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Abstract. It is known that every quadratic field K is a subfield of the splitting 
field of a dihedral quintic polynomial. In this paper it is shown that K is 
a subfield of the splitting field of a dihedral quintic trinomial x5 + ax + b if 
and only if the discriminant of K is of the form -49 or -89, where q is the 
(possibly empty) product of distinct primes congruent to 1 modulo 4. 

# 

1. Introduction 

The quintic polynomial f ( x )  = x5 + a1x4 + a2x3 + a3x2 + a4x + a5 E Q [ x ]  is 
t said to be dihedral if its Galois group is D5 (the dihedral group of order 10). We 

denote the splitting field of f ( x )  by S F  ( f  (2) ) .  Jensen and Yui [3, Theorem 1.2. I.] 
have shown (as a special case of a more general result) that if K is a quadratic field 
then there exists a dihedral quintic polynomial f ( x )  such that K C  SF(^ (2 ) ) .  In 
this paper we characterize those quadratic fields K for which there exist a dihedral 
quintic trinomial x5 + ax  + b E Q [ x ]  such that K S F ( x 5  + ax  + b). We remark 
that if x5 + ax  + b is dihedral then x5 + ax  + b is irreducible, a # 0 ,  and b # 0.  

After a number of preliminary results, we prove - 

Theorem 1.1. Let K be a quadratic field. Let d denote the discriminant of 
K .  Then there exists a dihedral quintic trinomial x5 + a x  + b E Q [ x ]  such that 
K C S F ( x 5  + ax  + b) i f  and only i f  d = -49 or -89 where q is  a (possibly empty) 
product of distinct primes congruent to 1 modulo 4. 

In the course of the proof of Theorem 1.1, we establish the following result. 

Theorem 1.2. Let K be a quadratic field with discriminant d = -49 or -89, 
where q is a (possibly empty) product of distinct primes = 1 (mod 4) .  Then there 
exist integers r and s such that 
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Set 

and b = 

Then x5 + a x  + b is dihedral and K g S F ( x 5  + ax  + b) 

Example 1.3. We take K = Q ( 0 ) .  Here d = -40 so that q = 5. Choosing r = 
1 and s = -2 we obtain a = -5 and b = 12 so that Q ( 0 )  C S F ( x 5  - 5% + 12), 
in agreement with the table in [5]. 

Choosing r = 1 and s = 2 we obtain a = and b = % so that 

Example 1.4. We take K = Q(-). Here d = -20 so that q = 5. Choosing 
r = 1 and s = -2 we obtain a = 20 and b = 32 so that Q ( G )  c SF(x5+20x+32). 

Choosing r = 1 and s = 2 we obtain a = -% and b = so that 

in agreement with the table in [5]. 

2. Preliminary Results 

We will need the following results in the course of the proof of Theorem 1.1. 

Proposition 2.1. If x5 + a x  + b E Q[x] is irreducible, then the Galois group of 
x5 + ax  + b is D5 if  and only if  there exist rational numbers e(= f 1) ,  c(> 0 ) ,  
e(# O ) ,  and t(> 0) such that 

Moreover E ,  c ,  e ,  t are uniquely determined by a and b. 

This result can be found in [3, pp. 987 and 9901. The only part of this proposition 
which is not explicitly stated in [3] is the assertion about uniqueness, which we now 
prove. Suppose that E, c, e ,  t satisfy (2.1). Then 

and eliminating e we see that c is a rational root of 

or equivalently 

~ ~ 2 ~ ( 1 1 e  + ~ c ) ~ ( c ~  + 1) - 55b4(3 - 4 ~ c ) ~  = 0. 
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As x5 + ax + b is dihedral, we have a # 0 and b # 0, and thus 3 - 4 ~ c  # 0 and 
11s + 2c # 0. Setting 

4a(4 + 3 ~ c )  
r = 

(3  - ~ E C )  ' 
so that r # -3a, we have 

3r - 16a 
EC = 2 + 1 =  

25(r2 + 16a2) 
4(r + 3a) ' 16(r + 3a)2 ' 

so that r is a rational root of 

( r  + 2a)4(r2 + 16a2) - 55b4(r + 3,) = 0. 

This shows that r is a root of the resolvent sextic of x5 + ax+ b. As the Galois group 
of x5 + ax + b is D5, its resolvent sextic has a unique rational root [2, Theorem 
11. Thus r is uniquely determined by a and b. Clearly c # 0 in view of the third 
equation in (2.1). Then E ,  c, e, t are uniquely determined by 

3r - 16a 5b(3 - 4 ~ c )  
EC = ( c > O , ~ = f l ) ,  e = -  

4(r + 3a) 4a( l ls  + 2c) ' and t = + J m .  

Proposition 2.2. Suppose that x5 + ax + b E Q[x] is dihedral. Define E ,  c, e, and 
t uniquely as in Proposition 2.1. Then the splitting field of x5 + ax + b contains a 
unique quadratic subfield, namely, 

Q ( J-5 - (1 + 2rc)lt) . 
This result is proved in [5]. 

Proposition 2.3. All positive integral solutions of m2 + n2 = 5z2, ( m , n )  = 1, 
m = 1 (mod 2), n - 0 (mod 2), are given by 

2 2 m = lr2 - 4rs - s2( ,  n = 12r2 + 2rs - 2s21, z = r + s , 
where r and s are -integers with 

This result is easily proved using the arithmetic of the domain of Gaussian inte- 
gers. 

Proposition 2.4. Let E(= f 1), c ( 2  0 ) ,  e(# 0 )  be rational numbers. Then the 
polynomial 

5e4(3 - k c )  4e5(11s + 2c) 
fE,c,e(x) = X + x - 

c2 + 1 c2 + 1 
is reducible if and only if 

c = 314, E = 1 or c = 1112, E = -1. 

Proof. If c = 314, E = 1 then f,,,,,(x) = x5 - 32e5 = ( x  - 2e)(x4 + 2ex3 + 4e2x2 + 
8e3x + 16e4). If c = 1112, E = -1 then f,,,,(x) = x5 + 4e4x = x(x2 - 2ex + 2e2) 
(x2  + 2ex + 2e2). Now suppose that f,,,,,(x) is reducible. By [3, Theorem and 
remark following equation (19)] the roots of f,,,,,(x) = 0 are 

xj = e(wju1 + w2ju2 + w3ju3 + w4juq) ( j  = 0 , l ,  2,3,4), 



where w = e x p ( 2 ~ i / 5 )  and 

From these formulae we see that the degree of the splitting field of f,,,,,(x) is of 
the form 2'5" for some nonnegative integers r and s. Thus f,,,,(x) cannot have 
an irreducible cubic factor E Q[x] .  Hence f,,,,,(x) possesses a linear factor over Q. 
Thus f,,c,l ( x )  has a rational root x,  and 

If x = 0 then c = -11.~12, and so c = 1112 and E = -1 as required. If x = 2~ then 
(2.3) gives after a short calculation c = 3 ~ 1 4 ,  and so c = 314 and E = 1 as required. 
Hence we may suppose that x # 0,2&. Writing (2.3) as a quadratic equation in c, 
we obtain 

(x5)c2 + (-20&x - 8)c + (x5  + 152 - 4 4 ~ )  = 0. 

Solving this equation for c, we obtain 

Thus there is a rational number y such that 

y2 = -(x - ~ E ) ( x ~  + 4&x2 + 7~ + 2 4 .  
@ e 4 )  

Setting 

we deduce from (2.4) that ( X ,  Y )  is a rational point on the elliptic curve E given 
by 

y2 = x3 - 3 5 x 2  + 400X - 1600. (2.6) 

The minimal equation for E is 

Y::+x ly l+y l  = x: : -x1-2 ,  

which is obtained from (2.6) by setting 

From the table in [I], we see that E has conductor 50, and that its group E ( Q )  
of rational points has order 3. Thus, apart from the point at infinity, the curve 
(2.7) has just 2 rational points on it, and these are ( x l ,  y l )  = ( 2 , l )  and (2, -4). 
These give the rational points ( X ,  Y )  = (20, f 20) on the curve (2.6), and the 
transformation (2.5) shows that there are no rational points on the curve (2.4) with 
x # 0, 2&. 
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Proof of Theorem 1.1. Let x5 + ax + b E Q[x] be a dihedral polynomial. By 
i Proposition 2.1 there exist unique rational numbers E(=  f 1), c(> 0), e(# 0), and 

t(> 0) such that (2.1) holds. As c is a positive rational number, there exist positive 
coprime integers m and n such that c = mln. Then, from c2 + 1 = 5t2, we obtain 
m2 + n2 = 5z2, where z = nt is a positive integer. Hence, by Proposition 2.3, there 
are integers r and s satisfying (2.2) such that 

2 2 m =  lr2 -4rs -  s21, n = 12r2 +2rs-2s2(,  z = r  + s  , 
if m - 1 (mod 2), n 0 (mod 2), (2.9) 

Now, by Proposition 2.2, SF(x5 + ax + b) contains a unique quadratic subfield, 
namely, 

K = Q(J-5 - (1 + 2&c)/t ). 

If (3.1) holds then c = 1-1 and t = e, so that 

- 
- (3 r  - s)' ,  i f  - 4rs - sz l  = r z  - 4 r s  - s2 and Ira + r s  - azl = r Z  + r a  - s2,  

-5 ( r  - a)', if c l r Z  - 4,s - s21 = r2 - 4 r s  - s2 and lrz + r e  - szl = - ( r 2  + r s  - s Z ) ,  

-5 ( r  + a)' ,  if c ( r z  - 4 r s  - s2 /  = - ( r Z  - 4 r s  - a z )  and (r2 + r a  - sZI = rZ  + r s  - s Z ,  

- ( r  + 3s)' ,  if €lrZ - 4rs  - sz (  = - ( r Z  - 4r9  - s2)  and (r2 + r a  - s21 = - ( r 2  + r e  - s2) ,  

and thus 

Q ) ,  if sgn(&(r2 -4rs-s2)(r2 + r s  -s2)) = +1, 
K = {  

Q ) if sgn(&(r2 - 4rs - s2)(r2 + r s  - s2)) = -1. 

If (3.2) holds then c = i-1 and t = &, so that 

- lOrZ ,  if c l r z  + r s  - s21 = rz  + r s  - sz and Ir2 - 4 r s  - a21 = r 2  - 4rs  - s z ,  

-2 ( r  - 2s lZ ,  if €lr2 + r s  - sZI = - ( r 2  + r s  - s2)  and (r2 - 4 r s  - aZ( = rz  - 4rs  - s2, 

-2(2r  + s)', if €( r2  + r s  - s2(  = rz  + r s  - sz and (r2 - 4 r s  - s21 = - ( rZ - 4 r s  - s2) ,  

-10sZ, if €lr2 + r s  - s21 = - ( r z  + r s  - s 2 )  and IrZ - 4ra  - sZI = - ( r z  - 4,s - s Z ) ,  

and thus 

Q( J-), if sgn(&(r2 - 4rs - s2)(r2 + r s  - s2)) = -1, 

Q(d-10(r2 + s2) ), if sgn(&(r2 - 4rs - s2)(r2 + r s  - s2)) = +l.  

As (r, s) = 1, the squarefree part of r2  + s2 is a product of distinct primes E 1 
(mod 4) or twice such a product and so 

d = disc (K) = -49 or - 89, 

where q is a (possibly empty) product of distinct primes E 1 (mod 4). 



Conversely suppose that K is a quadratic field with d(K) = -49 or -89, where 
q is a (possibly empty) product of distinct primes E 1 (mod 4). As q is a product 
of primes = 1 (mod 4) there exist integers T and s such that 

Now define rational numbers E(= f 1), c(> 0) and t(> 0) by 

Set f (x)  = x5 + ax + b E Q[x], so that f (x) = f,,,,-,(x). It is easy to check that 
c2 + 1 = 5t2 and (c, E )  # (3/4,1) or (1112, -1). Hence, by Proposition 2.4, f (x) is 
irreducible. Then, by Proposition 2.1, we see that f (x) is dihedral. By Proposition 
2.2, SF(x5 + ax + b) contains Q( J-5 - (1 + 2&c)/t ). It is easy to verify from 
(3.3) and (3.4) that EC # 2. Then the relation 

shows that 

This completes the proofs of Theorems 1.1 and 1.2. 



SPLITTING FIELD OF A DIHEDRAL QUINTIC TRINOMIAL x5 + ax + b 299 

References 

1. J.E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University 
Press, 1992. 

2. D.S. Dummit, Solving solvable quintics, Math. Comp. 57 (1991), 387-401. 
3. C.U. Jensen and N. Yui, Polynomials with D, as Galois group, J .  Number 

Theory 15 (1982), 347-375. 
4. Blair K. Spearman and Kenneth S. Williams, Characterization of solvable quin- 

tics x5 + ax + b, Amer. Math. Monthly 101 (1994), 986-992. 
5. Blair K. Spearman, Laura Y. Spearman and Kenneth S. Williams, The subfields 

of the splitting field of a solvable quintic trinomial X5 + a X  + b, J .  Math. Sci. 6 
(1995), 15-18. 

Blair K. Spearman 
Department of Mathematics and Statistics Laura Y. Spearman 

Okanagan University College City of Kelowna Information Services 

Kelowna, B.C. VlV 1V7 Department 

CANADA Kelowna, B.C. V1Y 154 
bkspearmOokanagan. bc.ca 

CANADA 

Kenneth S. Williams 
Department of Mathematics and Statistics 
Carleton University 
Ottawa 
Ontario K1S 5B6 
CANADA 


