30), we obtain

$$
\frac{\left(k E v^{\prime}+2 h k \ell m\right)+\left(\left(E v^{\prime}-k \ell^{2}\right) / m\right) \theta+\theta^{2}}{3 E}=v^{\prime} \alpha+u^{\prime} \phi_{1} \in O_{K} .
$$

6. Concluding Remarks

The discriminant of an arbitrary cubic field has been given by Llorente and Nart [3] and an integral basis by Alaca [1]. From [3: Theorem 2] in the case of a pure cubic field K given by (1.1), we have

$$
\begin{equation*}
d(K)=-3^{\beta} \prod_{\substack{p \neq 3 \\ 1 \leq v_{p}(b) \leq v_{p}(a)}} p^{2}, \tag{6.1}
\end{equation*}
$$

where

$$
\beta= \begin{cases}1, & \operatorname{cases}(A),(C),(\mathrm{E}) \tag{6.2}\\ 3, & \operatorname{cases}(B),(\mathrm{D}),(\mathrm{F}),(\mathrm{H}) \\ 5, & \operatorname{cases}(\mathrm{G}),(\mathrm{I})\end{cases}
$$

Combining (6.1) with Proposition 4, we see that

$$
\begin{equation*}
h k=3^{\gamma} \prod_{\substack{p \neq 3 \\ 1 \leq v_{p}(b) \leq v_{p}(a)}} p, \tag{6.3}
\end{equation*}
$$

where

$$
\gamma= \begin{cases}0, & \operatorname{cases}(A),(B),(C),(D),(E),(F),(H), \tag{6.4}\\ 1, & \operatorname{cases}(G),(I) .\end{cases}
$$

We leave it to the reader to deduce (6.3) arithmetically from the properties of a, b, h, k given in Section 1.

Acknowledgment

The second author acknowledges the hospitality of Okanagan University College, Kelowna, BC, Canada and Macquarie University, Sydney, Australia, where this paper was completed.

References

[1] S. Alaca, p-integral bases of algebraic number fields, Ph. D. Thesis, Carleton University, Ottawa, Ontario, Canada, 1994.
[2] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin Heidelberg, 1993.
[3] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.

Department of Mathematics and Statistics
Okanagan University College
Kelowna, B. C. V1V 1 V7
Canada
e-mail : bkspearm@okanagan.bc.ca

Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S 5B6
Canada
e-mail : williams@math.carleton.ca

[^0]: 1991 Mathematics Subject Classification: Primary 11R16, 11R04, 11 R29.

