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1. Introduction. Let n denote a nonnegative integer. The nth row of 
Pascal's triangle consists of the n + 1 binomial coefficients 

We denote by Nn(t, m) the number of binomial coefficients in the nth row of 
Pascal's triangle which are congruent to t modulo m, where t and m are in- 
tegers with m > 2. Explicit formulae for Nn(t, m) for certain values o f t  and 
m have been given by a number of authors, for example m = 2 (Glaisher 
[3]), m = 3 (Hexel and Sachs [5]), m = 4 (Davis and Webb [2], Gran- 
ville [4]), m = 5 (Hexel and Sachs [5]), m = 8 (Granville 141, Huard, 
Spearman and Williams [6]), and m = p (prime) (Hexel and Sachs [5], 
Webb [lo]). 

In this paper we treat the case m = 9. We determine explicit formulae 
for Nn(t, 9) for t = 0,1,2,. . . ,8; see the Theorem in Section 2. 

We use throughout the 3-ary representation of n,  namely, 

where 1 2 0, each ai = 0 , l  or 2, and al = 1 or 2 unless n = 0 in which 
case 1 = 0 and a0 = 0. We denote by r an arbitrary integer between 0 
and n inclusive, and we suppose that the 3-ary representation of r is (with 
additional zeros at the right hand end if necessary) r = bobl . . . bl. From 
a theorem of Kummer [8, Lehrsatz, pp. 115-1161 (proved in 1852), we can 
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deduce the exact power of 3 dividing (F), namely, 

where c(n, r) is the number of carries when adding the 3-ary representations 
of r and n - T in base 3. A special case of a theorem of Lucas [9, p. 521 
(proved in 1878) gives the residue of (F) modulo 3, namely, 

with the usual interpretation that (;: ) = 0 if b, > a,. If 3 j (F) (equivalently 
c(n, r) = 0) the residue of (F) modulo 9 follows from a theorem of Granville 
[4, Proposition 2, p. 3261 (proved in 1992), namely, if 3 j  (r) and 1 2 1 
then 

with the convention that when 1 = 1 the denominator is the empty product = 
1. Further, if 311 (r) (equivalently c(n, r) = I ) ,  then a theorem of Kazandzidis 
[7] gives the residue of (Z) modulo 9, namely, 

where cocl . . .cl is the 3-my representation of n - r. Both (1.4) and 
(1.5) also follow from an extension of Lucas' theorem given by Davis and 
Webb [I]. 

We conclude this introduction by giving the following formulae of Hexel 
and Sachs [5]: if nl denotes the number of 1's and n2 the number of 2's in 
the string aoal . . . a1 then 

2. Statement of results. If S is a string of O's, 1's and 2's, we denote 
by n s  = ns(a) the number of occurrences of S in the string a = aoal . . . al. 
Thus, for example, if aoal . . .a1 = 01112010012 then nl l  = 2, nla = 2, 
no01 = 1, and nl21 = 0. Making use of the results (1.2)-(1.5), we prove 
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the following theorem in Sections 4 and 5. We note that for a nonnegative 
integer m, 

om = { 1 i fm=O,  
0 i f m > O .  

For t = 3,6, 

where ind2 t denotes the unique integer j such that t = 23 (mod 9), 0 5 j 5 5 ,  

and p = exp(2~i13). 

For n = 0,1, . . . , 8  Table 1 gives the values of the expressions involving 
n, nl,n2, n01, n02, n11, n12, n21, n ,  72.121, n122 occurring on the right hand 
sides of the formulae for Nn(t, 9) given in the Theorem. Clearly 72121 = 
72.122 = 0 for n = 0,1,.  . . ,8. 

Table 1 

Right hand sides of formulae 
in Theorem for t = 0,1 , .  . . ,8  

n in 
nl n2 no1 no2 rill nl2 n2l n22 0  1 2  3 4  5 6 7 8 

base 3 
0  0  0 0 0  0  0  0  0  0 0 1 0 0 0 0 0 0 0  
1 1 1 0  0  0  0  0  0  0  0 2 0 0 0 0 0 0 0  
2  2  0  1 0  0  0  0  0  0  0 2 1 0 0 0 0 0 0  
3 01 1 0  1 0  0  0  0  0  0 2 0 2 0 0 0 0 0  
4  11 2  0  0  0  1 0  0  0  0 2 0 0 2 0 1 0 0  
5 21 1 1  0  0  0  0  1 0  0 4 0 0 0 2 0 0 0  
6 02 0  1 0  1 0  0  0  0  0 2 1 0 0 0 4 0 0  
7 12 1 1  0  0  0  1 0  0  0 2 0 2 0 0 0 2 2  
8 22 0  2  0  0  0  0  0  1 0 4 2 0 0 0 0 1 2  
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The first nine rows of Pascal's triangle (mod 9)  are 

From this triangle we deduce easily the values of Nn ( t ,  9 )  for n = 0,1,  . . . ,8 
and t = 0 ,1 , .  . . ,8. These values are in agreement with those in Table 1 so 
the Theorem holds for n = 0 ,1 , .  . . ,8. Thus in the proof of the Theorem in 
Sections 4 and 5, we may suppose that n 2 9, so that 1 2 2. 

In the next section we evaluate a sum which will be used in the deter- 
mination of Nn( t ,  9 )  (3  ft) in Section 4. 

3. Evaluation of the sum S ( c ; a ) .  Let k  be a positive integer. Let 
c  = cocl . . . ck be a string of length k  + 1 ( 2  2)  with each ci = 0,1,2 .  Let 
d = dodl . . . dk be a string of length k  + 1 with each di = 0,1 ,2  and di 5 ci. 
As 0 5 di 5 ci 5 2  (i = 0,1 , .  . . , k )  we have 

and by Lucas' theorem (see (1.3)) 

so that 

where the denominator is understood to be the empty product (= 1)  when 
k  = 1. 

Thus we can define e(c ,  d )  = 1,2,4,5,7,8 by 

( '0  f 3 ~ 1 )  ( e l  + 3 ~ 2 )  . . . (ck-1 + 3 c k )  

(3.1) e ( c , d ) =  
do+3dl di+3dz & - I +  3dk 

(mod 9) .  
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We set 

i (c ,d)  = 0,1,2,3,4,5 according as e(c,d)  = 1,2,4,8,7,5, 

so that 

(3-2) i(c, d )  = ind2(e(c, d)) .  

Then, for any sixth root of unity a, we define the sum S(c; a )  by 

The objective of this section is to evaluate the sum S(c; a )  explicitly. This 
evaluation will be used in Section 4 to determine N, (t, 9) for 3 i t .  

We denote by c' the substring of c = cocl . . . ck formed by removing the 
first term, that is, c' = cl . . . ck. Our first lemma relates i(c, d )  and i(c', dl) 
modulo 6. 

LEMMA 1. For k 2 2 we have 

P r o o f .  F'rom (3.1) we have 

e(c, d )  ZE 
(do + 3 d i )  

e(c' , dl) (mod 9). 

Thus 

i(c, d )  = ind2(e(c, d) )  

(2 1;;) - ind2 { ( } + ind2 (e(c' , d')) (mod 6) 
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Our second lemma gives a relationship between S(c;  a )  and S(c'; a )  if 
~ c l  # 12 and between S(c;  a )  and S(cU; a )  if cocl = 12, where c" = (c')' = 
C 2 . .  . C k .  

LEMMA 2. For k > 2,  we have S(c;  a )  = f (%cl; a )S (c f ;  a ) ,  where 

For k > 3, we have S(c; a )  = g(cocl c2; a)S(cU; a ) ,  where 

P r o o f .  For k > 2 and any integer do satisfying 0 5 do 5 co, we define 

Then 
CO c1 c k 2 F ( ~ O , C ; C X )  = x x x ai(c,d) 

do=O do=O dl=0 dk=O 

so that 

(3.7) S(c;  a )  = F(do, c; a ) .  
do=O 

Also for k 2 2 we have, by (3.6) and Lemma 1, 
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that is, 

Next we define the (co + 1) x 1 matrix A(c; a )  by 

Then, from (3.8), we deduce that for Ic > 2, 

(3.10) A(c; a) = M(cocl; a)A(cl; a), 

where M (cocl; a) is the (co+l) x (cl +1) matrix whose entry in the (i, j) place 
(i = 0,1,.  . . ,co;  j = 0,1,. . . , c l )  is 

Thus 

If cocl # 12 then the cl + 1 columns of the matrix M(cocl; a) all have 
the same sum. Hence summing the rows in (3.9), and appealing to (3.7) and 
(3.10), we obtain 
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Now suppose that cocl = 12 and k 2 3. By (3.10) we have 

(3.11) A(c;  a )  = M ( @ c l ;  a ) M ( c l c z ;  a )A(c l ' ,  a ) ,  

where c" = (c')' = c2 . . . ci. Now 

M(12; a ) M ( 2 1 ;  a)  = [d4 "; [[d [dl 
and 

For each of these products, the column sums are the same. Hence summing 
the rows in (3.11), we obtain 

S ( c ;  a)  = g(q,c1c2; a )S(c l ' ;  a ) ,  

where 
2 ( 1 + a 3 + a 4 )  if q,clc2 = 120, 
2 ( 1 +  a + a4) if q,clc2 = 121, 
2(1 + a4 + a5) if coclc2 = 122. rn 

We are now ready to use Lemma 2 to evaluate S ( c ;  a ) .  
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PROPOSITION. Let c = cocl . . . ck be a string of length k + 1 > 2 with 
each ci = 0 , l  or 2. Denote by ns the number of occurrences of the string S 
in c .  Let a be a sixth root of unity. Then 

Proof .  The proof of (3.12) is by induction on k > 1. When k = 1 we 
have 

The values of this sum for cocl = 00,01,. . . ,22 are given in Table 2. 
The values of the expression on the right hand side of (3.12) when k = 1 
are given in Table 3. These two tables show that the Proposition is true for 
k = l .  

Table 2 

S(coc1; a)  
1 

Table 3 
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When k = 2 we have 

Taking coclc2 = 000,001,. . . ,222, and working out the sum in each case, 
we obtain the values of S(q,clc2; a) given in Table 4. The values of the 
expression on the right side of (3.12) when k = 2 are given in Table 5. Thus 
the Proposition is true for k = 2. 

Table 4 

Table 5 

COCICZ nl n 2  nil n 1 2  - n 2 1  n 2 2  n 1 2 1  n 1 2 2  Rightsideof(3.12) 
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Table 5 (cont.) 

C O C ~ C ~  n1 n2 rill n12 7221 7122 71.121 72122 Rightsideof(3.12) 

110 2 0 - 1  0 0 0 0 0 2 ( l +  a 2 )  
1 1 1 3 0 2 0 0 0  0 0 2(1+ a212 
1 1 2 2 1 1  1 0  0 0 O 2(1+ a 2 ) ( l  + a3 + a 4 )  
1 2 0 1  1 0  1 0  0 0 0 2(1 + a 3  + a 4 )  
1 2 1 . 2  1 0  1 1  0 1 0 22(1 + a + a 4 )  
1 2 2 1 2 0 1 0 1 0  1 2(2 + a ) ( l  + a4 + a 5 )  
2 0 0 0 1 0 0 0 0 0  0 2 + a  
2 0 1 1 1 0 0 0 0 0  0 2(2 + a )  
2 0 2 0 2 0 0 0 0  0 0 (2 + 
2 1 0 1 1 0 0 1 0  o o 2(2 + a 5 )  
2 1 1 2 1 1 0 1 0  0 0 2(1+ a2 ) (2  + a 5 )  
2 1 2 1 2 0 1 1 0 0  o 2(2 + a 5 ) ( 1 +  a3 + a4) 
2 2 0 0 2 0 0 0 1  0 0 (2 + a) (2  + a3 )  
2 2 1 1 2 0 0 1 1 0  o 2(2 + ~ 3 ) ( 2  + ~ 5 )  
2 2 2 0 3 0 0 0 2  0 0 (2 + a ) (2  + a312 

We now make the inductive hypothesis (IH) that the Proposition is true 
for all strings of lengths 2 , 3 ,  . . . , k ,  where k 2 3.  We consider the string 
c = cocl . .  . c k  of length k + 1. We set 

and, for B E 23, n~ = nB(c) ,  nb = nB(c l ) ,  n: = nB(cU).  Recall that if 
c = q,cl  . . . c k  then c' = cl . . . c k  and c" = (c') ' .  The information needed for 
the inductive step is provided in Table 6. 

Table 6 

00 all B 
01 all B 
02 all B 
10 a l l B # l  1 
11 all B # 1 ,11  1,  11 
20 all B # 2 2 
21 all B # 2,21 2, 21 
22 all B # 2,22 2, 22 
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We just do the case C O C ~ C ~  = 120 in detail. We have 

(by Lemma 2 )  

from Table 6. This completes the inductive step and the Proposition follows 
by the principle of mathematical induction. 

4. Evaluation of Nn(t, 9 )  ( 3 t t ) .  Let n be an integer with n > 9. Let 
aoal . . . al be the 3-ary representation of n so that 1 2 2. In this section 
nl,n2,nll, .  . . refer to the string aoal . .  .al. Set w = e2"'I6 and p = w2 = 
e2"i/3. We note that w = -p2.  For t = 1,2 ,4 ,5 ,7 ,8  we have 

1 n  5 
- - 1 = - C C w.q(ind~ (:)- indl t )  

r=O 
6 3;'1;, S=O 

indz (:)=indz t (mod 6 )  

3  t ( : )  
5 n  

- - - C w - s i n d z t  C wsindz(:) 
6 

3=0 r=O 

3t(:)  

5 2 2 
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by the Proposition. The term in the sum with s = 0 is 

The term with s = 1 is 

The term with s = 2 is 
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- p- indz t2nl -n l l  n z z - n l z z  - 3 ( -p )n l l  (2  + p)nz-n1z-n~1 - n ~ ~ + n 1 2 1 + n 1 2 2  

x ( 1 - P )  n 2 1 - n 1 2 1  (2 + p)niz-ni21-n122 ( 1  + 2P)n1210n122 

- - o n 1 2 2  ( -1 )n i ip -  indz t+nl l2nl-nl i3nz2 - n 1 2 2  

(2 + p)nz-mi-nzz 
(1 - P)n21-n121 ( 1  + 2p)n121 

= o n 1 2 2  (-l)n112ni-nll 3 nzz-ni22y. 

The term with s = 3 is 
(-1)indz t2nl-n l l  2 rill - - (-l)ind2t2n1. 

The term with s = 4 is the complex conjugate of the term with s = 2, and 
the term with s = 5 is the complex conjugate of the term with s = 1. Hence 

1 ~ , ( t ,  9 )  = -{2nl3nz + (-1)indz t+n11+n1222nl-nll+nlzz~ 
6 

as asserted. 

5. Evaluation of N n ( t ,  9 )  (3  ( t ) .  Let n be an integer with n > 9. We 
recall that the 3-ary representations of n, r and n - r (0 5 r 5 n) are 

n = a0 + a13 + . . . + a13" each ai = 0,1,2,  

r = bo + b13 + . . . + b13" each bi = 0 ,1 ,2 ,  

n - r = c o + c 1 3 +  . . .+ c13', eachci=0,1 ,2 .  

As n > 9 we have 1 2 2. We first consider t = 3 and t = 6. By Kummer's 
theorem (see (1.2)), we have 

3 11 (:) Q there is a single carry when adding r and n - r in base 3. 

If this carry occurs in the j th  place (0 5 j  5 1 - 1 )  then 

bj + c j  = a j  + 3 ,  

bj+l + cj+l  = a .  J+I - 11 

bi + c i  = ai (i # j , j  + 1).  
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Clearly 

Moreover, by Kazandzidis' theorem (see (1.5)), we have 

that is, 

Set 

so that 

Hence we have 

(as t = 3,6) 
r=O 

(:) =t (mod 9) 

(:) ~t (mod 9) 

(:) ~t (mod 9) carry in j th  place 
( : ) ~ t  mod 9) 
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Now 

n-aj33-aj+13j+l 

- - C 1 
s=O 

n-a . 3 3 - ~ ~ + ~ 3 j + l  
( 3 8  )=-Sf ( a j , b j , a j + l , b j + l )  (mod3) 

Hence 

We recall from the introduction that for Ic = 1 and 2, 

In order to use this formula in (5.1) we consider four cases according as 
ajaj+l = 01,02 ,11  or 12. 

C a s e  (i): ajaj+l = 01 (SO bj = 1 or 2, bj+l = 0).  Here 

so that 
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nl(n - aj3j - ~ j + ~ 3 j + l )  = nl, 
j+l - na(n - aj3j - aj+i3 ) - n2 - 1, 

f(aj ,bj ,aj+l,bj+l) = 1, 
so that 

- - !2n~(3nz-1  - ( - 1 ) 3 - ~ / 3 )  = -2nl(3nz-l 1 + ( - l ) t / 3 ) .  
2 2 

C a s e  (iii): ajaj+l = 11 (so bj = 2, bj+1 = 0) .  Here 

nl(n - aj3j - ~ ~ + ~ 3 j + l )  = nl - 2, 

n2(n - aj3j - aj+13,i+1) = 712, 

f (a j ,bj ,  aj+l, bj+l) = 4, 
so that 

- - !2n1-2(3nz - (-1)3-'/3) = !2n1-2(3n2 + ( -1 ) t /3 ) .  
2 2 

C a s e  (iv): ajaj+l = 12 (SO bj = 2, bj+1 = 0 or 1). Here 

n l ( n  - aj3j - aj+13j+' ) = n1 - 1, 
j+l - na(n - aj3' - aj+i3 ) - na - 1, 

f(aj ,bj ,aj+l,bj+l) = 2, 
so that 

Hence, using these evaluations in (5 .  I ) ,  we obtain 
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which is the asserted formula. 
Finally, we treat the case t = 0. We have 

Nn(37 9 )  + Nn(699) 
= no12n13na + no22nl+23nz-1 + n112n~-23nz + n122n13na-1, 

so that 

6. Concluding comments. We remark that our formulae for N n ( t ,  9 )  
when 3 )it are consistent with the following result of Webb [lo,  Theorem 31. 

If p is a prime and p)i t then ~ , ( t ,  p2)  depends only on t and the number 
of occurrences of each block of nonzero digits i n  the base p expansion of n 
and not o n  where they occur nor o n  the number of zeros i n  the expansion. 

The formulae for Nn ( t ,  p2) (p)i t )  for p = 2 and p = 3 suggest that perhaps 
only blocks of length at most p are needed. 

When p is a prime and p Jl t we have shown (in a paper submitted for 
publication) that Nn ( t ,  p2)  depends only on t ,  nl , . . . , n,-1 and nij (i = 
0,1 ,  . . . , p - 2; j = 1, . . . , p - 1).  Our formulae for Nn(3,  9 )  and Nn(6 ,  9 ) ,  as 
well as that of Davis and Webb [2] for Nn(2,  4), are in conformity with this 
result. Compare this result with Webb's comment [ lo ,  sentence preceding 
first example on p. 2783. 
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