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1. Introduction. A nonzero integer D is called a discriminant if D ≡ 0
or 1 (mod 4). We set

(1.1) D = ∆(D)f(D)2,

where f(D) is the largest positive integer such that ∆(D) = D/f(D)2 is a
discriminant. The discriminant D is called fundamental if f(D) = 1. The
discriminant ∆(D) is fundamental, and is called the fundamental discrimi-
nant of the discriminant D. The integer f(D) is called the conductor of the
discriminant D. The strict equivalence classes of primitive, integral, binary
quadratic forms (a, b, c) = ax2 + bxy + cy2 of discriminant D = b2 − 4ac
(only positive-definite forms are used if D < 0) form a finite abelian group
under composition. We denote this group by H(D) and its order by h(d).
The class of the form (a, b, c) is denoted by [a, b, c]. If D < 0 we set as usual

(1.2) w(D) =

{ 6 if D = −3,
4 if D = −4,
2 if D < −4.

The Dedekind eta function η(z) is defined for all complex numbers z = x+iy
with y > 0 by

(1.3) η(z) = eπiz/12
∞∏
m=1

(1− e2πimz).

We note for future reference that η(iy) and e−πi/24η
( 1+iy

2

)
are positive

numbers.
From this point on, d denotes a negative discriminant, and we set ∆ =
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∆(d), f = f(d), so that

(1.4) d = ∆f2.

If [a, b, c] = [a1, b1, c1] ∈ H(d), a simple calculation, using the basic proper-
ties of the Dedekind eta function (given for example in [15, §34, 38]) shows
that

a−1/4|η((b+
√
d)/(2a))| = a

−1/4
1 |η((b1 +

√
d)/(2a1))|,

so that the quantity a−1/4|η((b +
√
d)/(2a))| depends only on the class of

the form (a, b, c), and thus
∏

[a,b,c]∈H(d)

a−1/4|η((b+
√
d)/(2a))|

is well-defined. The famous Chowla–Selberg formula [12, formula (2), p. 110]
asserts that if d is a fundamental discriminant then

(1.5)
∏

[a,b,c]∈H(d)

a−1/4|η((b+
√
d)/(2a))|

= (2π|d|)−h(d)/4
{ |d]∏
m=1

(Γ (m/|d|))( dm )
}w(d)/8

,

where Γ (z) is the gamma function and
(
d
m

)
is the Kronecker symbol for

discriminant d. This formula has been extended to arbitrary discriminants
d by Kaneko [8], Nakkajima and Taguchi [10] and by Kaplan and Williams
[9], who showed that

(1.6)
∏

[a,b,c]∈H(d)

a−1/4|η((b+
√
d)/(2a))|

= (2π|d|)−h(d)/4
{ |∆|∏
m=1

Γ (m/|∆|)(∆m )
}w(∆)h(d)

8h(∆)
{∏

p|f
pαp(∆,f)

}h(d)/4
,

where p runs through the primes dividing f , pvp(f) is the largest power of p
dividing f , and

αp(∆, f) =
(pvp(f) − 1)

(
1− (∆p

))

pvp(f)−1(p− 1)
(
p− (∆p

)) .

We remark that p always denotes a prime in this paper.
The cosets of the subgroup of squares in H(d) are called genera, and we

denote the group of genera of discriminant d by G(d). The identity element
of G(d) is called the principal genus. It is known that the order of G(d) is
2t(d), where t(d) is a nonnegative integer. When d is fundamental, Williams
and Zhang [16] have extended the Chowla–Selberg formula to genera. They
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have shown for G ∈ G(d) (d fundamental) that

(1.7)
∏

[a,b,c]∈G
a−1/4|η((b+

√
d)/(2a))|

= (2π|d|)−h(d)/2t(d)+2
{ |∆|∏
m=1

Γ (m/|∆|)(∆m )
} w(∆)h(d)

2t(d)+3h(∆)

×
∏

d1∈F (d)
d1>1

ε

−w(d1)γd1
(G)h(d1)h(d/d1)

w(d/d1)2t(d)+1

d1
,

where εd1 denotes the fundamental unit (> 1) of the real quadratic field
Q(
√
d1) of discriminant d1, γd1(G) (= ±1) is defined in (2.8), and the set

F (d) is defined in Definition 2.1. If we multiply formula (1.7) over all the
2t(d) genera G of G(d), we obtain the original formula (1.5) of Chowla and
Selberg as ∑

G∈G(d)

γd1(G) = 0 for d1 > 1

(see (2.13)).
In this paper we extend the Chowla–Selberg formula for genera to arbi-

trary discriminants d. We prove

Theorem 1.1. For any negative discriminant d and any G ∈ G(d), we
have ∏

[a,b,c]∈G
a−1/4|η((b+

√
d)/(2a))|

= (2π|d|)−h(d)/2t(d)+2
{ |∆|∏
m=1

Γ (m/|∆|)(∆m )
} w(∆)h(d)

2t(d)+3h(∆)

×
{∏

p|f
pαp(∆,f)

}h(d)/2t(d)+2 ∏

d1∈F (d)
d1>1

ε
β(d1,d,G)
d1

,

where

β(d1, d,G)

=
−w(d)γd1(G)f(d/d1)h(d1)h(∆(d/d1))

w(∆(d/d1))2t(d)+1

×
∑

m|f(d/d1)

1
m

∏

p|m
p - f/m

(
1−

(
∆
p

)

p

) ∏

p|f/m

(
1−

(
d1
p

)

p

)(
1−

(∆(d/d1)
p

)

p

)
.
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In order to prove this theorem, we first derive an explicit formula for the
number RG(n, d) of representations of an arbitrary positive integer n by the
classes of a given genus G of discriminant d (see Theorem 8.1). We recall
that an integer n is said to be represented by the form (a, b, c) if there exist
integers x and y such that

n = ax2 + bxy + cy2.

We set

(1.8) R(a,b,c)(n, d) = card{(x, y) ∈ Z2 : ax2 + bxy + cy2 = n},
where we have included the discriminant d = b2 − 4ac in the notation for
use later on. If the forms (a, b, c) and (a′, b′, c′) belong to the same class
K ∈ H(d), then R(a,b,c)(n, d) = R(a′,b′,c′)(n, d). We denote this number by
RK(n, d) so that, for any form (a, b, c), we have

(1.9) R[a,b,c](n, d) = R(a,b,c)(n, d).

If G is a genus in G(d), we set

(1.10) RG(n, d) =
∑

K∈G
RK(n, d).

We also set

(1.11) N(n, d) =
∑

G∈G(d)

RG(n, d) =
∑

K∈H(d)

RK(n, d).

The formula for RG(n, d) given in Theorem 8.1 shows that the Dirichlet
series

∑∞
n=1RG(n, d)/ns converges for s > 1 and can be expressed as a finite

linear combination of products of pairs of Dirichlet L-series (Theorem 10.1).
Our main result (Theorem 1.1) then follows by applying Kronecker’s limit
formula (see for example [13, Theorem 1, p. 14).

We conclude this introduction by indicating some instances when Theo-
rem 1.1 can be used to evaluate some elliptic integrals of the first kind. We
recall that for 0 < k < 1 the complete elliptic integral of the first kind K(k)
is defined by

(1.12) K(k) =
1∫

0

dx√
(1− x2)(1− k2x2)

.

The elliptic integral K(k) can be determined for certain values of k as fol-
lows: let λ > 0 be such that the values of η(

√−λ) = A and η(
√−λ/2) = B

are known explicitly, then

(1.13) K(k) =
π√
k
· A

4

B2 ,
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where k is given by

(1.14)
4(1− k2)

k
=
B12

A12 , 0 < k < 1

(see for example [15, p. 114], [17, eqns. (2.3)–(2.8)]). Following Zucker [17]
we set K[

√
λ] = K(k). We remark that in view of the relations

(1.15) e−πi/3η8
(

1 +
√−λ
2

)
= η8

(√−λ
2

)
+ 16η8(2

√
−λ)

and

(1.16) η

(√−λ
2

)
η

(
1 +
√−λ
2

)
η(2
√
−λ) = eπi/24η3(

√
−λ),

it is enough to know two of

η

(√−λ
2

)
, η

(
1 +
√−λ
2

)
, η(
√
−λ), η(2

√
−λ)

in order to be able to determine A and B. We now give two situations when
Theorem 1.1 can be used to determine A and B.

The first occurs when H(4d) has one class per genus. There are 27 known
values of d for which this occurs, namely, −d = 3, 4, 7, 8, 12, 15, 16, 24,
28, 40, 48, 60, 72, 88, 112, 120, 168, 232, 240, 280, 312, 408, 520, 760, 840,
1320, 1848 [4, pp. 88–89]. In this case H(d) also has one class per genus, and
applying Theorem 1.1 to the principal genus in each case, we obtain η(

√
d)

and either η(
√
d/2) or η((1 +

√
d)/2) according as d ≡ 0 (mod 4) or d ≡ 1

(mod 4). Thus we can determine K[
√−d]. Two simple numerical examples

are provided by d = −4 (λ = 4) and d = −3 (λ = 3). For d = −4, from
Theorem 1.1, we deduce

A = η(
√−4) = 2−9/8π−1/4

{
Γ (1/4)
Γ (3/4)

}1/2

,

B = η(
√−1) = 2−3/4π−1/4

{
Γ (1/4)
Γ (3/4)

}1/2

,

and then from (1.14) and (1.13) we obtain k = 3− 2
√

2 and

K[2] = K(3− 2
√

2) =
(
√

2 + 1)π1/2

23 · Γ (1/4)
Γ (3/4)

=
(
√

2 + 1)
27/2π1/2

Γ 2(1/4).

When d = −3 by Theorem 1.1 we have

A = η(
√−3) = 2−7/123−1/4π−1/4

{
Γ (1/3)
Γ (2/3)

}3/4

,

η

(
1 +
√−3
2

)
= eπi/242−1/43−1/4π−1/4

{
Γ (1/3)
Γ (2/3)

}3/4

.
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From (1.15) and (1.16) we obtain

B = η

(√−3
2

)
= 2−5/83−1/4π−1/4(1 +

√
3)1/4

{
Γ (1/3)
Γ (2/3)

}3/4

,

η(2
√−3) = 2−7/83−1/4π−1/4(1 +

√
3)−1/4

{
Γ (1/3)
Γ (2/3)

}3/4

.

Then, from (1.14), we deduce that k = (
√

6 −√2)/4, and, from (1.13), we
obtain

K[
√

3] =
(√

6−√2
4

)
= 2−5/63−1/2π1/2

{
Γ (1/3)
Γ (2/3)

}3/2

= 2−7/331/4π−1{Γ (1/3)}3.
These values of K are in agreement with [1, Table 9.1, p. 298 and p. 139],
where the values of K[

√
λ] are given for λ = 1, 2, . . . , 16. Similarly we can

determine K[
√

7],K[
√

8],K[
√

12], . . . ,K[
√

1848].
The second situation occurs when H(d) (d ≡ 8 (mod 16)) has one class

per genus with the classes [1, 0,−d/4] and [2, 0,−d/8] in different genera. It is
known that this occurs for d = −24,−40,−72,−88,−120,−168,−232,−280,
−312,−408,−520,−760,−840,−1320,−1848 (see [4]). Applying Theo-
rem 1.1 to these genera, we obtain, for λ = −d/4,

A = η(
√
d/2) = η(

√
−λ), B = η(

√
d/4) = η(

√
−λ/2).

We illustrate this situation with an example not given in Table 9.1 of [1].
We take d = −88, so that λ = 22. Here H(−88) = {[1, 0, 22], [2, 0, 11]} and
the class [2, 0, 11] is not in the principal genus. Applying Theorem 1.1 to the
classes [1, 0, 22] and [2, 0, 11], we obtain

A = η(
√−22) = 2−111−1/4π−1/4E1/8(1 +

√
2)−1/4

and

B = η

(√−22
2

)
= 2−3/411−1/4π−1/4E1/8(1 +

√
2)1/4,

where

E =
88∏
m=1

Γ

(
m

88

)(−88
m )

.

Then, from (1.14), we obtain k = (1 +
√

2)3(3
√

22− 7− 5
√

2), so that

1√
k

= (1 +
√

2)3/2(7 + 5
√

2 + 3
√

22)1/2,
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and thus, by (1.13),

K[
√

22] = K(−99− 70
√

2 + 30
√

11 + 21
√

22)

= 2−5/211−1/2(7 + 5
√

2 + 3
√

22)1/2π1/2
{ 88∏
m=1

Γ

(
m

88

)(−88
m )}1/4

.

In a similar manner we can determine K[
√

6],K[
√

10],K[
√

18],K[
√

30], . . .
. . . ,K[

√
462].

2. Prime discriminants and genera. An odd prime discriminant is a
discriminant of the form p∗ = (−1)(p−1)/2p, where p is an odd prime. The
discriminants −4, 8,−8 are called even prime discriminants. We now define
the prime discriminants corresponding to the discriminant d, and note some
of their properties.

Definition 2.1. (a) The prime discriminants corresponding to the dis-
criminant d are the discriminants p∗1, . . . , p

∗
t+1, together with p∗t+2 if d ≡ 0

(mod 32), where t = t(d) and |G(d)| = 2t, given as follows:

(i) d ≡ 1 (mod 4) or d ≡ 4 (mod 16)
p1 < p2 < . . . < pt+1 are the odd prime divisors of d.

(ii) d ≡ 12 (mod 16) or d ≡ 16 (mod 32)
p1 < p2 < . . . < pt are the odd prime divisors of d and p∗t+1 = −4.

(iii) d ≡ 8 (mod 32)
p1 < p2 < . . . < pt are the odd prime divisors of d and p∗t+1 = 8.

(iv) d ≡ 24 (mod 32)
p1 < p2 < . . . < pt are the odd prime divisors of d and p∗t+1 = −8.

(v) d ≡ 0 (mod 32)
p1 < p2 < . . . < pt−1 are the odd prime divisors of d, p∗t = −4,
p∗t+1 = 8, and p∗t+2 = −8.

(b) The set of prime discriminants corresponding to d is denoted by P (d).
We note that these are coprime in pairs if d 6≡ 0 (mod 32). The set of all
products of pairwise coprime elements of P (d) is denoted by F (d).

It is known that a fundamental discriminant d can be expressed uniquely
as a product of prime discriminants, and moreover these prime discriminants
are precisely the elements of P (d).

Lemma 2.1. (a) F (d) = {d1 : d1 is a fundamental discriminant , d1 | d,
and d/d1 is a discriminant}.

(b) For any positive integer k, P (d) ⊆ P (dk2) and F (d) ⊆ F (dk2). Also,

P (∆) ⊆ P (d), 1 ∈ F (d), ∆ ∈ F (d), |F (d)| = 2t(d)+1,

|P (d)| =
{
t(d) + 1 if d 6≡ 0 (mod 32),
t(d) + 2 if d ≡ 0 (mod 32).
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P r o o f. The assertions of Lemma 2.1 are straightforward consequences
of Definition 2.1.

We now recall the definition of the Legendre–Jacobi–Kronecker symbol(
D
k

)
for a discriminant D and a positive integer k (see for example [3, pp. 18–

21, 35]). For p an odd prime
(
D

p

)
=





+1 if D is a nonzero square (mod p),
−1 if D is not a square (mod p),
0 if p |D;

(2.1)

(
D

2

)
=





+1 if D ≡ 1 (mod 8),
−1 if D ≡ 5 (mod 8),
0 if D ≡ 0 (mod 4);

(2.2)

and generally

(2.3)
(
D

k

)
=
∏

p|k

(
D

p

)vp(k)

.

Next we recall some of the properties of genera. The basic properties
of generic characters and genera can be found for example in [2], [6]. Let
p∗ ∈ P (d) and K ∈ H(d). For any positive integer k coprime with p∗

represented by K, it is known that
(
p∗

k

)
has the same value, so we can set

γp∗(K) =
(
p∗

k

)
= ±1.

Let G ∈ G(d). Genus theory shows that, for any K ∈ G, γp∗(K) has the
same value, so we can set γp∗(G) = γp∗(K), and furthermore that

(2.4) γp∗(G1G2) = γp∗(G1)γp∗(G2),

for G1, G2 ∈ G(d). One of the main results of genus theory is the product
formula (2.5) (see for example [6, equation (9)]).

Lemma 2.2. If G ∈ G(d) then, with ∆ = ∆(d),

(2.5)
∏

p∗∈P (∆)

γp∗(G) = 1,

together with

(2.6) γ−4(G)γ8(G)γ−8(G) = 1 if d ≡ 0 (mod 32).

Moreover , if δp∗ = ±1 for each p∗ ∈ P (d) and

(2.7)
∏

p∗∈P (∆)

δp∗ = 1,

together with

(2.8) δ−4δ8δ−8 = 1 if d ≡ 0 (mod 32),
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then there exists a unique G ∈ G(d) with

(2.9) γp∗(G) = δp∗ for each p∗ ∈ P (d).

We observe that Lemma 2.2 is consistent with

|G(d)| =





1
2
· 2|P (d)| =

1
2
· 2t(d)+1 = 2t(d) if d 6≡ 0 (mod 32),

1
22 · 2|P (d)| =

1
22 · 2t(d)+2 = 2t(d) if d ≡ 0 (mod 32),

and shows also that there are exactly 2|P (d)|−|P (∆)| = 2t(d)−t(∆) genera G
in G(d) with γp∗(G) = δp∗ for each p∗ ∈ P (∆).

We now extend the definition of γp∗(G) (p∗ ∈ P (d)) to γd1(G) for d1 ∈
F (d). For d1 ∈ F (d), we set

(2.10) γd1(G) =
∏

p∗∈P (d1)

γp∗(G) = ±1.

By (2.4) and (2.10) each γd1 (d1 ∈ F (d)) is a group character of G(d),
and it is known from genus theory [2, §4.3] that these include all the group
characters of G(d).

The set F (d) is a group under the binary operation ◦ defined by

d1 ◦ d2 = ∆(d1d2), d1, d2 ∈ F (d).

The identity element is 1 and each element is its own inverse. As ∆ ∈ F (d),
and d1 ◦∆ = ∆(d1∆) = ∆(d1d) = ∆(d/d1), the mapping

(2.11) d1 → ∆(d/d1)

is a translation and thus a bijection on F (d).

Let Ĝ(d) be the group of characters of G(d). The mapping φ : F (d) →
Ĝ(d) given by φ(d1) = γd1 is easily checked to be a homomorphism using
(2.6) if d ≡ 0 (mod 32). It is known from genus theory [2] that φ is surjective,
and thus |kerφ| = |F (d)|/|Ĝ(d)| = |F (d)|/|G(d)| = 2t(d)+1/2t(d) = 2. By
(2.5) we have γ∆(G) = 1, for all G ∈ G(d), so that kerφ = {1,∆}. Further,
for d1 ∈ F (d), we have

(2.12) γ∆(d/d1) = γd1◦∆ = γd1γ∆ = γd1 .

By the theory of group characters, we have
∑

G∈G(d)

γd1(G) =
{
|G(d)| = 2t(d) if d1 = 1 or ∆,
0 otherwise,

(2.13)

and
∑

d1∈F (d)

γd1(G) =
{

2|Ĝ(d)| = 2t(d)+1 if G is the principal genus,
0 otherwise.

(2.14)
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3. The derived genus Gm of G. In this section we define the derived
genus Gm ∈ G(d/(m, f)2) of G ∈ G(d), where m is a positive integer all of
whose prime factors p divide d and satisfy

(3.1) p -∆⇒ vp(m) ≤ vp(f).

We begin with the case when m is a prime.

Proposition 3.1. Let p be a prime with p | d, and let G ∈ G(d). Then
there is a unique genus

Gp ∈
{
G(d/p2) if p | f,
G(d) if p - f,

such that in the case p | f ,

(3.2) γq∗(Gp) = γq∗(G) for every q∗ ∈ P (d/p2),

and in the case p - f (so that p |∆),

(3.3) γq∗(Gp)

=





(
q∗

p

)
γq∗(G) for every q∗ ∈ P (d) with p - q∗,

(
d/q∗

p

)
γq∗(G) =

(
∆/q∗

p

)
γq∗(G)

for the unique q∗ ∈ P (d) with p | q∗.
P r o o f. In the case p | f , we see that d/p2 is a discriminant, and P (d/p2)

⊆ P (d). Hence γq∗(G) is defined for every q∗ ∈ P (d/p2). As ∆(d/p2) = ∆,
by Lemma 2.2, we have

∏

q∗∈P (∆)

γq∗(G) = 1,

together with γ−4(G)γ8(G)γ−8(G) = 1, if d ≡ 0 (mod 32). Hence, by Lem-
ma 2.2, there exists a unique genus Gp ∈ G(d/p2) satisfying (3.2).

We now turn to the case p - f , so that p |∆. We show first that there is a
unique q∗ ∈ P (d) with p | q∗. If p 6= 2 then q∗ = p∗. If p = 2 then 2 - f so that
d 6≡ 0 (mod 32), and thus as 2 |∆ there is a unique q∗ with 2 | q∗. In both
cases we have q∗ |∆. Further, as ∆ is fundamental we see that p -∆/q∗, so(∆/q∗

p

)
= ±1. Thus

δq∗ =
(
q∗

p

)
γq∗(G) = ±1 for every q∗ ∈ P (d) with p - q∗

and

δq∗ =
(
∆/q∗

p

)
γq∗(G) = ±1 for those q∗ ∈ P (d) with p | q∗,
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and we show that these δq∗ satisfy the product formula (2.5). As p |∆ and
∆ is fundamental, ∆ possesses a unique prime discriminant r∗ with p | r∗,
and

∏

q∗∈P (∆)

δq∗ =
(
∆/r∗

p

)
γr∗(G)

∏

q∗∈P (∆)
q∗ 6=r∗

(
q∗

p

)
γq∗(G)

=
(
∆/r∗

p

)(
∆/r∗

p

) ∏

q∗∈P (∆)

γq∗(G) = 1.

Further, if d ≡ 0 (mod 32), then p 6= 2 and

δ−4δ8δ−8 =
(−4
p

)
γ−4(G)

(
8
p

)
γ8(G)

(−8
p

)
γ−8(G)

=
(

256
p

)
γ−4(G)γ8(G)γ−8(G) = 1.

This completes the proof of the existence of Gp in this case.
Finally, we observe that for q∗ ∈ P (d) with p | q∗, we have

(
∆/q∗

p

)
=
(
∆f2/q∗

p

)
=
(
d/q∗

p

)
.

Next we define Gpi for p | d and i ≥ 0. We set G1 = G. By (3.2) we define
successively

Gpi = (Gpi−1)p ∈ G(d/p2i), i = 1, . . . , vp(f).

If in addition p |∆, as p - f/pvp(f), we define successively, by (3.3),

Gpi = (Gpi−1)p ∈ G(d/p2vp(f)), i = vp(f) + 1, . . .

Thus, for any p | d, we have defined Gpi ∈ G(d/(pi, f)2) for any nonnegative
integer i if p |∆ and for i = 0, 1, . . . , vp(f) if p -∆.

It is easy to check that if p and q are distinct primes dividing d, we have
(Gp)q = (Gq)p ∈ G(d/(pq, f)2), and this allows us to define the derived
genus Gm as follows: for m = pα1

1 . . . pαrr satisfying (3.1) set

Gm = (. . . ((Gpα1
1

)pα2
2

) . . .)pαrr ∈ G(d/(m, f)2).

Lemma 3.1. (a) Let p be a prime with p | d. Let d1 ∈ F (d/(p, f)2). Then,
for any G ∈ G(d), we have

γd1(Gp) =





γd1(G) if p | f,(
d1

p

)
γd1(G) if p - f, p - d1,

(
d/d1

p

)
γd1(G) if p - f, p | d1.
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(b) Further , if m is a positive integer with m | f , G ∈ G(d), and d1 ∈
F (d/m2), then

γd1(Gm) = γd1(G).
P r o o f. (a) In this proof we let P (d1) = {p∗1, . . . , p∗r} so that d1 =

p∗1 . . . p
∗
r and the p∗i are coprime in pairs. We first consider the case p | f ,

so that d1 ∈ F (d/p2), and thus each p∗i ∈ P (d/p2). Then

γd1(Gp) = γp∗1 (Gp) . . . γp∗r (Gp)

= γp∗1 (G) . . . γp∗r (G)

= γd1(G).

(by (2.10))

(by (3.2))

(by (2.10))

We now turn to the case p - f , so that p |∆, d1 ∈ F (d), and thus each
p∗i ∈ P (d). As the p∗i are coprime in pairs, at most one of the p∗i is divisible
by p. If p does not divide any of the p∗i then

γd1(Gp) = γp∗1 (Gp) . . . γp∗r (Gp) (by (2.10))

=
(p∗1
p

)
γp∗1 (G) . . .

(
p∗r
p

)
γp∗r (G) (by (3.3))

=
(
d1

p

)
γd1(G). (by (2.10))

If p divides one of the p∗i , say p∗r , then

γd1(Gp) = γp∗1 (Gp) . . . γp∗r (Gp) (by (2.10))

=
(
p∗1
p

)
γp∗1 (G) . . .

(
p∗r−1

p

)
γp∗
r−1

(G)
(
d/p∗r
p

)
γp∗r (G) (by (3.3))

=
(
d1/p

∗
r

p

)(
d/p∗r
p

)
γd1(G) (by (2.10))

=
(d/d1

p

)
γd1(G),

as (
d1/p

∗
r

p

)(
d/p∗r
p

)
=
(
d1/p

∗
r

p

)2(
d/d1

p

)
=
(
d/d1

p

)
.

(b) As m | f the asserted result follows by applying part (a) to each prime
dividing m taking into account multiplicity.

4. Null primes and the integers M,Q and U . It is convenient to
introduce the following positive integers:

M = M(n, d) is the largest integer such that M2 |n, M | f,(4.1)

U = U(n, d) =
∏

p|d, p - f
pvp(n),(4.2)
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Q = Q(n, d) = U(n/M2, d/M2) =
∏

p|d/M2, p - f/M
pvp(n/M2).(4.3)

Definition 4.1. A prime p is said to be a null prime with respect to n
and d if

(4.4) vp(n) ≡ 1 (mod 2), vp(n) < 2vp(f).

The set of all such null primes is denoted by Null(n, d).

Proposition 4.1. If Null(n, d) 6= ∅ then N(n, d) = 0, where N(n, d) is
defined in (1.11).

P r o o f. We suppose that Null(n, d) 6= ∅ and that N(n, d) > 0. Let
p ∈ Null(n, d). As N(n, d) > 0, there exists a form (a, b, c) with b2−4ac = d,
where we may suppose that (a, p) = 1, and integers x, y such that

n = ax2 + bxy + cy2.

Completing the square, we obtain

4an = X2 −∆f2y2, where X = 2ax+ by.

Set m = vp(n), so that, by (4.4), m is odd and pm+1 | f2. As p - a we see
that vp(4an) is odd, and thus y 6= 0. We now consider two cases according
as vp(∆f2y2) is odd or even.

In the former case we must have vp(4an) = vp(∆f2y2). If p 6= 2 then
vp(4an) = m and vp(∆f2y2) ≥ m + 1, a contradiction. If p = 2, then
v2(4an) = 2+m and, as v2(∆) is odd and so equal to 3, we have v2(∆f2y2) ≥
3 + (m+ 1), a contradiction.

In the latter case we see that X 6= 0 and vp(X2) = vp(∆f2y2). If p 6= 2
then vp(X2) = vp(∆f2y2) ≥ m+ 1 so that vp(4an) ≥ m + 1, contradicting
vp(4an) = m. If p = 2 then v2(∆) is even, and thus v2(∆) = 0 or 2. If
v2(∆) = 2 then v2(X2) = v2(∆f2y2) ≥ 2 + (m + 1), so v2(4an) ≥ m + 3;
if v2(∆) = 0 then ∆ ≡ 1 (mod 4), and setting v2(X2) = v2(∆f2y2) = 2w,
we see that v2((X/2w)2 − ∆(fy/2w)2) ≥ 2, and hence v2(X2 − ∆f2y2) ≥
2 + 2w ≥ 2 + (m+ 1). Each instance contradicts v2(4an) = 2 +m.

By Proposition 4.1 and (1.11) we have RG(n, d) = 0 if Null(n, d) 6= ∅.
Thus it remains to evaluate RG(n, d) when Null(n, d) = ∅. This is done by
means of two reduction formulae (Theorems 6.1 and 7.1). The next lemma
gives some properties of M and Q when Null(n, d) = ∅.

Lemma 4.1. (a) If Null(n, d) = ∅ then

(4.5) (n/M2, f/M) = 1
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and

(4.6) (n/M2Q, d/M2) = 1.

(b) (n, f) = 1⇔ Null(n, d) = ∅ and M = 1.

P r o o f. (a) Suppose Null(n, d) = ∅ but (n/M2, f/M) > 1. Then there
exists a prime p with p |n/M2 and p | f/M . By the maximality of M ,
we have p2 -n/M2 so that p ‖n/M2. Thus vp(n) = 1 + 2vp(M) < 2
+ 2vp(M) ≤ 2vp(f), showing that p ∈ Null(n, d), a contradiction. This
proves (4.5).

Suppose now there exists a prime q with q |n/M2Q and q | d/M2. Then,
as (n/M2, f/M) = 1, we have q - f/M , so vq(Q) = vq(n/M2), contradicting
q |n/M2Q. This proves (4.6).

(b) Suppose (n, f) = 1. By definition we have M = 1. Now suppose that
p ∈ Null(n, d). Then vp(n) is odd and vp(n) < 2vp(f). Thus p |n and so
p - f , a contradiction.

Now suppose that Null(n, d) = ∅ and M = 1. By (4.5) we have (n, f)
= 1.

5. The sum S(n, d1, d/d1). In this section we introduce the sum S(n, d1,
d/d1) in terms of which we give our formula for RG(n, d) (Theorem 8.1).
Before giving the definition we recall from Lemma 2.1(a) that for d1 ∈ F (d)
both d1 and d/d1 are discriminants.

For d1 ∈ F (d) and (n, f) = 1, we set

(5.1) S(n, d1, d/d1) =
∑
µν=n

(
d1

µ

)(
d/d1

ν

)
,

where µ and ν run through all positive integers with µν = n.

Lemma 5.1. Suppose (n, f) = 1. Let p be a prime such that p |n and
p | d. Then, for G ∈ G(d), we have

∑

d1∈F (d)

γd1(G)S(n, d1, d/d1) =
∑

d1∈F (d)

γd1(Gp)S(n/p, d1, d/d1).

P r o o f. Clearly (n/p, f) = 1 so that S(n/p, d1, d/d1) is defined. We have
∑

d1∈F (d)

γd1(G)S(n, d1, d/d1)

=
∑

d1∈F (d)

γd1(G)
∑
µν=n

(
d1

µ

)(
d/d1

ν

)
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=
∑

d1∈F (d)

γd1(G)
{ ∑
µν=n
p|µ

(
d1

µ

)(
d/d1

ν

)

+
∑
µν=n
p|ν

(
d1

µ

)(
d/d1

ν

)
−

∑
µν=n
p|µ, p|ν

(
d1

µ

)(
d/d1

ν

)}

=
∑

d1∈F (d)

γd1(G)
(
d1

p

)
S(n/p, d1, d/d1)

+
∑

d1∈F (d)

γd1(G)
(
d/d1

p

)
S(n/p, d1, d/d1).

In the first sum we need only sum over those d1 satisfying p - d1, and in the
second sum over those d1 satisfying p - d/d1, equivalently, p | d1. The result
now follows by appealing to Lemma 3.1(a) as p - f .

Lemma 5.2. Suppose (n, f) = 1. Then, for G ∈ G(d), we have
∑

d1∈F (d)

γd1(G)S(n, d1, d/d1) =
∑

d1∈F (d)

γd1(GU )S(n/U, d1, d/d1),

where U is defined in (4.2).

P r o o f. This follows immediately from Lemma 5.1 by applying it to all
primes p dividing U with multiplicity taken into account.

6. First reduction formula. Our first reduction formula relates
RG(n, d) to RGM (n/M2, d/M2), where M is defined in (4.1).

Theorem 6.1. For G ∈ G(d), we have

RG(n, d) =
1

2t(d)−t(d/M2)
· h(d)
h(d/M2)

RGM (n/M2, d/M2).

In order to prove this result we need a number of lemmas.

Lemma 6.1. Suppose that p | f . Let K ∈ H(d). Then

(a) K contains a form (a, b, c) with p - a, p | b and p2 | c;
(b) the mapping θp : H(d)→ H(d/p2) given by θp([a, b, c]) = [a, b/p, c/p2]

is a surjective homomorphism;
(c) if G ∈ G(d) and K ∈ G then θp(K) ∈ Gp;
(d) the mapping θ̃p : G(d)→ G(d/p2) given by θ̃p(G) = Gp is a surjective

homomorphism.
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P r o o f. (a), (b). See [5, §§150–151].
(c) Let q∗ ∈ P (d/p2), G ∈ G(d), and K ∈ G. We can choose a, b, c with

K = [a, b, c], (a, pq∗) = 1, p | b and p2 | c. By (b), θp(K) = [a, b/p, c/p2].
Clearly a is represented by the class θp(K) and

(
q∗

a

)
= γq∗(G) = γq∗(Gp),

for all q∗ ∈ P (d/p2), so that θp(K) ∈ Gp.
(d) As θp : H(d)→ H(d/p2) is a surjective homomorphism and G(d) =

H(d)/H2(d), G(d/p2) = H(d/p2)/H2(d/p2), it follows that θ̃p : G(d) →
G(d/p2) is also a surjective homomorphism.

Lemma 6.2. Let p be a prime with p |M . Then, for any class K ∈ H(d),
we have

RK(n, d) = Rθp(K)(n/p
2, d/p2).

P r o o f. By Lemma 6.1(a) we choose (a, b, c) ∈ K with p - a, p | b and
p2 | c so that θp(K) = [a, b/p, c/p2]. Set

S = {(x, y) ∈ Z2 : ax2 + bxy + cy2 = n},

T =
{

(X,Y ) ∈ Z2 : aX2 +
b

p
XY +

c

p2Y
2 =

n

p2

}
,

and define the one-to-one mapping λ : T → S by λ((X,Y )) = (pX, Y ). If
(x, y) ∈ S, then as p |n, we see that p |x and λ((x/p, y)) = (x, y). Hence λ
is onto, and thus

R(a,b,c)(n, d) = |S| = |T | = R(a,b/p,c/p2)(n/p
2, d/p2),

completing the proof.

Lemma 6.3. Let p be a prime with p |M . Then, for G ∈ G(d), we have

RG(n, d) =
h(d)/2t(d)

h(d/p2)/2t(d/p2)
RGp(n/p2, d/p2).

P r o o f. Let G ∈ G(d). There are |ker θ̃p| distinct genera of G(d) that
are mapped to Gp by θ̃p. As K runs through the classes of these genera,
θp(K) runs through the classes of Gp exactly |ker θp| times. Hence, as K
runs through the classes of G, θp(K) runs through the classes of Gp exactly
|ker θp|/|ker θ̃p| times. Hence

RG(n, d) =
∑

K∈G
RK(n, d) (by (1.10))

=
∑

K∈G
Rθp(K)(n/p

2, d/p2) (by Lemma 6.2)
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=
|ker θp|
|ker θ̃p|

∑

K′∈Gp
RK′(n/p2, d/p2)

=
h(d)/h(d/p2)
|G(d)|/|G(d/p2)|RGp(n/p2, d/p2) (by Lemma 6.1)

=
h(d)/2t(d)

h(d/p2)/2t(d/p2)
RGp(n/p2, d/p2).

P r o o f o f T h e o r e m 6.1. Theorem 6.1 follows from Lemma 6.3 by
applying it to all primes dividing M taking multiplicity into account.

7. Second reduction formula. Our second reduction formula removes
from n those primes which divide d but do not divide f .

Theorem 7.1. For G ∈ G(d), we have

RG(n, d) = RGU (n/U, d),

where U = U(n, d) is defined in (4.2).

Before giving the proof of Theorem 7.1, we state and prove a number of
lemmas.

Lemma 7.1. Suppose that p is a prime with p | d and p - f . Let K ∈ H(d).
Then

(a) K contains a form (a, b, cp) with p - ac and p | b;
(b) the mapping φp : H(d)→ H(d) given by φp([a, b, cp]) = [ap, b, c] is a

bijection;
(c) if G ∈ G(d) and K ∈ G then φp(K) ∈ Gp.

P r o o f. (a) We can choose (a, b, c′) in K with p - a. If p = 2 then, as 2 | d
and 2 - f , we see that 2 | b and d ≡ 8 or 12 (mod 16). If c′ ≡ 2 (mod 4) we
take c′ = 2c and we are done. If c′ 6≡ 2 (mod 4), from d = b2 − 4ac′, we
deduce that c′ ≡ 1 (mod 2) and a+ b+ c′ ≡ 2 (mod 4). Replacing (a, b, c′)
by the equivalent form (a, b+2a, a+b+c′), we obtain a form of the required
type.

If p 6= 2 then p ‖ d. Choose t such that b′ = 2at+ b ≡ 0 (mod p), and set
c = (at2 + bt+ c′)/p. Then (a, b′, pc) is a form of the required type (p - c, as
p ‖ d and p | b′) equivalent to (a, b, c′).

(b) The discriminant of (ap, b, c) is d. It is easily checked that (ap, b, c)
is primitive. Hence [ap, b, c] ∈ H(d). Next we show that φp is well-defined.
Suppose that

[a, b, cp] = [a′, b′, c′p], p - aca′c′, p | b, p | b′.
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Thus there exist integers α, β, γ, δ with αδ − βγ = 1 and

(7.1)

a′ = aα2 + bαγ + cpγ2,

b′ = 2aαβ + b(αδ + βγ) + 2cpγδ,

c′p = aβ2 + bβδ + cpδ2.

As p | b we see that p | aβ2, so that p |β, say β = β′p. Set γ′ = pγ, so that
αδ − β′γ′ = 1 and (7.1) can be rewritten as

a′p = apα2 + bαγ′ + cγ′2,

b′ = 2apαβ′ + b(αδ + β′γ′) + 2cγ′δ,

c′ = apβ′2 + bβ′δ + cδ2,

showing that [ap, b, c] = [a′p, b′, c′], and thus φp is well-defined. Further

φ2
p([a, b, cp]) = φp([ap, b, c]) = φp([c,−b, ap]) = [cp,−b, a] = [a, b, cp],

so that φp is an involution on H(d), and thus a bijection.
(c) Let G ∈ G(d) and K = [a, b, cp] ∈ G, where p - ac and p | b. Suppose

that φp(K) belongs to the genus G̃ of G(d). We wish to show that G̃ = Gp.
Let q∗ ∈ P (d) with p - q∗. Let µ be a positive integer coprime with q∗

which is represented by the form (a, b, cp) ∈ K. Clearly pµ is represented by
the form (ap, b, c) ∈ φp(K). Then

(7.2) γq∗(G̃) =
(
q∗

pµ

)
=
(
q∗

p

)(
q∗

µ

)
=
(
q∗

p

)
γq∗(G) = γq∗(Gp).

Now let q∗ ∈ P (d) be such that p | q∗. As p | d and p - f , there is only one
such q∗, which we denote by r∗. Clearly r∗ ∈ P (∆). Hence

γr∗(G̃) =
∏

q∗∈P (∆)
q∗ 6=r∗

γq∗(G̃) (by Lemma 2.2)

=
∏

q∗∈P (∆)
q∗ 6=r∗

γq∗(Gp) (by (7.2))

= γr∗(Gp). (by Lemma 2.2)

Thus we have shown that

γq∗(G̃) = γq∗(Gp) for all q∗ ∈ P (d),

and so G̃ = Gp.

Lemma 7.2. Let p be a prime with p |n, p | d and p - f . Then, for K ∈
H(d), we have RK(n, d) = Rφp(K)(n/p, d).
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P r o o f. We choose a form (a, b, cp) ∈ K with p - ac, p | b. Then (ap, b, c) ∈
φp(K). Set

S = {(x, y) ∈ Z2 : ax2 + bxy + cpy2 = n},
T = {(X,Y ) ∈ Z2 : apX2 + bXY + cY 2 = n/p}.

It is easy to check that (X,Y )→ (pX, Y ) defines a bijection from T to S.

Lemma 7.3. Let p be a prime with p |n, p | d and p - f . Then, for G ∈
G(d), we have RG(n, d) = RGp(n/p, d).

P r o o f. We have

RG(n, d) =
∑

K∈G
RK(n, d)

=
∑

K∈G
Rφp(K)(n/p, d) (by Lemma 7.2)

=
∑

K′∈Gp
RK′(n/p, d) (by Lemma 7.1(b), (c))

= RGp(n/p, d).

P r o o f o f T h e o r e m 7.1. This theorem follows from Lemma 7.3 by
applying it to all primes p dividing U taking multiplicity into account.

8. Formula for RG(n, d). We now apply our two reduction formulae
(Theorems 6.1 and 7.1) to obtain an explicit formula for RG(n, d).

Theorem 8.1. Let G ∈ G(d). If Null(n, d) = ∅, then

RG(n, d) =
w(d/M2)
2t(d)+1

· h(d)
h(d/M2)

∑

d1∈F (d/M2)

γd1(G)S(n/M2, d1, d/M
2d1).

If Null(n, d) 6= ∅, then RG(n, d) = 0.

We begin by recalling Dirichlet’s formula, see [5, p. 229], [4, p. 78].

Theorem 8.2 (Dirichlet). If (n, d) = 1, then

N(n, d) = w(d)
∑

ν|n

(
d

ν

)
.

The next theorem is a consequence of Theorem 8.2.

Theorem 8.3. If (n, d) = 1 and G ∈ G(d), then

RG(n, d) =
w(d)

2t(d)+1

∑

d1∈F (d)

γd1(G)S(n, d1, d/d1).



290 J. G. Huard et al.

P r o o f. If N(n, d) > 0, then n is represented by at least one class in
H(d). Let G̃ be a genus containing a class which represents n. As (n, d) = 1
we have (n, q∗) = 1 for all q∗ ∈ P (d). Thus

γq∗(G̃) =
(
q∗

n

)
for all q∗ ∈ P (d),

and so G̃ is unique. Hence

RG(n, d) =

{
N(n, d) if G = G̃,

0 if G 6= G̃,

that is,

(8.1) RG(n, d) =
∏

q∗∈P (d)

1
2

(
1 + γq∗(G)

(
q∗

n

))
N(n, d).

The formula (8.1) trivially holds if N(n, d) = 0.
By Theorem 8.2 and (8.1), we have

RG(n, d) = w(d)
∏

q∗∈P (d)

1
2

(
1 + γq∗(G)

(
q∗

n

))∑

ν|n

(
d

ν

)

=
w(d)

2t(d)+1

∑

d1∈F (d)

γd1(G)
(
d1

n

) ∑
µν=n

(
d

ν

)
,

where in the case d ≡ 0 (mod 32) each term in the development of

∏

q∗∈P (d)

(
1 + γq∗(G)

(
q∗

n

))

(recall |P (d)| = t(d) + 2) is obtained exactly twice in view of the relation
γ−4(G)γ8(G)γ−8(G) = 1. Hence

RG(n, d) =
w(d)

2t(d)+1

∑

d1∈F (d)

γd1(G)
∑
µν=n

(
d1

µ

)(
d1

ν

)(
d1

ν

)(
d/d1

ν

)

=
w(d)

2t(d)+1

∑

d1∈F (d)

γd1(G)
∑
µν=n

(
d1

µ

)(
d/d1

ν

)

=
w(d)

2t(d)+1

∑

d1∈F (d)

γd1(G)S(n, d1, d/d1).
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P r o o f o f T h e o r e m 8.1. We have

RG(n, d)

=
1

2t(d)−t(d/M2)
· h(d)
h(d/M2)

RGM (n/M2, d/M2) (by Theorem 6.1)

=
1

2t(d)−t(d/M2)
· h(d)
h(d/M2)

RGMQ(n/M2Q, d/M2) (by Theorem 7.1)

as U(n/M2, d/M2) = Q (by (4.3)). By Lemma 4.1(a) we have, as Null(n, d)
= ∅, (

n

M2Q
,
d

M2

)
= 1 and

(
n

M2 ,
f

M

)
= 1,

so that, by Theorem 8.3, we have

RGMQ

(
n

M2Q
,
d

M2

)

=
w(d/M2)
2t(d/M2)+1

∑

d1∈F (d/M2)

γd1(GMQ)S
(

n

M2Q
, d1,

d

M2d1

)
,

and thus, by Lemma 5.2, we obtain

RGMQ

(
n

M2Q
,
d

M2

)
=

w(d/M2)
2t(d/M2)+1

∑

d1∈F (d/M2)

γd1(GM )S
(

n

M2 , d1,
d

M2d1

)
.

Further, by Lemma 3.1(b), we have γd1(GM ) = γd1(G), and the result fol-
lows.

Corollary 8.1. If d is fundamental , then

RG(n, d) =
w(d)

2t(d)+1

∑

d1∈F (d)

γd1(G)
∑
µν=n

(
d1

µ

)(
d/d1

ν

)
.

P r o o f. As d is fundamental, we have f = 1, M = 1, and Null(n, d) = ∅,
and the result follows immediately from Theorem 8.1.

9. Determination of N(n, d). We now use Theorem 8.1 to obtain a
formula for N(n, d), which generalizes Dirichlet’s formula (Theorem 8.2).
Special cases of Theorem 9.1 are given in Hardy and Williams [7, pp. 104–
105] and Schinzel and Zannier [11, Lemma 4, p. 48].

Theorem 9.1. If Null(n, d) = ∅ then

N(n, d) = w(d/M2)
h(d)

h(d/M2)

∑

ν|n/M2

(
∆

ν

)
.

If Null(n, d) 6= ∅ then N(n, d) = 0.
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P r o o f. If Null(n, d) 6= ∅, we have N(n, d) = 0 by Proposition 4.1. If
Null(n, d) = ∅ then

N(n, d) =
∑

G∈G(d)

RG(n, d) (by (1.11))

=
∑

G∈G(d)

w(d/M2)
2t(d)+1

· h(d)
h(d/M2)

×
∑

d1∈F (d/M2)

γd1(G)S(n/M2, d1, d/M
2d1) (by Theorem 8.1)

=
w(d/M2)
2t(d)+1

· h(d)
h(d/M2)

×
∑

d1∈F (d/M2)

{ ∑

G∈G(d)

γd1(G)
}
S(n/M2, d1, d/M

2d1)

=
w(d/M2)
2t(d)+1

· h(d)
h(d/M2)

× {2t(d)S(n/M2, 1, d/M2) + 2t(d)S(n/M2,∆, d/M2∆)}
(by (2.13))

=
w(d/M2)

2
· h(d)
h(d/M2)

× {S(n/M2, 1, d/M2) + S(n/M2,∆, d/M2∆)}

=
w(d/M2)

2
· h(d)
h(d/M2)

×
∑

µν=n/M2

{(
1
µ

)(
∆(f/M)2

ν

)
+
(
∆

µ

)(
(f/M)2

ν

)}

(by (5.1))

=
w(d/M2)

2
· h(d)
h(d/M2)

∑

µν=n/M2

{(
∆

ν

)
+
(
∆

µ

)}
,

as (n/M2, f/M) = 1 by Lemma 4.1(a), and Theorem 9.1 follows.

Our next result gives upper bounds for N(n, d). To prove these we need
the following two inequalities. Let τ(n) denote the number of divisors of n.
Then for any ε > 0 there exists a constant C(ε) > 0 such that

(9.1) τ(n) ≤ C(ε)nε

(see [14, Corollary 1.1, p. 92]). Also there exists a constant C1 > 0 such that
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(9.2)
∏

p|n

(
1 +

1
p

)
≤ C1 log log n, n ≥ 3

(see [14, p. 98, formula (19)]).
We also make use here and in the next section of Gauss’s formula

(9.3)
h(Dk2)
h(D)

=
w(Dk2)
w(D)

k
∏

p|k

(
1−

(
D
p

)

p

)
,

where D is a negative discriminant, and k is a positive integer (see for
example [3, p. 217]).

Corollary 9.1. (a) For any ε > 0 there exists a constant C2(ε) > 0
such that

0 ≤ N(n, d) ≤ C2(ε) f nε.

(b) There exists a constant C3 > 0 such that

0 ≤ N(n, d) ≤
{

12 if n = 1, 2,
C3n

1/2 log log n if n ≥ 3.

P r o o f. If Null(n, d) 6= ∅ then N(n, d) = 0 and the assertions are trivial.
Thus we may suppose that Null(n, d) = ∅. As

w(d/M2)
h(d)

h(d/M2)
= w(d)M

∏

p|M

(
1−

(d/M2

p

)

p

)
(by (9.3))

≤ 6M
∏

p|M

(
1 +

1
p

)
≤ 6M

∏

p|n

(
1 +

1
p

)

and
∑

ν|n/M2

(
∆

ν

)
≤

∑

ν|n/M2

1 ≤ τ(n/M2),

we have, by Theorem 9.1,

0 ≤ N(n, d) ≤ 6M
∏

p|n

(
1 +

1
p

)
τ(n/M2).

To prove (a) we use the inequalities

M ≤ f,
∏

p|n

(
1 +

1
p

)
≤ τ(n) ≤ C(ε/2)nε/2,

τ(n/M2) ≤ τ(n) ≤ C(ε/2)nε/2,

where ε > 0. To prove (b) we use the inequalities
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Mτ(n/M2) ≤MC(1/2)
(

n

M2

)1/2

= C(1/2)n1/2,

∏

p|n

(
1 +

1
p

)
≤ C1 log log n, n ≥ 3,

and

N(1, d) = w(d) ≤ 6, N(2, d) = w(d)
{

1 +
(
∆

2

)}
≤ 12.

R e m a r k 9.1. If (n, f) = 1, Theorem 9.1 reduces to

(9.4) N(n, d) = w(d)
∑

ν|n

(
∆

ν

)
= w(d)

∑

ν|n

(
d

ν

)
.

This is a generalization of Dirichlet’s formula (Theorem 8.2).
If d is a fundamental discriminant, then f = 1, and (9.4) holds for all n.

This result appears to be known but not well-known.

10. Evaluation of the Dirichlet series
∑∞
n=1RG(n, d)/ns. Let D be

a discriminant. For s > 1 the Dirichlet L-series is given by

L(s,D) =
∞∑
n=1

(
D
n

)

ns
,

where
(
D
n

)
is the Kronecker symbol defined in (2.1)–(2.3). In particular,

L(s, 1) =
∑∞
n=1 1/ns = ζ(s), the Riemann zeta function. Also,

L(s,D) =
∞∑
n=1

(∆(D)(f(D))2

n

)

ns
=

∞∑
n=1

(n,f(D))=1

(∆(D)
n

)

ns

=
∏

p|f(D)

(
1−

(∆(D)
p

)

ps

) ∞∑
n=1

(∆(D)
n

)

ns

=
∏

p|f(D)

(
1−

(∆(D)
p

)

ps

)
L(s,∆(D)).

By Corollary 9.1(a) we have, for any ε > 0,

0 ≤ RG(n, d) ≤ N(n, d) ≤ C2(ε)fnε,

so that
∑∞
n=1RG(n, d)/ns converges absolutely for s > 1 and uniformly for

s ≥ 1 + ε.



Chowla–Selberg formula for genera 295

Theorem 10.1. Let G ∈ G(d). For s > 1 we have

∞∑
n=1

RG(n, d)
ns

=
h(d)
2t(d)

∑

m|f

w(d/m2)
h(d/m2)

· 1
m2s

×
∑

d1∈F (d/m2)
d1>0

γd1(G)
∏

p|f/m

(
1−

(
d1
p

)

ps

)(
1−

(∆(d/d1)
p

)

p

)

×L(s, d1)L(s,∆(d/d1)).

P r o o f. For s > 1 we have

∞∑
n=1

RG(n, d)
ns

=
∞∑
n=1

Null(n,d)=∅

RG(n, d)
ns

=
∞∑
n=1

Null(n,d)=∅

1
ns
· w(d/M(n, d)2)

2t(d)+1
· h(d)
h(d/M(n, d)2)

×
∑

d1∈F (d/M(n,d)2)

γd1(G)S(n/M(n, d)2, d1,∆(d/d1)) (by Theorem 8.1)

=
h(d)

2t(d)+1

∑

m|f

w(d/m2)
h(d/m2)

∑

d1∈F (d/m2)

γd1(G)

×
∞∑
n=1

Null(n,d)=∅
M(n,d)=m

S(n/m2, d1,∆(d/d1))
ns

=
h(d)

2t(d)+1

∑

m|f

w(d/m2)
h(d/m2)

∑

d1∈F (d/m2)

γd1(G)

×
∞∑
n=1

(n/m2,f/m)=1

S(n/m2, d1,∆(d/d1))
ns

(by Lemma 4.1(b))

=
h(d)

2t(d)+1

∑

m|f

w(d/m2)
h(d/m2)

· 1
m2s

∑

d1∈F (d/m2)

γd1(G)

×
∞∑

N=1
(N,f/m)=1

S(N, d1,∆(d/d1))
Ns
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=
h(d)

2t(d)+1

∑

m|f

w(d/m2)
h(d/m2)

· 1
m2s

∑

d1∈F (d/m2)

γd1(G)

×
∞∑
µ=1

(µ,f/m)=1

(
d1
µ

)

µs

∞∑
ν=1

(ν,f/m)=1

(∆(d/d1)
ν

)

νs

=
h(d)

2t(d)+1

∑

m|f

w(d/m2)
h(d/m2)

· 1
m2s

∑

d1∈F (d/m2)

γd1(G)

×
∏

p|f/m

(
1−

(
d1
p

)

ps

)
L(s, d1)

∏

p|f/m

(
1−

(∆(d/d1)
p

)

ps

)
L(s,∆(d/d1)).

The assertion of the theorem now follows by noting that d1 → ∆(d/d1) is
a bijection on F (d/m2) (by (2.11)), γd1(G) = γ∆(d/d1)(G) (by (2.12)), and
d1∆(d/d1) < 0.

Theorem 10.2. Let G ∈ G(d). For s > 1 we have

∞∑
n=1

RG(n, d)
ns

=
πh(d)

2t(d)−1
√
|d| ·

1
s− 1

+BG(d) +O(s− 1),

where

BG(d) =
πh(d)

2t(d)−1
√
|d| log 2π +

πγh(d)

2t(d)−2
√
|d|

− π

2t(d)−1
· h(d)√
|d|
∑

p|f
αp(∆, f) log p

− π

2t(d)
· h(d)w(∆)√
|d|h(∆)

|∆|∑
m=1

(
∆

m

)
logΓ

(
m

|∆|
)

− 8π√
|d|

∑

d1∈F (d)
d1>1

β(d1, d,G) log εd1 ,

where αp(∆, f) and β(d1, d,G) are defined in Section 1, and γ denotes
Euler’s constant.

P r o o f. For s > 1, by Theorem 10.1, we have

(10.1)
∞∑
n=1

RG(n, d)
ns

= S1 + S2,
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where

S1 =
h(d)
2t(d)

∑

m|f

w(d/m2)
h(d/m2)

· 1
m2s(10.2)

×
∏

p|f/m

(
1− 1

ps

)(
1−

(
∆
p

)

ps

)
ζ(s)L(s,∆)

and

S2 =
h(d)
2t(d)

∑

m|f

w(d/m2)
h(d/m2)

· 1
m2s

∑

d1∈F (d/m2)
d1>1

γd1(G)(10.3)

×
∏

p|f/m

(
1−

(
d1
p

)

ps

)(
1−

(∆(d/d1)
p

)

ps

)

× L(s, d1)L(s,∆(d/d1)).

We treat S2 first. We have

S2 =
h(d)
2t(d)

∑

m|f

w(d/m2)
h(d/m2)

· 1
m2s

∑

d1∈F (d/m2)
d1>1

γd1(G)

×
∏

p|f/m

(
1−

(
d1
p

)

p

)(
1−

(∆(d/d1)
p

)

p

)

× L(1, d1)L(1,∆(d/d1)) +O(s− 1).

By Dirichlet’s classnumber formulae (see for example [3, p. 171])

L(1, d1) =
2h(d1) log εd1√

d1
,

L(1,∆(d/d1)) =
2πh(∆(d/d1))

w(∆(d/d1))
√
|∆(d/d1)| ,

we obtain

S2 =
πh(d)
2t(d)−2

∑

m|f

w(d/m2)
h(d/m2)

· 1
m2

∑

d1∈F (d/m2)
d1>1

γd1(G)h(d1)h(∆(d/d1)) log εd1

w(∆(d/d1))
√
d1|∆(d/d1)|

×
∏

p|f/m

(
1−

(
d1
p

)

p

)(
1−

(∆(d/d1)
p

)

p

)
+O(s− 1).
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Next, appealing to (9.3), we deduce

S2 =
πw(d)
2t(d)−2

∑

m|f

1
m

∑

d1∈F (d/m2)
d1>1

γd1(G)h(d1)h(∆(d/d1)) log εd1

w(∆(d/d1))
√
d1|∆(d/d1)|

×
∏

p|m
p - f/m

(
1−

(
∆
p

)

p

) ∏

p|f/m

(
1−

(
d1
p

)

p

)(
1−

(∆(d/d1)
p

)

p

)
+O(s− 1).

Then, interchanging the order of summation, and using |d|/d1 = |∆(d/d1)|×
f(d/d1)2, we deduce

(10.4) S2 = − 8π√
|d|

∑

d1∈F (d)
d1>1

β(d1, d,G) log εd1 +O(s− 1).

Now we turn to the determination of S1. As s > 1, we have

1
m2s =

1
m2 − 2(s− 1)

logm
m2 +O((s− 1)2),

∏

p|f/m

(
1− 1

ps

)

=
∏

p|f/m

(
1− 1

p

){
1 + (s− 1)

∑

p|f/m

log p
p− 1

+O((s− 1)2)
}
,

∏

p|f/m

(
1−

(
∆
p

)

ps

)

=
∏

p|f/m

(
1−

(
∆
p

)

p

){
1 + (s− 1)

∑

p|f/M

(
∆
p

)
log p

p− (∆p
) +O((s− 1)2)

}
,

ζ(s) =
1

s− 1
+ γ +O(s− 1),

L(s,∆) = L(1,∆) + (s− 1)L′(1,∆) +O((s− 1)2).

Also, from [3, p. 171] and [12, p. 110], we have

L(1,∆) =
2πh(∆)

w(∆)
√
|∆| ,

L′(1,∆) = − π√
|∆|

|∆|∑
m=1

(
∆

m

)
logΓ

(
m

|∆|
)

+
2h(∆)π(γ + log 2π)

w(∆)
√
|∆| .
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Using these results in (10.2), together with (9.3) and the relation
∑

m|f

1
m

∏

p|f/m

(
1− 1

p

)
= 1,

we obtain after a long but straightforward calculation

S1 =
πh(d)

2t(d)
√
|d|

{
2

s− 1
+ (2 log 2π + 4γ)− 2

∑

m|f

1
m

∏

p|f/m

(
1− 1

p

)
(10.5)

×
{

2 logm−
∑

p|f/m

(
1

p− 1
+

(
∆
p

)

p− (∆p
)
)

log p
}

− w(∆)
h(∆)

|∆|∑
m=1

(
∆

m

)
logΓ

(
m

|∆|
)}

.

Next it is easy to check that

A(f) =
∑

m|f

1
m

∏

p|f/m

(
1− 1

p

)
logm

is an additive function of f . Using this we deduce that

(10.6)
∑

m|f

1
m

∏

p|f/m

(
1− 1

p

)
logm =

∑

p|f

pvp(f) − 1
pvp(f)(p− 1)

log p.

An easy calculation shows that

(10.7)
∑

m|f

1
m

∏

p|f/m

(
1− 1

p

) ∑

p|f/m

(
1

p− 1
+

(
∆
p

)

p− (∆p
)
)

log p

=
∑

p|f

pvp(f) − 1
pvp(f)

(
1

p− 1
+

(
∆
p

)

p− (∆p
)
)

log p.

From (10.6) and (10.7), we deduce that

(10.8)
∑

m|f

1
m

∏

p|f/m

(
1− 1

p

){
2 logm−

∑

p|f/m

(
1

p− 1
+

(
∆
p

)

p− (∆p
)
)

log p
}

=
∑

p|f
αp(∆, f) log p.

The theorem now follows from (10.1), (10.4), (10.5), and (10.8).

Finally, we give the proof of our main theorem, using the approach of
Chowla and Selberg [12].
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P r o o f o f T h e o r e m 1.1. Kronecker’s “Grenz-Formel” (see for ex-
ample [13, Theorem 1, p. 14]) asserts that for s > 1 we have

(10.9)
∞∑

m,n=−∞
(m,n)6=(0,0)

1
(am2 + bmn+ cn2)s

=
2π√
|d| ·

1
s− 1

+K(a, b, c) +O(s− 1),

where

(10.10) K(a, b, c)

=
4πγ√
|d| −

2π log |d|√
|d| +

2π√
|d| log a− 8π√

|d| log
∣∣∣∣η
(
b+
√
d

2a

)∣∣∣∣.

Thus
∞∑
n=1

RG(n, d)
ns

=
∑

[a,b,c]∈G

∞∑
m,n=−∞

(m,n) 6=(0,0)

1
(am2 + bmn+ cn2)s

(10.11)

=
πh(d)

2t(d)−1
√
|d| ·

1
s− 1

+
∑

[a,b,c]∈G
K(a, b, c) +O(s− 1).

From (10.11) and Theorem 10.2, we deduce that

(10.12)
∑

[a,b,c]∈G
K(a, b, c) = BG(d).

Using the expressions for K(a, b, c) (eqn. (10.10)) and BG(d) (Theorem 10.2)
in (10.12), and exponentiating, we obtain the assertion of Theorem 1.1.
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