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Some Refinements of an Algorithm of Brillhart

KENNETH S. WILLIAMS

ABSTRACT. Refinements of an algorithm of Brillhart for finding the repre-
sentation of a prime p = 1 (mod 4) as the sum of two integral squares are
discussed.

1. Introduction

In this talk, we briefly survey some refinements that have been made to a
beautifully simple algorithm of Brillhart [1] for finding the representation of a
prime p =1 (mod 4) as the sum of two integral squares.

We begin by giving Brillhart’s algorithm, which is in fact a shortened form of
an algorithm given by Hermite in 1848. Hermite, in a one-page note [4], gave the
following efficient method for finding the representation of a given prime p = 1
(mod 4) as a sum of two integral squares. Hermite’s method appeared simul-
taneously with a paper of Serret [6] on the same subject. However, Hermite’s
method is superior to Serret’s as it gives a criterion for ending the algorithm at
the right place.

Hermite’s algorithm

(i) Find the solution z of 22 = —1 (mod p), where 0 < z < p/2.

(ii) Expand z/p into a simple continued fraction to the point where the de--
nominators B; of its convergents A;/B; satisfy the inequality By < /p <
Bi41. Then p = 42 + v? with

u= ZBk —pAk, v= Bk.
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In 1972, Brillhart [1] pointed out that the calculation of the convergents A
and Bj can be dispensed with, since the values needed for the representation
(u,v) of p are already available in the continued fraction expansion itself.

Brillhart’s algorithm

(i) Find the solution z of 22 = —1 (mod p) where 0 < 2 < p/2.
(ii) Apply the Euclidean algorithm to 2 and p (in that order) and determine
the first remainder r(k > 0) satisfying rr < \/p. Thenp = u? +v? with

U=Tk, U=Tgt1-

We note that the first step of the Euclidean algorithm is not actually per-
formed. It is present just to ensure that ro = z. We also note that we can take
2 in step (i) to be ¢®~1)/4 (mod p), where c is a quadratic non-residue (mod p).
Methods of determining a quadratic non-residue ¢ (mod p) are well-known, and
will not be discussed here. Brillhart’s proof of his algorithm uses the fact that
the continued fraction expansion of p/z is palindromic.

Before continuing, we pause to give a simple example to illustrate Brillhart’s
algorithm. We take p = 61 so that z = 11. Applying the Euclidean algorithm
to 11 and 61, we obtain successively the remainders 11, 6, 5, 1, 0. As \/p is
approximately 7.81, we see that k =1, r; =6, 7o = 5, and 61 = 62 + 52,

2. Refinements to Brillhart’s Algorithm

In 1990 Hardy, Muskat and Williams [2] extended Brillhart’s algorithm to the
following more general situation. Let f and g denote positive integers. For a
positive integer n, we are interested in determining all positive integers u and v
(if any) such that

(1) n=ful+gv?, u>1 v>1, (uuv)=1.

Clearly we may assume that (f,g) = 1, otherwise, we consider the equation

n; = fiu® + g1v%, where ny = n/d, fi = f/d, g1 = g/d, d = (f,g). Similarly,

if (n,f) > 1 and/or (n,g) > 1, we may reduce the problem to one in which

(n, fg) = 1. Further, if n < f + g, the solutions of n = fu? + gv? are easily

found, so we may assume that n > f + g + 1. Under these assumptions, it was

shown in [2] that the solutions of (1) are determined by the following algorithm.
Hardy-Muskat-Williams algorithm

(i) Determine all solutions z of f22 + g = 0 (mod n), where 0 < z < n/2.

(ii) For each z, apply the Euclidean algorithm to z and n, and let r(z) denote
the first remainder < y/n/f. Then all solutions (u,v) in positive integers
of n = fu? + gv? with (u,v) =1 and u > v if f = g = 1 lie among the

pairs
(r), Vi = FTEY9)-
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Before making a few comments on this algorithm, we present an example.

We choose n = 128744, f = 1, g = 40, so we are seeking the solutions
(u,v) in positive integers of 128744 = u2 + 40v? with (u,v) = 1. We note that
(n,g) > 1 but this is unimportant. The solutions z of the congruence 22 = —40
(mod 128744) are listed below together with the remainders r(z) obtained by
applying the Euclidean algorithm to each z and 128744. We note that /128744 =~
358.8.

z r(z)
1564 76
5212 76
22376 328
29152 128
35220 256
41996 132
59160 272
62808 248

Computing v = /(128744 — r(2)2)/40, we find that the solutions are
(u,v) = (328,23), (128,53), (272,37), (248,41).

We emphasize that the algorithm did not produce the solutions with (u,v) > 1,
namely, (u,v) = (352,11) and (88, 55).

It is shown {n [2, Theorem 2|, when (u,v) = (r(z), \/(n — f{r(2)}?)/g) is a
solution of (1), how v can be expressed in terms of the remainders preceding and
following r(z). Brillhart’s algorithm is then seen to be the special case n = p
(prime) = 1 (mod 4), f =1, g = 1 of the Hardy-Muskat-Williams algorithm.
The proof of the Hardy-Muskat-Williams algorithm is much more involved than
Brillhart’s proof of his algorithm as the palindromic nature of the continued
fraction used in [1] does not usually hold in the more general situation. A
deterministic version of this algorithm is described and analyzed in (3] and an
estimate of the worst case running time given. A refinement of this algorithm
has been given by Muskat [5].

A natural extension of the Hardy-Muskat-Williams algorithm would be to re-
place fu?+ gv? by a general positive-definite, primitive, integral binary quadratic
form au? + buv + cv®. We might hope for an algorithm of the following type.

Proposed extension of the Hardy-Muskat-Williams algorithm.

Let a, b, c be integers with

(a,b,¢) =1, a>0, ¢c>0, A =4ac—b*>0.
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Let n be a “suitably large” positive integer with (n,ac) = 1.
(i) Find all the solutions z of
az? +bz+c=0 (modn), 0<z<n.

(ii) Apply the Euclidean algorithm to each 2z and n, and let r(z) be the first

remainder < (/4cn/A.

Then all integral solutions (u,v) of
(2) n=au+buw+cv?, u>1, (u,v)=1,
lie among the pairs
3) (r(2), (=br(2) £ v/aen = Br(z)%)/2¢).

Unfortunately this algorithm does not always work! To see this consider

577 = 3u? + lduv + 1702, u>1, (u,v) =1,
which has the solutions
(u,v) =(2,5) and (70,-29).

However, the algorithm proposed above yields only the solution (2, 5).
Hardy, Muskat, Williams [3] have shown that the proposed algorithm does
work for n > 2 max(a, c) under the additional assumptions

A =4dac—b?> 16, |b < (A—-16)/8.
For example applying the algorithm to solve

18392 = Tu? — 6uv + 0%, u>1, (uw,v)=1,

we obtain

z  r(2)
745 46
3197 37
4165 41
8973 53
9941 23
12393 25
13361 1
18169 11

from which we obtain the solutions
(u,v) = (37,~23), (41,53), (53,41), (23, -37).
Note that A = 160 and (A — 16)/8 = 18.
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We remark that every primitive, positive-definite, integral, binary quadratic
form au? +buv + cv? is equivalent to a unique reduced form Au? + Buv + Cv?,
that is, one satisfying

—A<B<A<C, with B>0if A=C.
However not every reduced form with A > 16 satisfies the assumption |b| <
(A - 16)/8 of (4). To see this take, for example, the form u? + uv + 5v%, which
is reduced, but A = 19 and (A — 16)/8 = 3/8 < 1. Moreover the proposed

algorithm sometimes works when A < 15 or A > 16, |b| > (A —16)/8. Examples
are given below.

Ezample

107 =u? + 5uv + 82, w>1, (u,v)=L

A=7

z 2
46 15
56 5

All solutions are (15, —2), (5,2).
Ezample

13 =u? +duv+ %% u>1, (uyv)=1.
A=20 (A-16)/8=05

KO
51 13
79 7

All solutions are (13, —5), (7, —5).

Necessary and sufficient conditions are not known under which the proposed
algorithm gives all solutions (u,v) of (2) in the form (3).

Before continuing, we explain briefly why the assumptions in (4) guarantee
that the proposed algorithm works. The reader is referred to [3] for complete
details.

Let z denote a solution of

az®+b24+c¢c=0 (modn), 0<z<n.
Applying the Euclidean algorithm to z and n, we obtain,

Z = gon + To,
n=q17o +’I"1,

To = gaT1 + T2,
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where
ro(=2)>r1>re> ... >1rs_1>1,(=0), s> 1.

The continued fraction for z/n is
z
; = [QOafh»‘Iz, v 1q.9]’

and the ith convergent to z/n is

—z-_-[QO,QI,fh,---,Qi] (i=011,'”,3)'

B;
An easy induction argument shows that
(5) rioiBi+riBioi=n (1=1,2,...,s).

Now let @ be a positive number to be chosen later, and let ri(k > 0) be the first
remainder < ay/n. If k > 1 (the case k = 0 must be treated separately) then

(6) Tk < a\/"_l < Tk—1,

and (5) gives
avnBy < rx_1Bx < rik_1Bk + rkBr-1 = 1,

so that
1
In [3] integers ¢; and d; (i =0,1,...,s) are defined in such a way that
c? + 242, if A =0 (mod 4)
G +eidi+ L2 if A =3 (mod 4)
2 1Y B 2
_ar; +b(—1)*r;B; + cB; (=01,..,3)
n
and

dy =0 if and only if rx = u.
One way of forcing di = 0 is by requiring
ar? + b(=1)*ri By + cB? A

n T4
This can be guaranteed in view of (6) and (7) by choosing a so that
9 c A

A solution of this equation is

L \/ (A — 4b)) - /ATS 8] 16)
B 8a ’

and ¢ is real and positive provided

A—8b|—16 >0,
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which requires
A>16, [b < (A -16)/8,
that is, the conditions given in (4). The inequalities

JEcacyE

show that 7 is also the first remainder < y/4cn/A.

We close by giving a modification of the proposed algorithm which works for
any integer n > 1 and any primitive, positive-definite, integral binary quadratic
form au? + buv + cv?. This algorithm no longer requires that the solutions (u,v)
of (2) be given in the form u = r(2).

Williams’ algorithm [7]

(i) Determine all the solutions z of
az?+bz+c=0 (modn), 0<z<mn, (zn)=1

(ii) Apply the Euclidean algorithm to each z and n and stop at the first
remainder v, < (/4cn/A, and calculate the denominator By of the kth
convergent to z/n. (Note that k depends upon z).

(iii) Calculate the positive integer @, given by

ar? + bri(—1)*By, + cB?
- .

Qz=

(It is known that @, satisfies the inequality

A4
Q. < max (%+|b|+ ac+|b|,/

so that @, is bounded independently of n). Find all 1ntegra1 solutions
(z,y) of

z2+%y2 if A =0 (mod 4)
=Qz-
z2+zy+—i—y2 if A=3 (mod 4)

(iv) Eliminate those solutions (z,y) which do not satisfy the technical con-
ditions given in [7, eqns. (19)-(26)]. Either no pairs remain or a unique
pair (z,y) is left. In the latter case

() = ("o (s + el Bely (1B + e+ (CIA[252]Buly
’ Q- ’ Q-

is an integral solution of

(8) n=au® +buv + cv®, (u,v) = (u,n) = (v,n) = 1.

Moreover all solutions of (8) are easily obtained from these solutions ([7,
eqn. (28)]).
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We close with a simple example illustrating this algorithm.
Ezample Find all integral solutions (u, v) of
(9)  577=3u?+ 1uv+ 172, u>1, (u,v)=(u,577) = (v,577) = 1.
The solutions of
322+ 1424+ 17=0 (mod 577), 0< 2z <577, (z,577) =1,
are z = 462, 495. With 2z = 462 we have
ro =2, Bo =5, Que2 = 1.

The solutions of 2% + 2y? = 1 are (z,y) = (£1,0). Only (z,y) = (1,0) satisfies
the technical conditions of [7]. This pair gives the solutions (u,v) = £(2,5).

With z = 495 we have
re=1, Bo =7, Qqo5 = 2.

The solutions of 22 + 2y? = 2 are (z,y) = (0,%1). Only (z,y) = (0, —1) satisfies
the technical conditions of [7]. This pair gives the solutions (u,v)} = £(70, —29).

Thus (u,v) = £(2,5), £(70, —29) comprise all the integral solutions of (9).
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