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Let B denote an integer which is not a perfect cube. It is shown, using a theorem
of Iwaniec on primes represented by quadratic polynomials in two variables, that the

set of primes p which split the cubic X3 + B modulo p cannot be characterized in
terms of congruence conditions.

Let f{x) be a monic polynomial with integer coefficients that is irreducible over
the integers. The set of all primes p such that f{X) splits completely into distinct
linear factors modulo p is denoted by Spl(ffX)). If there exists a positive integer m
and positive integers ay,..., a; (depending only on X)) lying in distinct residue
classes (mod m) coprime with m, such that, except for finitely many primes, we have

p E Spl(fiX)) <> pma,,..,a,(mod m),

then we say that Spl(fX)) is determined by congruence conditions. An abelian
polynomial is a polynomial whose Galois group is abelian, that is, whose splitting
field is an abelian extension of the rational number field Q. From class field theory
(see for example Wyman''), it is known that the polynomials f£X) for which Spl(f{X))
can be described by congruence conditions are precisely the abelian polynomials. The
simplest non-abelian polynomial is X* + B, where the integer B is not a perfect cube.
We show without appeal to class field theory that Spl(X*+ B) cannot be described
by congruence conditions. The principal tool in the proof is a deep analytic theorem
of Iwaniec® on primes represented by quadratic polynomials in two integral variables.
In addition we use Weber’s theorem'®, as well as some results on cubic reciprocity.
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We begin with a classical theorem which has its origins in the work of Gauss,
Jacobi and Eisenstein on cubic reciprocity.

Proposition 1 — Let p be a prime such that p m 1 (mod 3). Let L and M be
the integers unique up to sign such that 4p = LZ + 27M2 Then

(i) 2 is a cube modulo p if and only if 2 divides M;

(i) 3 is a cube modulo p if and only if 3 divides M;

(iii) if ¢ > 3 is a prime divisor of M then q is a cube modulo p.

PROOF : See JacobiS. [ |

By a form we mean a binary quadratic form aX?+ bXY +cY? with integer
coefficients. Its discriminant is the integer b%—4ac. An integer n is said to be
represented by the form aX? + bXY + cY? if there exist integers 4 and v such that n
= au? + buv + cv2, The form aX? + bXY + ¢Y? is said to be primitive if GCD(a, b, ¢)
= 1. It is positive-definite if and only if @ > 0 and b?-4ac <0. We shall only be
concerned with forms which are both primitive and positive-definite.

Let 2'||B and set B, =B/2' so that B, is the odd part of B. We now use
Proposition 1 to show that all the primes represented by the principal form fX, Y)
of discriminant —108B7 belong to Spl(X? + B).

Proposition 2 — If p is a prime represented by the principal form fX, Y) =
X?+27B3Y? of discriminant — 108B> then p € Spl (X? + B).

PROOF : Let p be a prime represented by the form X2+ 27B>Y2 so that p = 1
(mod 3) and p 4 B. Proposition 1 ensures that every prime divisor of B is a cube
modulo p, so that X*>+ B has at least one root (mod p). But, as p = 1 (mod 3) it
must have three roots (mod p), and so p € Spl (X> + B).

Let g(X, Y) be a primitive, positive-definite quadratic form of discriminant ~ 108
B that represents a square modulo ! for each odd prime I - dividing 108B%. It then
follows from the theory of genera of binary quadratic forms that g(X, Y) belongs to
the principal genus, see for example Hua* (§12.6). The next result guarantees the
existence of such a form g(X, Y) which represents only primes which are not in
Spl(X3 + B).

Proposition 3 — There is a primitive positive-definite form g(X, Y) in the
principal genus of discriminant — 10887 with the property that if p is a prime
represented by g(X, Y) then p & Spl(X> + B).

PROOF : We consider two cases according as By is a perfect cube or not.

(i) B, is a perfect cube : In this case we take g(X, Y) = 4X2+2B, XY +
7Bf Y2, which is a primitive, positive-definite form of discriminant — 1088%. Since
8(X, Y) represents 4, g(X, Y) is in the principal genus. Let p be a prime represented

by g(X, Y) so there are integers u and v such that p = g(u, v). Then we have 4p
= L?+27M? with L = 4u + B;v,M =B, v. We note that p = 1 (mod 3) and p ¥

B:..As M is odd, 2 is not a cube (mod p) by Proposition 1(i), and thus B is not a

cube (mod p). Hence the congruence x>*+B=0 (mod p) is insolvable and so
p & Spl(X? + B).
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(ii) B, is not a perfect cube : In this case B, has at least one odd prime divisor
q for which 3 4 a where ¢%| B,. We set B, =B,/q% so that g4 B,. We consider
two subcases : (a) ¢ = 3 and (b) ¢ = 3.

(a) g = 3. Here we take

gX,Y)=320X242-3¢XY+(1+27B3) Y2,

which is a primitive, positive-definite form of discriminant -108B.. Since g(X,Y)
represents 3% and 1 + 27B, g is in the principal genus. If p is a prime represented
by g(X, Y) then there exist integers # and v such that p = g(x, v). Then we have
4p = L2+ 27M? with L=2-3°u+2v, M=2B,y., We note that pm1 (mod 3),
p+ B, 34 M and 2B,|M. By Proposition 1, 3 is not a cube modulo p but every
other prime divisor of B is a cube modulo p. Hence the congruence x* + Bw 0 (mod
p) is insolvable, and p & Spl(X* + B). '

(b) g = 3. The number n, of values of s (mod q) for which the Legendre symbol

5% + 278}
(¥] has the value 1 is given by

q-1
1 s2+27B§])
n,= 14| ——]|

! 520 2( ( q

£+ 278, w0 (mod g)
Now the number of solutions s (mod q) of s2=—27B; (mod q) is
2
1+ —275; =1+ =3 ,
q q

and by a classical result (see for example Hua*, Theorem 8.2, p. 174)

! (s2+27B§] .

s=0 9

so that

1 =3 _ [ (@=-3)2, ifgm1 (mod3),
"4'2("'[“( q ))“(‘l)) = { (g-1)72, ifqm2 (mod 3).

Let s, ..., s,,q denote these n, values of s.

We recall the definition of the cubic residue symbol : Let E be the ring of
Eisenstein integers; that is, the ring of integers of the field Q(V=3). If g= 2 (mod
3), then g remains prime in E. If gm 1 (mod 3), then g =A'A, where A is a prime
in E. Let p be a prime in E dividing q and let o €E with pu4a. The cubic residue
symbol [a/u]; is the unique cube root of unity such that

oMW =173 g 1a/p], (mod ),
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where the norm N(p) = pp. If g= 1 (mod 3), then [a/q]; = [a/A]; [a/A)s.
We show that at least one of the cubic residue symbols

's1+382\/—-_3] [Sng+332‘/3]
3 3

| 4 q

is not equal to 1. Suppose on the contrary that
[ 5;+ 3B, V-3 '
—Slq—z] =1,j=1,2 n,
! 3

Then the n(q — 1) Eisenstein integers
k(sj+3B2\{—_3), k=1,2 .,9-4j=1,2, ..,n,
are distinct modulo g and satisfy
[k(si+3B2‘\/—_3) ] o1
1 3
The number R of reduced residue tclasses of Eisenstein integers (mod g) is

X - { (g-17, ifgm1 (mod3),
¢-1, ifg=2 (mod3),

and there are exactly lR residue classes A (mod q) for which [%] =1. Therefore
3

3
we have
n(qg-1)=< 1 R
9 3 R
that is
(g-3)/2<(q-1)/3, ifgm1 (mod3),
(g—1)/2<(g+1)/3, ifgm2 (mod3),
equivalently

g=<7, ifgml (mod3),
q=<5, if gm2-(mod 3).

Hence for ¢ > 7 there exists an integer s such that
52 + 2782 s+3ByV-3
-_— =1, —— | »1. (1)
q ' q s
In fact (1) holds for ¢ = 5 and g = 7 if we take s = —3B,. We now appeal to the
Chinese remainder theorem to define an integer r by '

ra=4 (mod 6), ras (mod g), r=1 (mod B,). - (2)
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The congruences are consistent since if 3 | B, the third congruence implies r =1
(mod 3). Define the form g(X,Y) of discriminant —108B3 by

8(X,Y)= g2 X2 + 2¢° r XY + (2 + 27B3) Y2.

Note that g(X,Y) is primitive as g4 > +27B3 in view of (1) and (2). It is clearly
positive-definite. As g(X, Y) represents g** and r* +27B;, by (1) and (2), g(X, V) is
in the principal genus.

Let p be a prime represented by g(X,Y) so that p=1 (mod 3) and p{ B,, and
there are integers u and v such that p = g(u, v). Thus p =nn, where xn is the
Eisenstein prime o

n=(q°u+rv)+3B,yV-3 mz1 (mod 3).
Note that
‘ nmv(r+3B¥V-3 )mv(s+3B,V-3 ) (mod 9).

Then, by Eisenstein’s law of cubic reciprocity’, we have
q n ws + 3B, V=3) s+3B,V=3 .
-] — - - - N
[“ ]3 [ q ]3 q 1| q 3

so- that g is not cube modulo p. As 4p = L2+ 27TM? with L =2q°u +2rv and
M = 2B,v, Proposition 1 shows that every prime divisor of B other than g is a cube
modulo q. Hence the congruence x*+Bw0 (mod p) is insolvable and
p & Spl(X° + B). '

Our next result relates the form fX, Y)-X2+27Bf Y? of Proposition 2 and the
form g(X,Y) of Proposition 3.

Proposition 4 — Let fiX, Y) and g(X, Y) be the forms specified in Propositions
2 and 3. Then, for each positive integer m there exist integers r, s, t, ¥ with GCD(ru
— st, m) = 1 such that

fX,Y)mg(rX + sY, tX + uY) (mod m).

PROOF : Since flX, Y) is the principal form of discriminant - 108B3, it belongs
to the principal genus. By Proposition 3, g(X,Y) also belongs to the principal genus.
Hence, by Theorem 3.21 (p. 58) of Cox? or §12.5, Exercise 4 of Hua*, the assertion
follows.

The next result is needed in order to apply a theorem of Iwaniec’ in the proof
of our Theorem. Although Proposition 5 is stated for arbitrary forms fX,Y) and
gX,Y) it will be applied with fX,Y) and g(X, Y) as in Propositions 2, 3 and 4.

Proposition S — Let fiX,Y) and g(X,Y) be primitive, positive-definite, integral
‘binary quadratic forms of the same discriminant D for which there exist integers r,
s, t, u, m with m even and GCD(ru — st, m) = 1 such that

fX,Y) mg(rX + sY, tX + uY) (mod m).
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Let.x and y be integers such that

GCD(flx, y), m) = 1.
Set

h(X,Y) = g(rx + sy + mX, tx + uy + mY).

Then A(X,Y) is a quadratic polynomial in X and Y with coefficients such that
(i) (X, Y) is primitive,
(ii) (X, Y) is irreducible over Q,
(iii) h(X Y) rcpresents arbitrarily large odd integers,

oh
(@i ) aX ay &€ linearly independent over Q.

PROOF : We set G = rx + sy, H = tx + wy.

(i) Clearly all the coefficients of h(X,Y) are divisible by m except possibly the
constant term g(G, H). However g(G, H) = fix,y) (mod m) and so is coprime with m.
Thus A(X,Y) is primitive.

(ii) As g(G, H) is coprime with m, not both of G and H are zero. If G = 0 (resp.
H =0), h(0, Y) (tesp. KX, 0)) is irreducible over Q as its discriminant G2 m2 D (resp.
H? m2 D) is negative, proving that h(X,Y) is irreducible over Q.

(iii) A(X, 0) has positive leading coefficient and so h(k, Q) takes arbitrarily large
integral values. These integers are odd as h(k, 0) = g(G, H) = flx,y) (mod m).

oh . Oh

(iv) Suppose there exist k, ! € Q (not both zero) such that k-aTY~+la_}' = 0.
Then, as
KX, Y) = m2g(x,Y) + mX 25 (G, H) + mY 2 (G, H) + 8(G, B),
we have

g 9 9 9
m(k5§,+15§]+(k5§(6,m+15§(a,m

As E% 55’ are linear forms in X, Y, and 1, X, Y are linearly mdependent over Q,

we see that
rEL % L,
- . ok oh
contradicting that g genuinely depends. on both X and Y. Hence X and y e
linearly independent over Q e : ’ [ |

We are now ready to prove the main result: of this paper The proof follows
ideas used in Spearman and Williams®.
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Theorem — If B is an integer which is not a perfect cube then Spl(X3 + B)
cannot be described by -congruence conditions.

PROOF : We suppose that Spl(X3 + B) can be described by congruence conditions,
that is, there exist positive integers s,ay, ..., a, m with GCD(a;,; m) = 1 and the g;
lying in distinct residue classes modulo m such that, except for finitely many primes
ps

PESPI(X®+B) <> pmay,..,a, (mod m). - (3)

In addition, by enlarging the set of exceptional primes to include the brime 2 if
necessary, we may take m to be even, since for m odd each congruence p = g; (mod
m) is equivalent to p-a,~' (mod 2m), where ai' =g, if a; is odd, a,~' =a;,+m, if g is
even. By Weber’s theorem' the form X + 27B: Y2 represents infinitely many primes.
(An elementary proof of Weber’s theorem -is given in Briggs'.) We choose one of
these primes p, which is not exceptional. By Proposition 2 we have
PoESpl(X®+B), and so by (3) p,ma; (mod m) for some i with 1 <i<s, that is
po belongs to the arithmetic progression A(a,m) = {a,+km:k = 0, 1, 2, ..}. Let
g(X,Y) be the form given in Proposition 3. By Proposition 4 there exist integers r,
s, t, u with GCD(ru — st, m) = 1 such that fX,Y) = g(rX +sY, tX + uY) (mod m). Let
x and y be integers such that p, = fix,y). Set A(X,Y) = g(rx + sy + mX, tx + uy +
mY). Then, by Proposition 5, A(X, Y) is primitive, irreducible over Q, represents
arbitrairly large odd integers, and genuinely depends on both X and Y, so that by
Iwaniec’s theorem® h(X, Y) represents infinitely many primes. Choose p;, to be one
of these which is not exceptional. Thus p, € A(a, m). However, as p, is represented
by g(X, Y), by Proposition 2, p, & Spl(X* + B), contradicting (3). [ |

We next use the Theorem to exhibit without class field theory a wider class of
cubic polynomials c(X) for which Spl(c(X)) cannot be described by congruence
conditions.

Corollary — Let A and B be integers such that X3+AX+B is an
irreducible cubic polynomial for which there is a nonzero integer C such that
—4A3 —27B% = -3C%. Then Spl(X3 +AX + B) cannot be described by congruence
conditions.

PROOF : We begin by recalling the Stickelberger parity theorem (Narkiewicz®,
Theorem 4.5, p. 153). Let f{X) be a monic irreducible polynomial of degree n with
integer coefficients. Let p denote an odd prime not dividing the discriminant D of

fiX), and suppose
fO =) ... f4X) (mod p),

where the f(X) are polynomials with integer coefficients which are irreducible
(mod p).

DY _ iy : : w (4)
Then [p) -1y



308 JAMES G. HUARD, BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

We are now ready to prove the Corollary. Let H be the splitting field of AX)
=X + AX + B and r,r),r;EH the roots of AX). As D = ((r;—ry) (r2—r3)
(r3—n))? = -3C? we see that Q(V-3 )C H and [H : Q(V-3)] = 3.

Next we show that if p € Spl(iX)) then p= 1 (mod 3). As p € Spl(fX)) we have

p43C and by (4) (‘;Cq]-(-l)3-3 =1, so pm1 (mod 3).

As D = -3C2 < 0, fiX) has exactly one real root, say r,, so that the other roots
ra, r3 form a conjugate pair, say r,;7, and we set s = r; + r,® + r;02. The real number
s is called a Lagrange resolvent and generates H over Q(V-3) (Jacobson’, Lemma
3, p. 245). The minimal polynomial of s over Q(V-3) is X3-s% so that
s$SEQW-3), s&Q(V-3). As 53 is a real algebraic integer, s> must in fact be a
rational integer M, and H is the splitting field of X3 - M. Then, for p4—3C2M, we
have

P ESpl(X3 + AX + B)

< pm 1 (mod 3) and X3 +AX + B= 0 (mod p) has three distinct solutions

< x3+Ax+B=( (mod x) has three distinct solutions where = is an Eisenstein
prime with nt = p

<> in the ring of integers of H, the ideal generated by & is the product of three
distinct prime ideals and p = nin

< x3-Mm=0 (mod x) has three distinct solutions and p = nix

< x-M=Q (mod p) has three distinct solutions (as residue classes (mod )
can be taken to be integers).

Hence Spl(X® + AX + B) = Spl(X® — M) except possibly for a finite set of primes. The
result now follows from the Theorem. [ |
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