ON THE EPSTEIN ZETA FUNCTION

ZHANG NAN-YUE AND KENNETH S. WILLIAMS

Abstract. The Epstein zeta function $Z(s)$ is defined for Res >1 by

$$
Z(s)=\sum_{\substack{m, n=-\infty \\(m, n) \neq(0,0)}}^{\infty} \frac{1}{\left(a m^{2}+b m n+c n^{2}\right)^{s}}
$$

where a, b, c are real numbers with $a>0$ and $b^{2}-4 a c<0 . Z(a)$ can be continued analytically to the whole complex plane except for a simple pole at $s=1$. Simple proofs of the functional equation and of the Kronecker "Grenz-formel" for $Z(s)$ are given. The value of $Z(k)(k=2,3, \ldots)$ is determined in terms of infinite series of the form

$$
\sum_{n=1}^{\infty} \frac{\cot ^{r} n \pi \tau}{n^{2 k-1}}(r=1,2, \ldots, k)
$$

where $\tau=\left(b+\sqrt{b^{2}-4 a c}\right) / 2 a$.

1. Introduction

Let a, b and c be real numbers with $a>0$ and $D=4 a c-b^{2}>0$, so that

$$
\begin{equation*}
Q(u, v)=a u^{2}+b u v+c v^{2} \tag{1.1}
\end{equation*}
$$

is a positive-definite binary quadratic form of discriminant $-D$.
The Epstein zeta function $Z(s)$ is defined by the double series

$$
\begin{equation*}
Z(s)=\sum_{\substack{m, n=-\infty \\(m, n) \neq(0,0)}}^{\infty} \frac{1}{Q(m, n)^{s}} \tag{1.2}
\end{equation*}
$$

Received January 18, 1994.
1991 Mathematics Subject Classification. 11M41.
Key words and phrases. Epstein zeta function, functional equation, Kronecker Grenz-formel.
(1) Research supported by the National Natural Science Foundation of China.
(2) Research supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.
where $s=\sigma+i t$ and σ, t are real numbers with $\sigma>1$.
Since $Q(u, v) \geq \lambda\left(u^{2}+v^{2}\right)$ with

$$
\lambda=\frac{1}{2}\left(a+c-\sqrt{(a-c)^{2}+b^{2}}\right)>0
$$

for all real numbers u and v, the series (1.2) converges absolutely for $\sigma>1$ and uniformly in every half plane $\sigma \geq 1+\epsilon(\epsilon>0)$. Thus $Z(s)$ is an analytic function of s for $\sigma>1$. Furthermore, the function $Z(s)$ can be continued analytically to the whole complex plane except for a simple pole at $s=1$ and satisfies the functional equation

$$
\begin{equation*}
\left(\frac{\sqrt{D}}{2 \pi}\right)^{s} \Gamma(s) Z(s)=\left(\frac{\sqrt{D}}{2 \pi}\right)^{1-s} \Gamma(1-s) Z(1-s) \tag{1.3}
\end{equation*}
$$

The purpose of this paper is three-fold. First, in §2, by making use of the Poisson summation formula and an integral representation of the Bessel function, we give a proof of the functional equation (1.3), which in the authors' view is simpler than those given in [1], [4], [7]. Secondly, in §3, we deduce, in a very simple manner from the results of $\S 2$, the values of A_{-1} and A_{0} in the Laurent expansion

$$
Z(s)=\frac{A_{-1}}{s-1}+A_{0}+A_{1}(s-1)+\cdots
$$

valid in a neighbourhood of $s=1$ (the so-called Kronecker "Grenz-formel"). Again we believe our proof to be more direct than those in [3], [4] and [5]. Finally, in §4, we determine the value of $Z(k)$ for any positive integer $k \geq 2$ in terms of series of the type $\sum_{n=1}^{\infty} \frac{\cot ^{r} n \pi \tau}{n^{2 k-1}}$, where $\tau=(b+i \sqrt{D}) / 2 a$ and $r=1, \ldots, k$. The reader should compare our result with that of Smart [6].

2. The Functional Equation of $Z(s)$.

Setting

$$
\begin{equation*}
x=\frac{b}{2 a}, \quad y=\frac{\sqrt{D}}{2 a}, \quad \tau=x+i y=\frac{b+i \sqrt{D}}{2 a} \tag{2.1}
\end{equation*}
$$

we have

$$
\tau+\bar{\tau}=2 x=\frac{b}{a}, \quad \tau \bar{\tau}=\frac{b^{2}+D}{4 a^{2}}=\frac{c}{a}
$$

so that

$$
\begin{equation*}
Q(m, n)=a m^{2}+b m n+c n^{2}=a(m+n \tau)(m+n \bar{\tau})=a|m+n \tau|^{2} \tag{2.2}
\end{equation*}
$$

and

$$
Z(s)=\sum_{\substack{m, n=-\infty \\(m, n) \neq(0,0)}}^{\infty} \frac{1}{a^{s}|m+n \tau|^{2 s}}, \quad \sigma>1
$$

Separating the term with $n=0$, we obtain

$$
\begin{equation*}
Z(s)=\frac{2}{a^{s}} \sum_{m=1}^{\infty} \frac{1}{m^{2 s}}+\frac{2}{a^{s}} \sum_{n=1}^{\infty} \sum_{m=-\infty}^{\infty} \frac{1}{|m+n \tau|^{2 s}}, \quad \sigma>1 \tag{2.3}
\end{equation*}
$$

In order to evaluate the second term in (2.3), we apply the Poisson summation formula [8, p.17]

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty} f(m)=\sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) \cos 2 m \pi u d u \tag{2.4}
\end{equation*}
$$

to the function $f(t)=\frac{1}{|t+\tau|^{20}}$ and obtain

$$
\begin{aligned}
\sum_{m=-\infty}^{\infty} \frac{1}{|m+\tau|^{2 s}} & =\sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\cos 2 m \pi u}{|u+\tau|^{2 s}} d u \\
& =\sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\cos 2 m \pi u}{\left\{(u+x)^{2}+y^{2}\right\}^{s}} d u=\sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\cos 2 m \pi(t-x)}{\left(t^{2}+y^{2}\right)^{s}} d t \\
& =\sum_{m=-\infty}^{\infty} \cos 2 m \pi x \int_{-\infty}^{\infty} \frac{\cos 2 m \pi t}{\left(t^{2}+y^{2}\right)^{s}} d t
\end{aligned}
$$

since the integrals involving the sine function vanish, that is

$$
\begin{align*}
& \sum_{m=-\infty}^{\infty} \frac{1}{|m+\tau|^{2 s}} \\
= & \frac{2}{y^{2 s-1}} \int_{0}^{\infty} \frac{1}{\left(1+t^{2}\right)^{s}} d t+\frac{2^{2}}{y^{2 s-1}} \sum_{m=1}^{\infty} \cos 2 m \pi x \int_{0}^{\infty} \frac{\cos 2 m \pi y t}{\left(1+t^{2}\right)^{s}} d t, \quad \sigma>1 . \tag{2.5}
\end{align*}
$$

Next, we evaluate the two integrals appearing in (2.5). Making the substitution $u=\frac{t^{2}}{1+t^{2}}$, we have

$$
\frac{1}{1+t^{2}}=1-u, \quad d u=\frac{2 t d t}{\left(1+t^{2}\right)^{2}}=2 u^{1 / 2}(1-u)^{3 / 2} d t
$$

and

$$
\begin{align*}
\int_{0}^{\infty} \frac{d t}{\left(1+t^{2}\right)^{s}} & =\frac{1}{2} \int_{0}^{1}(1-u)^{s-3 / 2} u^{-1 / 2} d u=\frac{1}{2} B\left(s-\frac{1}{2}, \frac{1}{2}\right) \\
& =\frac{\Gamma\left(s-\frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{2 \Gamma(s)}=\frac{\Gamma\left(s-\frac{1}{2}\right) \sqrt{\pi}}{2 \Gamma(s)} \tag{2.6}
\end{align*}
$$

From an integral representation of the Bessel function [2, p.140]

$$
\begin{equation*}
K_{\nu}(y)=\frac{1}{\sqrt{\pi}}\left(\frac{2}{y}\right)^{\nu} \Gamma\left(\nu+\frac{1}{2}\right) \int_{0}^{\infty} \frac{\cos y t}{\left(1+t^{2}\right)^{\nu+\frac{1}{2}}} d t, \quad y>0, \quad \operatorname{Re} \nu>-\frac{1}{2} \tag{2.7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\cos 2 m \pi y t d t}{\left(1+t^{2}\right)^{s}}=\frac{\sqrt{\pi}(m \pi y)^{s-\frac{1}{2}}}{\Gamma(s)} K_{s-\frac{1}{2}}(2 m \pi y), \quad \sigma>\frac{1}{2} \tag{2.8}
\end{equation*}
$$

Putting (2.6) and (2.8) into (2.5), we obtain

$$
\begin{aligned}
& \sum_{m=-\infty}^{\infty} \frac{1}{|m+\tau|^{2 s}} \\
= & \frac{\Gamma\left(s-\frac{1}{2}\right) \sqrt{\pi}}{y^{2 s-1} \Gamma(s)}+\frac{4 \sqrt{\pi}}{y^{2 s-1} \Gamma(s)} \sum_{m=1}^{\infty}(m \pi y)^{s-\frac{1}{2}} \cos (2 m \pi x) K_{s-\frac{1}{2}}(2 m \pi y), \quad \sigma>1
\end{aligned}
$$

so that for $\boldsymbol{n} \geq 1$

$$
\begin{align*}
& \sum_{m=-\infty}^{\infty} \frac{1}{|m+n \tau|^{2 s}} \tag{2.9}\\
= & \frac{\Gamma\left(s-\frac{1}{2}\right) \sqrt{\pi}}{n^{2 s-1} y^{2 s-1} \Gamma(s)}+\frac{4 \sqrt{\pi}}{n^{2 s-1} y^{2 s-1} \Gamma(s)} \sum_{m=1}^{\infty}(m n \pi y)^{s-\frac{1}{2}} \cos (2 m n \pi x) K_{s-\frac{1}{2}}(2 m n \pi y) .
\end{align*}
$$

Then, from (2.9) and (2.3), we have

$$
\begin{align*}
Z(s)= & 2 a^{-s} \zeta(2 s)+2 a^{-s} y^{1-2 s} \frac{\Gamma\left(s-\frac{1}{2}\right) \sqrt{\pi}}{\Gamma(s)} \zeta(2 s-1) \\
& +\frac{8 a^{-s} y^{\frac{1}{2}-s} \pi^{s}}{\Gamma(s)} \sum_{n=1}^{\infty} n^{1-2 s} \sum_{m=1}^{\infty}(m n)^{s-\frac{1}{2}} \cos (2 m n \pi x) K_{s-\frac{1}{2}}(2 m n \pi y) \tag{2.10}
\end{align*}
$$

Collecting the terms with $m n=k$, we obtain

$$
\begin{align*}
Z(s)= & 2 a^{-s} \zeta(2 s)+2 a^{-s} y^{1-2 s} \frac{\Gamma\left(s-\frac{1}{2}\right) \sqrt{\pi}}{\Gamma(s)} \zeta(2 s-1) \\
& +\frac{8 a^{-s} y^{\frac{1}{2}-s} \pi^{s}}{\Gamma(s)} \sum_{k=1}^{\infty}\left(\sum_{n \mid k} n^{1-2 s}\right) k^{s-\frac{1}{2}} \cos (2 k \pi x) K_{s-\frac{1}{2}}(2 k \pi y) \tag{2.10}
\end{align*}
$$

that is

$$
\begin{equation*}
Z(s)=2 a^{-s} \zeta(2 s)+2 a^{-s} y^{1-2 s} \frac{\Gamma\left(s-\frac{1}{2}\right) \sqrt{\pi}}{\Gamma(s)} \zeta(2 s-1)+\frac{2 a^{-s} y^{\frac{1}{3}-s} \pi^{s}}{\Gamma(s)} H(s) \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
H(s)=4 \sum_{k=1}^{\infty} \sigma_{1-2 a}(k) k^{a-\frac{1}{2}} \cos (2 k \pi x) K_{a-\frac{1}{2}}(2 k \pi y) \tag{2.12}
\end{equation*}
$$

and $\sigma_{\nu}(k)$ denotes the sum of the ν-th powers of the divisors of k, that is,

$$
\sigma_{\nu}(k)=\sum_{d \mid k} d^{\nu}=\sum_{d \mid k}\left(\frac{k}{d}\right)^{\nu}
$$

The formula (2.11) provides the analytic continuation of $Z(s)$. In fact, the first two terms on the right-side of (2.11) have removable singularities at $s=\frac{1}{2}-n(n=0,1,2, \ldots)$ because at $s=\frac{1}{2}$ the pole of $\zeta(2 s)$ is cancelled by the pole of $\Gamma\left(s-\frac{1}{2}\right)$ and at $s=\frac{1}{2}-n$ ($n=1,2, \ldots$) the pole of $\Gamma\left(s-\frac{1}{2}\right)$ is cancelled by the zero of $\zeta(2 s-1)(\zeta(-2 n)=0$, $n=1,2, \ldots)$; besides, it is not difficult to prove that $H(s)$ is an entire function [1]. Thus, it follows the $Z(s)$ has a continuation in the whole finite complex plane except for a simple pole at $s=1$.

Now, we write (2.11) in another form:

$$
\begin{equation*}
\left(\frac{a y}{\pi}\right)^{s} \Gamma(s) Z(s)=2\left(\frac{y}{\pi}\right)^{s} \Gamma(s) \zeta(2 s)+2 y^{1-s} \pi^{\frac{1}{2}-s} \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)+2 y^{\frac{1}{2}} H(s) \tag{2.13}
\end{equation*}
$$

By the functional equation for the Riemann zeta function

$$
\zeta(2 s-1)=2(2 \pi)^{2 s-2} \sin \left(s-\frac{1}{2}\right) \pi \Gamma(2-2 s) \zeta(2-2 s)
$$

and the basic properties of the gamma function

$$
\begin{aligned}
\Gamma(2-2 s) & =\frac{\Gamma(1-s) \Gamma\left(\frac{3}{2}-s\right)}{\sqrt{\pi} 2^{2 s-1}}=\frac{\Gamma(1-s)}{\sqrt{\pi} 2^{2 s-1}} \cdot \frac{\pi}{\Gamma\left(s-\frac{1}{2}\right) \sin \left(s-\frac{1}{2}\right) \pi} \\
& =\frac{\sqrt{\pi} \Gamma(1-s)}{2^{2 s-1} \Gamma\left(s-\frac{1}{2}\right) \sin \left(s-\frac{1}{2}\right) \pi}
\end{aligned}
$$

we have

$$
\pi^{\frac{1}{2}-s} \Gamma\left(s-\frac{1}{2}\right) \zeta(2 s-1)=\pi^{s-1} \Gamma(1-s) \zeta(2-2 s)
$$

and

$$
\begin{equation*}
\left(\frac{a y}{\pi}\right)^{s} \Gamma(s) Z(s)=2\left(\frac{y}{\pi}\right)^{s} \Gamma(s) \zeta(2 s)+2\left(\frac{y}{\pi}\right)^{1-s} \Gamma(1-s) \zeta(2-2 s)+2 y^{\frac{1}{2}} H(s) \tag{2.14}
\end{equation*}
$$

Recalling the following facts:

$$
K_{-\nu}(y)=K_{\nu}(y)
$$

(see [2, p.110]) and

$$
k^{-\frac{k}{2}} \sigma_{\nu}(k)=k^{-\frac{k}{2}} \sum_{d \mid k} d^{\nu}=k^{-\frac{k}{2}} \sum_{d \mid k}\left(\frac{k}{d}\right)^{\nu}=k^{\frac{k}{2}} \sigma_{-\nu}(k)
$$

we have from (2.12)

$$
\begin{equation*}
H(s)=H(1-s) \tag{2.15}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\phi(s)=\left(\frac{a y}{\pi}\right)^{s} \Gamma(s) Z(s) \tag{2.16}
\end{equation*}
$$

then from (2.14) and (2.15) we obtain

$$
\begin{equation*}
\phi(s)=\phi(1-s) \tag{2.17}
\end{equation*}
$$

Since $a y=\sqrt{D} / 2$ (from (2.1)), (2.17) can be rewritten in the following form

$$
\begin{equation*}
\left(\frac{\sqrt{D}}{2 \pi}\right)^{s} \Gamma(s) Z(s)=\left(\frac{\sqrt{D}}{2 \pi}\right)^{1-s} \Gamma(1-s) Z(1-s) \tag{2.18}
\end{equation*}
$$

which is the functional equation of $Z(s)$.

3. Determination of A_{-1} and A_{0}.

As $Z(s)$ is an analytic function in the finite complex plane except for a simple pole at $s=1, Z(s)$ has a Laurent expansion

$$
\begin{equation*}
Z(s)=\frac{A_{-1}}{s-1}+A_{0}+A_{1}(s-1)+\cdots \tag{3.1}
\end{equation*}
$$

valid in a neighbourhood of $s=1$. In this neighbourhood of $s=1$, we have the following expansions:

$$
\zeta(2 s-1)=\frac{1}{2(s-1)}+\gamma+\cdots
$$

where γ denotes Euler's constant,

$$
\begin{aligned}
\frac{\Gamma\left(s-\frac{1}{2}\right) \sqrt{\pi}}{\Gamma(s)} & =\pi+\left.\pi^{\frac{1}{2}}\left[\frac{\Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)}\right]^{\prime}\right|_{s=1}(s-1)+\cdots \\
& =\pi+\pi^{\frac{1}{2}}\left(\psi\left(\frac{1}{2}\right)+\gamma\right) \Gamma\left(\frac{1}{2}\right)(s-1)+\cdots \quad\left(\text { where } \psi(s)=\frac{\Gamma^{\prime}(s)}{\Gamma(s)}\right) \\
& =\pi-2 \pi \log 2 \cdot(s-1)+\cdots,
\end{aligned}
$$

since $\psi(1)=-\gamma$ and $\psi\left(\frac{1}{2}\right)=-\gamma-2 \log 2 ;$

$$
2 a^{-s} y^{1-s}=\frac{2}{a y}\left[1-\log \left(a y^{2}\right)(s-1)+: \cdot\right]
$$

and

$$
\begin{align*}
& 2 a^{-s} y^{1-2 s} \frac{\Gamma\left(s-\frac{1}{2}\right) \sqrt{\pi}}{\Gamma(s)} \zeta(2 s-1) \\
= & \frac{2 \pi}{a y}\left[1-\log \left(a y^{2}\right)(s-1)+\cdots\right][1-2 \log 2(s-1)+\cdots]\left[\frac{1}{2(s-1)}+\gamma+\cdots\right] \\
= & \frac{4 \pi}{\sqrt{D}}\left[1-\log \left(a y^{2}\right)(s-1)+\cdots\right]\left[\frac{1}{2(s-1)}+(\gamma-\log 2)+\cdots\right] \\
= & \frac{4 \pi}{\sqrt{D}}\left[\frac{1}{2(s-1)}+\left(\gamma-\log 2-\frac{1}{2} \log \left(a y^{2}\right)\right)+\cdots\right] \\
= & \frac{2 \pi}{\sqrt{D}} \cdot \frac{1}{s-1}+\frac{2 \pi}{\sqrt{D}}\left(2 \gamma-\log \frac{D}{a}\right)+\cdots . \tag{3.2}
\end{align*}
$$

From (3.2) and (2.11), we obtain

$$
\begin{equation*}
Z(s)=\frac{\pi^{2}}{3 a}+\frac{2 \pi}{\sqrt{D}} \cdot \frac{1}{s-1}+\frac{2 \pi}{\sqrt{D}}\left(2 \gamma-\log \frac{D}{a}\right)+2 a^{-1} y^{-\frac{1}{2}} \pi H(1)+O(|s-1|) \tag{3.3}
\end{equation*}
$$

Next, we evaluate the fourth term on the right side of (3.3) which contains $H(1)$. We have

$$
\begin{aligned}
2 a^{-1} y^{-\frac{1}{2}} \pi H(1) & =8 a^{-1} y^{-\frac{1}{2}} \pi \sum_{k=1}^{\infty} \sigma_{-1}(k) k^{\frac{1}{2}} \cos (2 \pi k x) K_{\frac{1}{2}}(2 \pi k y) \\
& =8 a^{-1} y^{-1} \sum_{k=1}^{\infty} \sigma_{-1}(k) \cos (2 \pi k x) \int_{0}^{\infty} \frac{\cos 2 \pi k y t}{1+t^{2}} d t \quad \text { (by (2.7)) } \\
& =\frac{8 \pi}{\sqrt{D}} \sum_{k=1}^{\infty} \sigma_{-1}(k) \cos (2 \pi k x) e^{-2 \pi k y} \quad\left(\text { as } \int_{0}^{\infty} \frac{\cos l t}{1+t^{2}} d t=\frac{\pi}{2} e^{-l}\right)
\end{aligned}
$$

If we set $q=e^{\pi i \tau}$ (so that $|q|=e^{-\pi y}<1$ as $y>0$) then $q^{2 k}+\bar{q}^{2 k}=2 e^{-2 k \pi y} \cos 2 k \pi x$ and

$$
\begin{aligned}
2 a^{-1} y^{-\frac{1}{2}} \pi H(1)= & \frac{4 \pi}{\sqrt{D}}\left(\sum_{k=1}^{\infty} \sigma_{-1}(k) q^{2 k}+\sum_{k=1}^{\infty} \sigma_{-1}(k) \bar{q}^{2 k}\right) \\
& =-\frac{4 \pi}{\sqrt{D}} \log \prod_{k=1}^{\infty}\left(1-q^{2 k}\right)\left(1-\bar{q}^{2 k}\right) \\
& =-\frac{4 \pi}{\sqrt{D}} \log \prod_{k=1}^{\infty}\left|1-q^{2 k}\right|^{2}
\end{aligned}
$$

and from (3.3) we have

$$
\begin{equation*}
Z(s)=\frac{\pi^{2}}{3 a}+\frac{2 \pi}{\sqrt{D}} \cdot \frac{1}{s-1}+\frac{2 \pi}{\sqrt{D}}\left(2 \gamma-\log \frac{D}{a}\right)-\frac{4 \pi}{\sqrt{D}} \log \prod_{k=1}^{\infty}\left|1-q^{2 k}\right|^{2}+O(|s-1|) \tag{3.4}
\end{equation*}
$$

The Dedekind eta function $\eta(z)$ is given by

$$
\begin{equation*}
\eta(z)=e^{\frac{\pi i z}{12}} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right), \quad z=x+i y, \quad y>0 \tag{3.5}
\end{equation*}
$$

Hence we have

$$
\log \prod_{n=1}^{\infty}\left|1-q^{2 n}\right|^{2}=\log |\eta(\tau)|^{2}+\frac{\pi y}{6}=2 \log |\eta(\tau)|+\frac{\pi \sqrt{D}}{12 a}
$$

giving another form of (3.4):

$$
\begin{equation*}
Z(s)=\frac{2 \pi}{\sqrt{D}} \cdot \frac{1}{s-1}+\frac{2 \pi}{\sqrt{D}}\left(2 \gamma-\log \frac{D}{a}\right)-\frac{8 \pi}{\sqrt{D}} \log |\eta(\tau)|+O(|s-1|) \tag{3.6}
\end{equation*}
$$

We have shown that

$$
\begin{equation*}
A_{-1}=\frac{2 \pi}{\sqrt{D}}, \quad A_{0}=\frac{4 \pi \gamma}{\sqrt{D}}-\frac{2 \pi}{\sqrt{D}} \log \frac{D}{a}-\frac{8 \pi}{\sqrt{D}} \log \left|\eta\left(\frac{b+i \sqrt{D}}{2 a}\right)\right| \tag{3.7}
\end{equation*}
$$

4. Evaluation of $Z(k)$ for any positive integer $k \geq 2$.

We need the following lemma.
Lemma. For any non-negative integer k and any non-negative real number λ,

$$
\begin{equation*}
I_{k}(\lambda)=\int_{0}^{\infty} \frac{\cos 2 \pi \lambda x}{\left(1+x^{2}\right)^{k+1}} d x=\frac{\pi}{2^{2 k+1}} e^{-2 \pi \lambda} \sum_{j=0}^{k}\binom{2 k-j}{k}(4 \pi \lambda)^{j} / j! \tag{4.1}
\end{equation*}
$$

Proof. Let C_{R} denote the contour in the upper half of the complex z-plane consisting of the semi-circle $|z|=R$ and the real axis from $z=-R$ to $z=R$. Applying Cauchy's residue theorem to the intégral of the function $\frac{e^{2 \pi i \lambda s}}{\left(1+z^{2}\right)^{x+1}}$ along the contour C_{R}, and then letting $R \rightarrow+\infty$, we obtain

$$
\begin{aligned}
I_{k}(\lambda) & =\frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{2 \pi i \lambda x}}{\left(1+x^{2}\right)^{k+1}} d x=\frac{1}{2} \cdot 2 \pi i \cdot \frac{1}{k!} \frac{d^{k+1}}{d z^{k+1}}\left\{\frac{e^{2 \pi i \lambda z}}{(z+i)^{k+1}}\right\}_{z=i} \\
& =\frac{\pi i}{k!} \sum_{j=0}^{k}\binom{k}{j}\left(e^{2 \pi i \lambda z}\right)_{z=i}^{(j)}\left(\frac{1}{(z+i)^{k+1}}\right)_{z=i}^{(k-j)} \\
& =\frac{\pi i}{k!} \sum_{j=0}^{k}\binom{k}{j}(2 \pi i \lambda)^{j} e^{-2 \pi \lambda} \frac{(k+1)(k+2) \cdots(k+k-j)}{(2 i)^{2 k-j+1}}(-1)^{k-j} \\
& =\frac{\pi}{2^{2 k+1}} e^{-2 \pi \lambda} \sum_{j=0}^{k}\binom{2 k-j}{k}(4 \pi \lambda)^{j} / j!
\end{aligned}
$$

Now we start the evaluation of $Z(k+1), k \geq 1$. First, from (2.5), we have

$$
\sum_{m=-\infty}^{\infty} \frac{1}{|m+\tau|^{2 k+2}}=\frac{2}{y^{2 k+1}} \int_{0}^{\infty} \frac{d t}{\left(1+t^{2}\right)^{k+1}}+\frac{4}{y^{2 k+1}} \sum_{m=1}^{\infty} \cos (2 m \pi x) I_{k}(m y)
$$

Then, by (2.6) and the lemma, we deduce that

$$
\begin{aligned}
& \sum_{m=-\infty}^{\infty} \frac{1}{|m+\tau|^{2 k+2}} \\
= & \frac{\Gamma\left(k+\frac{1}{2}\right) \sqrt{\pi}}{y^{2 k+1} k!}+\frac{4 \pi}{(2 y)^{2 k+1}} \sum_{j=0}^{k}\binom{2 k-j}{k} \frac{1}{j!} \sum_{m=1}^{\infty}(4 \pi m y)^{j} \cos (2 m \pi x) e^{-2 m \pi y} \\
= & \frac{2 \pi}{(2 y)^{2 k+1}}\binom{2 k}{k}+\frac{4 \pi}{(2 y)^{2 k+1}} \sum_{j=0}^{k}\binom{2 k-j}{k} \frac{1}{j!} \sum_{m=1}^{\infty}(4 \pi m y)^{j} \cos (2 m \pi x) e^{-2 m \pi y} .
\end{aligned}
$$

Putting the above equality into (2.3), we obtain

$$
\begin{aligned}
& \frac{1}{2} a^{k+1} Z(k+1) \\
= & \zeta(2 k+2)+\frac{2 \pi}{(2 y)^{2 k+1}}\binom{2 k}{k} \zeta(2 k+1) \\
& +\frac{4 \pi}{(2 y)^{2 k+1}} \sum_{j=0}^{k}\binom{2 k-j}{k} \frac{1}{j!}(4 \pi y)^{j} \sum_{n=1}^{\infty} \frac{1}{n^{2 k+1}} \sum_{m=1}^{\infty}(m n)^{j} \cos (2 m n \pi x) e^{-2 m n \pi y} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\cos (2 m n \pi x) e^{-2 m n \pi y} & =\frac{1}{2}\left(e^{2 m n \pi i \tau}+e^{-2 m n \pi i \tau}\right) \\
& =\frac{1}{2}(e(m n \tau)+e(-m n \bar{\tau}))
\end{aligned}
$$

we have

$$
\begin{align*}
& \frac{1}{2} a^{k+1} Z(k+1) \\
= & \zeta(2 k+2)+\frac{2 \pi}{(2 y)^{2 k+1}}\binom{2 k}{k} \zeta(2 k+1) \\
+ & \frac{2 \pi}{(2 y)^{2 k+1}} \sum_{j=0}^{k}\binom{2 k-j}{k} \frac{1}{j!}(4 \pi y)^{j} \sum_{n=1}^{\infty} \frac{1}{n^{2 k+1}} \sum_{m=1}^{\infty}(m n)^{j}(e(m n \tau)+e(-m n \bar{\tau})) . \tag{4.2}
\end{align*}
$$

In view of the fact that if $\operatorname{Im} \tau>0$,

$$
\left\{\begin{array}{l}
\sum_{m=1}^{\infty} e(m \tau)=\frac{i}{2} \cot \pi \tau-\frac{1}{2} \tag{4.3}\\
\sum_{m=1}^{\infty} e(-m \bar{\tau})=\frac{-i}{2} \cot \pi \bar{\tau}-\frac{1}{2}
\end{array}\right.
$$

we have

$$
\begin{equation*}
\sum_{m=1}^{\infty}(e(m \tau)+(-m \bar{\tau}))=\frac{i}{2}(\cot \pi \tau-\cot \pi \bar{\tau})-1 \tag{4.4}
\end{equation*}
$$

From (4.2) and (4.4), we have

$$
\begin{align*}
& \frac{1}{2} a^{k+1} Z(k+1) \\
= & \zeta(2 k+2)+\frac{2 \pi}{(2 y)^{2 k+1}}\binom{2 k}{k}\left[\zeta(2 k+1)+\sum_{n=1}^{\infty} \frac{1}{n^{2 k+1}} \sum_{m=1}^{\infty}((e(m n \tau)+e(-m n \bar{\tau}))]\right. \\
& +\frac{2 \pi}{(2 y)^{2 k+1}} \sum_{j=1}^{k}\binom{2 k-j}{k} \frac{1}{j!}(4 \pi y)^{j} \sum_{n=1}^{\infty} \frac{1}{n^{2 k+1}} \sum_{m=1}^{\infty}(m n)^{j}(e(m n \tau)+e(-m n \bar{\tau})) \\
= & \zeta(2 k+2)+\frac{\pi i}{(2 y)^{2 k+1}}\binom{2 k}{k} \sum_{n=1}^{\infty} \frac{1}{n^{2 k+1}}(\cot \pi n \tau-\cot \pi n \bar{\tau}) \\
& +\frac{2 \pi}{(2 y)^{2 k+1}} \sum_{j=1}^{k}\binom{2 k-j}{k} \frac{1}{j!}(4 \pi y)^{j} \sum_{n=1}^{\infty} \frac{1}{n^{2 k+1}} \sum_{m=1}^{\infty}(m n)^{j}(e(m n \tau)+e(-m n \bar{\tau})) .(4 \tag{4.5}
\end{align*}
$$

Differentiating both sides of (4.3) \boldsymbol{j} times gives

$$
\begin{aligned}
(2 \pi i)^{j} \sum_{m=1}^{\infty} m^{j} e(m \tau) & =\frac{i}{2}(\cot \pi \tau)^{(j)} \\
& =\frac{i}{2}(2 \pi)^{j}(-1)^{\left[\frac{i}{2}\right]} \sum_{l=0}^{\left[\frac{i+1}{2}\right]} C_{j+1-2 l}(\cot \pi \tau)^{j+1-2 l}
\end{aligned}
$$

that is

$$
\begin{equation*}
\sum_{m=1}^{\infty} m^{j} e(m \tau)=\frac{(-1)^{j}}{2} i^{j+1}(-1)^{\left[\frac{[j}{2}\right]} \sum_{l=0}^{\left[\frac{j+1}{2}\right]} C_{j+1-2 l}(\cot \pi \tau)^{j+1-2 l} \tag{4.6}
\end{equation*}
$$

where each coefficient $C_{j+1-2 l}$ can be expressed in terms of Stirling numbers of the second kind [9, p.37]. From (4.6), we have

$$
\begin{align*}
& \sum_{m=1}^{\infty} m^{j}(e(m \tau)+e(m \bar{\tau})) \\
= & \frac{1}{2} i^{j+1}(-1)^{\left[\frac{i}{2}\right]} \sum_{l=0}^{\left[\frac{i+1}{2}\right]} C_{j+1-2 l}\left\{(-1)^{j}(\cot \pi \tau)^{j+1-2 l}-(\cot \pi \bar{\tau})^{j+1-2 l}\right\} . \tag{4.7}
\end{align*}
$$

From (4.5) and (4.7), we have

$$
\begin{aligned}
\frac{1}{2} a^{k+1} Z(k+1)= & \zeta(2 k+2)+\frac{\pi i}{(2 y)^{2 k+1}}\binom{2 k}{k} \sum_{n=1}^{\infty} \frac{\cot n \pi \tau-\cot n \pi \bar{\tau}}{n^{2 k+1}} \\
+ & \frac{\pi i}{(2 y)^{2 k+1}} \sum_{j=1}^{k}\binom{2 k-j}{k}(-1)^{\left[\frac{i}{2}\right]} \frac{1}{j!} i^{j}(4 \pi y)^{j} \sum_{l=0}^{\left[\frac{j+1}{2}\right]} C_{j+1-2 l} \\
& \cdot \sum_{n=1}^{\infty} \frac{(-1)^{j}(\cot \pi n \tau)^{j+1-2 l}-(\cot \pi n \bar{\tau})^{j+1-2 l}}{n^{2 k+1}}
\end{aligned}
$$

that is

$$
\begin{align*}
\frac{1}{2} a^{k+1} Z(k+1)= & \zeta(2 k+2)+\frac{\pi i}{(2 y)^{2 k+1}} \sum_{j=0}^{k}\binom{2 k-j}{k}(-1)^{\left[\frac{i}{2}\right]}(4 \pi y)^{j} / j! \\
& \cdot \sum_{l=0}^{\left[\frac{i+1}{2}\right]} C_{j+1-2 l} \sum_{n=1}^{\infty} \frac{(-1)^{j}(\cot \pi n \tau)^{j+1-2 l}-(\cot \pi n \bar{\tau})^{j+1-2 l}}{n^{2 k+1}} . \tag{4.8}
\end{align*}
$$

In particular, if $b=0$, then $x=0, \tau=y i=\sqrt{\frac{c}{a}} i, \cot \tau=\cot (y i)=-i \operatorname{coth} y$, and

$$
\begin{align*}
& \frac{1}{2} a^{k+1} Z(k+1) \\
& =\zeta(2 k+2)+\frac{2 \pi}{(2 y)^{2 k+1}} \sum_{j=0}^{k}(-1)^{\left[\frac{i+1}{2}\right]}\binom{2 k-j}{k}(4 \pi y)^{j} / j! \tag{4.9}\\
& \quad \cdot \sum_{l=0}^{\left[\frac{i+2}{2}\right]} C_{j+1-2 l} \sum_{n=1}^{\infty} \frac{(\operatorname{coth} n \pi y)^{j+1-2 l}}{n^{2 k+1}}
\end{align*}
$$

References

[1] P. T. Bateman and E. Grosswald, "On Epstein's zeta function," Acta Arith., 9 (1964), 365-373.
[2] N. N. Lebedev, Special Functions and their Applications, Prentice-Hall Inc., Englewood Cliffs, N. J. (1965).
[3] Y. Motohashi, "A new proof of the limit formula of Kronecker," Proc. Japan. Acad., 44 (1968),614616.
[4] A. Selberg and S. Chowla, "On Epstein's zeta function," J. Reine Angew. Math., 227 (1967),86-110.
[5] C. L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay (1980).
[6] J. R. Smart, "On the values of the Epstein zeta function," Glasgow Math. J., 14 (1973), 1-12.
[7] P. R. Taylor, "The functional equation for Epstein's zeta function," Quart. J. Math. Oxford Ser., 11 (1940), 177-182.
[8] E. C. Titchmarsh, The Theory of the Zeta-function, Clarendon Press, Oxford (1986).
[9] I. J. Schwatt, An Introduction to the Operations with Series, Cheesea Publishing Company, New York (1961).

Information Department, The People's University of China, Beijing, People's Republic of China, 100872 . Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, K1S 5B6.

