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Let B denote an integer which is not a perfect cube. It is shown, using a theorem 
of lmniec on primes raprcscnted by quadratic polynomials in two variables, that the 
set of primes p which split the cubic x3 + B modulo p cannot be characterized in 
terms of collgruence omditions. 

Let Ax) be a monk polynomial with integer coefficients that is irreducible over 
the integers. The set of all primes p such that AX) splits completely into distinct 
linear factors modulo p is denoted by SplMX)). If there exists a positive integer m 
and positive integers a l ,  ..., a, (depending only on RX)) lying in distinct residue 
classes (mod m) coprime with m, such that, except for finitely many primes, we have 

then we say that SpI(AX)) is determined by congruence conditions. An abelian 
polynomial is a polynomial whose Galois group is abelian, that is, whose splitting 
field is an abelian extension of the rational number field Q. From class field theory 
(see for example Wymanll), it is known that the polynomials RX) for which SplMX)) 
can be described by congruence conditions are precisily the abelian polynomials. The 
simplest non-abelian polynomial is 1T + B, where the integer B is not a perfect cube. 
We sbow without appeal to class field theory that Spl(1T + B) cannot be described 
by congruence conditions. The principal tool in the proof is a deep analytic theorem 
of Iwanied on primes represented by.quadratic polynomials in two integral variables. 
In addition we use Weber's theoremlo, as well as some results on cubic reciprocity. 
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We begin with a classical theorem which has its origins in the work of Gauss, 
Jacobi and Eisenstein on cubic reciprocity. 

Proposition 1 - Let p be a prime such that p m 1 (mod 3). Let L and M be 
the integers unique up to sign such that 4p = L2 + 27W. Then 

(i) 2 is a cube modulo p if and only if 2 divides M, 

(ii) 3 is a cube modulo p if and only if 3 divides M, 
(iii) if q > 3 is a prime divisor of M then q is a cube modulo p. 
PROOF : See Jacobi6. rn 
By a form we mean a binary quadratic form & + bXY+ c P  with integer 

coefficients. Its discriminant is the integer b2-4ac. An integer n is said to be 
represented by the form & + bXY+ c P  if there exist integers u and v such that n 
= au2 + buv + cv2. The form UP + bXY + c P  is said to be primitive if GCD(a, b, c) 
= 1. It is positive-definite if and only if a > 0 and b2-4ac < 0. We shall only be 
concerned with forms which are both primitive and positive-definite. 

Let 2'11 B and set B1 =B/2' so that B1 is the odd part of B. We now use 
Proposition 1 to show that all the primes represented by the principal form AX, Y) 
of discriminant -108B: belong to Spl(X3 + B). 

Proposition 2 - If p is a prime represented by the principal form AX, Y) = 
.@ + 27 & P of discriminant - 1 0 8 g  then p E Spl(X3 + B). 

PROOF : Let p be a prime represented by the form A? + 278: P so that p m 1 
(mod 3) and p B. Proposition 1 ensures that every prime divisor of B is a cube 
modulo p, so that X3 + B has at least one root (mod p). But, as p 1 (mod 3), it 
must have three roots (mod p), and so p E Spl(X3 + B). 

Let g(X, Y) be a primitive, positive-definite quadratic form of discriminant - 108 
& that represents a square modulo 1 for each odd prime 1 . dividing lo&. It then 
follows from the theory of genera of binary quadratic forms that g(X, Y) belongs to 
the principal genus, see for example Hua4 (512.6). The next result guarantees the 
existence of such a form g(X, Y) which represents only primes which are not in 
Spl($ + B). 

Proposition 3 - There is a primitive positive-definite form g(X, Y) in the 
principal genus of discriminant - 108& with the property that if p is a prime 
represented by g@, Y) then p @ Spl(X3 + B). 

PROOF : We consider two cases according as B1 is a perfect cube or not. 

(i) B1 is a perfect cube : In this case we take g(X, Y) = 4A? + B l X Y  + 
7& P ,  which is a primitive, positive-definite form of discriminant - 108&. Since 
g(X, Y) represents 4, g(X, Y) is in the principal genus. Let p be a prime represented 
by g(X, Y) so there are integers u and v such that p = g(u, v). Then we have 4p 
= L2 + 27M with L = 4u + B1 V, M = B1 v. We note that p m 1 (mod 3) and p + 
Br. As M is odd, 2 is not a cube (mod p) by Proposition l(i), and thus B is not a 
cube (mod p). Hence the congruence x3 + B n 0 (mod p) is insolvable and so 
P @ SplW + B). 
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(ii) B, is not a perfect cube : In this case B1 has at least one odd prime divisor 

q for which 3 $- a where cf 11 B1. We set B2 - Bl/cf so that 9% B2. We consider . 

two subcases : (a) q = 3 and (b) q 3. 

(a) q = 3. Here we take 

which is a primitive, positive-definite form of discriminant -108&. Since g(X, Y) 
represents 3" and 1 + 27&, g is in the principal genus. If p is a prime represented 
by gCY, Y) then there exist integers u and v such that p = g(u, v). Then we have 
4p = L2 + 27W with L - 2 3a u + 2v, M - 26,~. We note that p rn 1 (mod 3), 
p+ B,, 3 -f M and 26, I M. By Proposition 1, 3 is not a cube modulo p but every 
other prime divisor of B is a cube modulo p. Hence the congruence x3 + B rn 0 (mod 
p) is insolvable, and p @ Spl(X + B). 

(b) q 3. The number n, of values of s (mod q) for which the Legendre symbol 

( ' +:' ) has the value 1 is given by 

2 + 27s: 0 (mod q) 

Now the number of solutions s (mod q) of s2 i- 278: (mod q) is 

and by a classical result (see for example Hua4, Theorem 8.2, p. 174) 

so that 

n 9 -- i ( q-  ( 1 +  (+)) + (-11) = { (q - 3)/2, if q i 1 (mod 3), 
(q -.1)/2, if q rn 2 (mod 3). 

Let s,, ...., sRq denote these n, values of s. 

We recall the definition of the cubic residue symbol : Let E be the ring of 
Eisenstein integers; that is, the ring of integers of the field Q(-), If q i 2 (mod 
3), then q remains prime in E. If q i 1 (mod 3), then q -AX where A is a prime 
in E. Let p be a prime in E dividing q and let a E E with p+a. The cubic residue 
symbol [a/pI3 is the unique cube root of unity such that 
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where the norm N(p) -pZ. If q = 1 (mod 3), then [a/q], = [aA], [a/Al,. 

We show that at least one of the,cubic residue symbols 

is not equal to 1. Suppose on the contrary thgt 

Then the ndq - 1) Eisenstein integers 

~ ( S ~ + ~ B ~ G ) ,  k = 1, 2, ..., q -  1; j =  1, 2, ..., n, 

are distinct modulo q and satisfy 

The number R of reduced residue ,classes of Eisenstein integers (mod q) is 

1 
and there are exactly - R residue classes A (mod q). for which 3 [:I3 = 1. -refore 

we have 

that is 

I (q - 3)/2 s (q - 1)/3, if q - 1 (mod 3), 
(q - 1)/2 s (q + 1)/3, ifq = 2 (mod 3), 

equivalently 

Hence for q > 7 there exists an integer s such that 

In fact (1) holds for q = 5 and q = 7 if we take s = -38,. We now appeal to the 
Chinese remainder theorem to define an integer r by 

r 4 (mod 6), r = s (mod q), r = 1 (mod 82). ... (2) 
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The congruences are consistent since if 3 1 B2 the third congruence implies r = 1 

(mod 3). Define the form g(X, Y) of discriminant -1088: by 

g(X, Y) - q2'=' XZ + 2qa r XY + (r2 + 27&) YZ. 

Note lhat AX, Y) is primitive as q+ f l +  278: in view of (1) and (2). It is clearly 
positivedefinite. As g(X, Y) represents q2" and f l  + 27~:, by (1) and (2), AX, Y) is 
in the principal genus. 

Let p be a prime represented by AX, Y) so that p = 1 (mod 3) and p t B , ,  and 
there are integers u and v such that p = g(u, v). Thus p = G, where IC is the 
Eins te in  prime 

n - ( q a u + r v ) + 3 B 2 v ~ = * 1  (mod 3). 

Note that 

n r v ( r + 3 ~ ~ f l ) r v ( s + 3 ~ ~ ~ )  (mod q). 

Then, by Eisenstein's law of cubic reciprocity3, we have 

so that q is not cube modulo p. As 4p = L2 + 27hf with L - 2qQu + 2rv and 
M - 2B2v, Proposition 1 shows that every prime divisor of B other than q is a cube 
modulo q. Hence the congruence f +BmO (mod p) is insolvable and 
P 4 spl(XJ + B). rn 

Our next result relates the form AX, Y) - X Z  + 27& YZ of Proposition 2 and the 
form g(X, Y) of Proposition 3. 

Proposition 4 - Let AX, Y) and g(X, Y) be the forms specified in Propositions 
2 and 3. Then, for each positive integer m there exist integers r, s, t, u with GCD(ru 
- st, m) = 1 such that 

fl, Y) = g(rX + sY, fX  + uY) (mod m). 

PROOF : Since AX, Y) is the principal form of discriminant - I@, it belongs 
to the principal genus. By Proposition 3, AX, Y) also belongs to the principal genus. 
Hence, by Theorem 3.21 @. 58) of Cox2 or 912.5, Exercise 4 of Hua4, the tbertion 
follows. 

The next result is needed in order to apply a theorem of I w a n i d  in the p m f  
of our Theorem. Although Proposition 5 is stated for arbitrary f o m  AX, Y) and 
g(X, Y) it will be applied with AX, Y) and g(X, Y) as in Propositions 2, 3 and 4. 

Proposition 5 - Let AX, Y) and g(X, Y) be primitive, positivedefinite, integral 
binary quadratic forms of the same discriminant D for which there exist integers r, 
s, t, u, m with m even and GCD(ru - st, m) = 1 such that 

AX, Y) r g(rX + sY, f X  + uY) (mod m). 
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Let ,x and y be integers such that 

Set 

Then h(X, Y) is a quadratic polynomial in X and Y with coefficients such that 

(i) h(X, Y) is primitive, 

(ii) h(X, Y) is irreducible over Q, 

(iii) h(X, Y) represents arbitrarily large odd integers, 

(iv) dh are linearly independent over Q. ax' ay 

PROOF : We set G = rx + sy, H = a + uy. 

(i) Clearly all the coefficients of h(X, Y) are divisible by m except possibly the 
constant term g(G, H). However g(G, H) -Ax, y) (mod m) and so is coprime with m. 
Thus h(X, Y) is primitive. 

(ii) As g(G, H) is coprime with m, not both of G and H are zero. If G * 0 (resp. 
H * 0), h(0, Y) (resp. h(X, 0)) is irreducible over Q as its discriminant G2 m2 D (resp. 
H? n? D) is negative, proving that h(X, Y) is irreducible over Q. 

(iii) h(X, 0) has positive leading coefficient and so h(k, 0) takes arbitrarily large 
integral values. These integers are odd as h(k, 0) = g(G, H) -Ax, y) (mod m). 

ah ah 
(iv) Suppose there exist k, 1 E Q (not both zero) such that k- + 1- = 0. .ax a r  

Then, as 

we have 

As a are linea~ forms in X, Y, and 1, X, Y are linearly independent over Q, ax' ay 
we see that 

ah ah contradicting that g genuinely depends on both X and Y. Hence - and - are ax a Y 
linearly independent over Q. rn 

We are now ready to prove the main result of this paper. The proof follows 
ideas used in Spearman and Williams9. 
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Theorem - If B is an integer which is not a perfect cube then Spl(X3 + B) 
cannot be described by congruence conditions. 

PROOF : We suppose that S p l v  + B) can be described by congruence conditions, 
that is, there exist positive integers s, al, ..., a, m with GCD(ai, m) = 1 and the ai 
lying in distinct residue classes modulo m such that, except for finitely many primes 
P9 

p E Spl(X3 + B) o p m al, ..., a, (mod m). ... (3) 

In addition, by enlarging the set of exceptional primes to include the prime 2 if 
necessary, we may take m to be even, since for m odd each congruence p m ai (mod 

m) is equivalent to p m a: (mod 2m), where aif - a, if ai is odd, aif -a, + m, if ai is 
even. By Weber's theoremlo the form XZ + 278: YZ represents infinitely many primes. 
(An elementary proof of Weber's theorem is given in Briggsl.) We choose one of 
these primes po which is  n-ot exceptional. By Proposition 2 we have 
po E S p l w  + B), and so by (3) po m a, (mod m) for some i with 1 s i s s, that is 
po belongs to the arithmetic progression A(a,, m) = {a, + km : k = 0, 1, 2, ...). Let 
g(X, Y) be the form given in Proposition 3. By Proposition 4 there exist integers r, 
s, t, u with GCD(ru - st, m) = 1 such that AX, Y) g(rX + sY, tY+ uY) (mod m). Let 
x and y be integers such that p, -f(x,y). Set h(X, Y) = g(rx + sy + mX, & + uy + 
mY). Then, by Proposition 5, h(X, Y) is primitive, irreducible over Q, represents 
arbitrairly large odd integers, and genuinely depends on both X and Y, so that by 
Iwaniec's theorem5 h(X, Y) represents infinitely many primes. Choose p, to be one 
of these which is not exceptional. Thus p, €A(@, m). However, as p, is represented 
by g(X, Y), by Proposition 2, p, 4 S p l w  + B), contradicting (3). 

We next use the Theorem to exhibit without class field theory a wider class of 
cubic polynomials cCY) for which Spl(c(X)) cannot be described by congruence 
conditions. 

Corollary - Let A and  B be integers such that 9 + A X + B  i s  an  
irreducible cubic polynomial for which there is a nonzero integer C such that 
- 4A3 - 27B2 - -3C2. Then Spl(%' +AX + B) cannot be described by congruence 
conditions. 

PROOF : We begin by recalling the Stickelberger parity theorem (Narkiewid, 
Theorem 4.5, p. 153). Let KX) be a monic irreducible polynomial of degree n with 
integer coefficients. Let p denote an odd prime not dividing the discriminant D of 
fl;X), and suppose 

where the f(X) are polynomials with integer coefficients which are irreducible 

(mod PI- 



308 JAMES G. HUARD, BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS 

We are now ready to prove the Corollary. Let H be the splitting field of AX) 
= XJ + AX + B and rl, r2, r3 E H the roots of AX). As D = ((rl - r d  (r2 - r3) 
(r3 -rl))2 = - 3 6  we see that Q ( a )  G H and [H : Q ( G ) ]  = 3. 

Next we show that if p E Spl(AX)) then p = 1 (mod 3). As p E Spl(AX)) we have 

p t 3 C  and by (4) (5) - ( - l ~ - ~  = 1, so p =  1 (mod 3). 

As D = - 3 6  < 0, AX) has exactly one real root, say rl, so that the other roots 
r2, r3 fom a conjugate pair, say r2;6 and we Set s - r1 + r20 + r3w2. The real number 
s is called a Lagrange resolvent and generates H over Q ( q  (Jacobson7, Lemma 
3, p. 245). The minimal polynomial of s over Q(g) is XJ -3, SO that 
3 E Q ( a ) ,  s 4 a = ) .  As 3 is a real algebraic integer, 3 must in fact be a 
rational integer M, and H is the splitting field of XJ -M. Then, for pt- 36M, we 
have 

* p = 1 (mod 3) and XJ +AX+ B 0 (mod p) has three distinct solutions 

o x3 +Ax + B = 0 (mod n) has three distinct solutions where n is an Eisenstein 
prime with nZ-p 

o in the ring of integers of H, the ideal generated by rc is the product of three 
distinct prime ideals and p - nZ 

o 9 -MI 0 (mod rc) has three distinct solutions and p - 
o $-MI Q (mod p) has three distinct solutions (as residue classes (mod n) 

can be taken to be integers). 

Hence S p l w  +AX+ B) = S p l w  -M) except possibly for a finite set of primes. The 
result now follows from the Theorem. 
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