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UNRAMIFIED QUADRATIC EXTENSIONS
OF A QUADRATIC FIELD

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

ABSTRACT. Given a quadratic field K, we determine the
number of quadratic extensions of K, which are unramified at
all finite primes.

Let @ denote the field of rational numbers. Let K be a quadratic
extension of @, and let L be a quadratic extension of K. We show
(Theorem 1) that if L/K is unramified at all finite primes then L is
a bicyclic extension of @, that is, Gal(L/Q) ~ Z3 x Z;. Then in
Theorem 2 we give the precise form of those bicyclic extensions L such
that L/K is unramified at all finite primes. Theorem 2 then enables
us to determine for a given quadratic field K the number of unramified
quadratic extensions of K (Theorem 3).

Theorem 1. Let K be a quadratic extension of Q. Let L be a
quadratic extension of K. If L/K is unramified at all finite primes,
then L is a bicyclic extension of Q.

Proof. As K is a quadratic extensioi. of @, we have K = Q(+/c), where
¢ is a square-free integer not equal to 1. As L is a quadratic extension
of K, there exists a nonsquare integer y of K such that L = K (/).
We set uOx = RS?, where R and S are integral ideals of the ring Ok
of integers of K with R square-free. It was shown in [5, Theorem 1]
that the relative discriminant of L over K is given by d(L/K) = RT?,
for some integral ideal T of Ox. As L/K is unramified at all finite
primes, we have R = T = Ok, and thus uOg = S2.

Let Py,... , P; be the distinct prime ideals of O which divide d(K) =
c or 4c. It is well known (see, for example, [1, p. 249]) that the class
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of the ideal S contains the ideals P; ---P;_ and (P,:-- P;)/(P;, -+- B;,)
for some integers i1,... ,i, with 1 <4; < -+ <i, <tand 0<r <t
At least one of Nx/q(P;, -+ P;,) and Nx/q((Py+- P)/(Py, -+~ P,)) is
odd and is a positive divisor d of c. Hence, S ~ (d,+/c). Thus there
exist a(# 0) € Ok and fA(# 0) € Ok with aS = ((d,/c). Squaring
we obtain (as uOx = S2)a?uOk = $2dOx. Hence there is a unit ¢
of Ok such that a?y = #2de. As p is not a square in Ok, de is not a
square in Ok, and L = K(/E) = K(Vde).

If € = £1, then L = Q(+/¢, vEd) is bicyclic. If c = —1 the only other
units of Ok are ¢ = +i. As d is a positive divisor of ¢ we have d = 1.
Hence,

L = QW/=T,VE) = QV5) =Q(lj;) = QW=T,V3)

is a bicyclic extension of Q. However, L = Q(v/—1,v2) is not an
unramified extension of Q(v/—1) since (1 +4) = (1 + (1 +14)/v2)? in
Oy, so this possibility in fact cannot occur.

If ¢ = —3 the only other units of Ox are ¢ = £(1/2)(-1 £ /-3).
As d is a positive odd divisor of ¢, we have d = 1 or 3. Thus, as

[L:Q]=4,wehave L = Q(V=3,1/~(1/2)(-1£ v=3) ) = Q(¥1T) =

Q(+v/=3,v/-1) is a bicyclic extension of Q. However, Q(v/=3,v/~1) is
not an unramified extension of Q(v/—3) as (2) = (1414)2 in Oy, so this
possibility in fact cannot occur. Any further units must come from real
quadratic fields K. Thus, it remains to consider ¢ > 0 and £ # +1.

Let €9 be the fundamental unit (> 1) of Ox. Let n = z+ y+/c be the
least unit of Ox with = and y positive integers. Then n = 65 , where
k =1 or 3, and € = £¢f for some integer g # 0. Hence

L= K(V&) = K(y/+de§) = K (\/2del?) = K (/Edns)
K(vEd), ifg=0 (mod?2),
- {K(\/Er_;), if g=1 (mod 2).
When g is even, L = Q(1/¢, vZ£d) is a bicyclic extension of Q. When g
is odd and z2 — cy® = 1,

L= Q(\/E, Jd@+ wa) = Q(v&, +/2dEz 1))
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is bicyclic (see, for example, [3, Section 1]). Finally, when g is odd
and 2 — cy? = —1, we have the following table of congruences, where
the corresponding values of the ideal T' have been determined from [5,
Theorem 1].

c +dz +dy T
c=2 (mod 4) | 1 (mod 2) | 1 (mod 2) 20k
¢=3 (mod 4) | cannot cannot
occur occur
¢=5 (mod 8) | 2 (mod 4) | 1 (mod 2) 20k
c=1 (mod 8) | 0 (mod 4) |1 (mod 2) | (2,(1/2)(1 - V<))
or (2,(1/2)(1 + ve))

This table shows that some prime ideal of Og lying above 2 ramifies
in Oy, contradicting that L/K is unramified at all finite primes. o

Theorem 2. Let K be a quadratic extension of Q so that K =
Q(y/c) where ¢ is a square-free integer not equal to 1. Let L be a
quadratic extension of K which is unramified at all finite primes. Then
L = K(y/m), where m is a divisor (# 1,¢) of ¢ with m =1 (mod 4)).
Conversely, any such field is unramified at all finite primes of Ok.

Proof. As L is a quadratic extension of K which is unramified at
all finite primes, by Theorem 1, L is a bicyclic extension of Q, say

L= Q(\/Es \/_7;;), where m # 1,c.

Let p be a rational prime which ramifies in Q(y/m). Then p ramifies
in L. But L/K is unramified at all finite primes so p must ramify in
K = Q(+/c). Hence, recalling that

_[m, ifm=1 (mod4)
dQ(vm)) = {4m, if m=2,3 (mod 4),
(and similarly for Q(1/c)) we see that

m|2¢, if c=3 (mod 4), m =2 (mod 4),
m|e, otherwise.
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If c = 2 (mod 4), then m|c, and as L = Q(+/¢, vm) = Q(V/¢, /¢/m),
we may assume that m is odd. As L/K is unramified at (2, /) we see
from [3 or 4, Table A] that L falls under case Al so that m = 1 (mod 4).

If c = 3 (mod4) and m # 2 (mod 4), then m|c and as L =
Q(Ve, vm) = Q(v/¢, \/¢c/m), we may assume that m =1 (mod 4).

If c = 3 (mod4) and m = 2 (mod 4), then from case B7 of [3
or 4, Table B] we see that (2,1 + /c) ramifies in L = Q(v/¢,/m),
contradicting that L/K is unramified at all finite primes.

If c=5 (mod 8), then m|c and, as L/K is unramified at 20 we see
from [3 or 4, Table C] that L falls under case C2 so that m =1 (mod
4).

If c = 1 (mod 8), then m|c and, as L/K is unramified at both
(2,(1/2)(1 4+ +/c)) and (2,(1/2)(1 — /c)), we see from [3 or 4, Table D]
that L falls under case D3 so that m =1 (mod 4).

Conversely, suppose that L = K(y/m), where m is a divisor of ¢
with m = 1 (mod 4)). We recall from the proof of Theorem 1 that
d(L/K) = RT?. As m =1 (mod 4), we see from cases Al, B2, C2
and D3 of Tables A, B, C and D of [3 or 4] that T = Ok. Finally, as
mOk = (m, /c)?, it follows that R = Ok, s0 d(L/K) =Ok. 0

The case ¢ < 0 of Theorem 2 is given in [2, Lemma 6.8].

Theorem 3. Let K be a quadratic extension of Q so that K = Q(+1/¢)
for some square-free integer ¢ # 1. Let n denote the number of distinct
primes dividing d(K). Then the number N of quadratic extensions L
of K such that L/ K is unramified at all finite primes is given by

N=21-1,

The number N’ of quadratic extensions L of K such that L/K is
unramified (that is, unramified at all primes both finite and infinite)
18 given by

N = q =3 (mod 4) which divides c,

{ 2"=2 — 1, ifc> 0 and there exists at least one prime
2"~1 _ 1, otherwise.
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Proof. By Theorem 2, remembering that Q(/¢, vm) = Q(1/¢, vc/m),
we see that
N=60 > 1,

mjc
m#l,c
m=1 (mod 4)

where m runs through positive and negative divisors of ¢, and

0= 1, if c=2,3 (mod 4),
“11/2, ife=1 (mod 4).

The asserted result now follows as

T 1= {2"—1 -1, ifc=2,3 (mod 4),
T l2r—2, ifc=1 (mod4).
mjc
m#l,c
m=1 (mod 4)

To prove the asgertion regarding N’ we recall that Q(/¢, vm)/Q(/¢)
is ramified at infinity if and only if ¢ > 0 and m < 0. Hence N’ = N if
¢ < 0. If ¢ > 0 we have by Theorem 2,

N =6 Z 1
dlc
d=1 (mod 4)

d#1,c

3 S5 1| -1, ifc=1 (mod4),

dle
d=1 (mod 4)

b 1{-1, ife=2,3 (mod4),
d
L \d=1 (xl:l:od 4)

where d runs through the positive divisors of ¢. The result now follows

ol if there does not exist a prime
Z 1= ¢ = 3 (mod 4) dividing ¢,
2'=1 if there exists a prime
d=1 (mod 4) g =3 (mod 4) dividing c,
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where [ is the number of distinct odd prime divisors of ¢, that is,

= ifc=1 (mod 4),
T ln-1, ifc=2,3 (mod4). o

Example. The quadratic field Q(v/30) has 23! — 1 = 3 quadratic
extensions which are unramified at all finite primes (Theorem 3).
These three fields are Q(+/30,v/=3), Q(+/30,v5) and Q(v/30,/—15)
(Theorem 2). However, only 23-2 — 1 = 1 of these is an unramified

extension of Q(v/30), namely, Q(v/30, v5).
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