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UNRAMIFIED QUADRATIC EXTENSIONS 
OF A QUADRATIC FIELD 

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS 

ABSTRACT. Given a quadratic field K, we determine the 
number of quadratic extenaiona of K, which are unrarnified at 
all finite primes. 

Let Q denote the field of rational numbers. Let K be a quadratic 
extension of Q, and let L be a quadratic extension of K.  We show 
(Theorem 1) that if L/K is unramified at all finite primes then L is 
a bicyclic extension of Q, that is, Gal (L/Q) - 2 2  x 2 2 .  Then in 
Theorem 2 we give the precise form of those bicyclic extensions L such 
that L/K is unramified at all finite primes. Theorem 2 then enables 
us to determine for a given quadratic field K the number of unramified 
quadratic extensions of K (Theorem 3). 

Theorem 1. Let K be a quadratic extension of Q. Let L be a 
quadratic extension of K .  If L/K is unramified at all finite primes, 
then L is a bicyclic extension of Q. 

Proof. As K is a quadratic extensiol. of Q, we have K = Q (fi) , where 
c is a square-free integer not equal to 1. As L is a quadratic extension 
of K ,  there exists a nonsquare integer p of K such that L = K(,/ji). 
We set pOK = RS2, where R and S are integral ideals of the ring OK 
of integers of K with R square-free. It was shown in [5, Theorem 11 
that the relative discriminant of L over K is given by d(L/K) = RT2, 
for some integral ideal T of OK. As LIK is unramified at all finite 
primes, we have R = T = OK, and thus pOK = S2. 

Let PI, . . . , Pt be the distinct prime ideals of OK which divide d(K) = 
c or 4c. It is well known (see, for example, [I, p. 2491) that the class 
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of the ideal S contains the ideals Pi, - - Pi, and (PI - Pt)/(Pil . . Pi,) 
for some integers il, . . . ,i, with 1 5 i l  < . . . < i, < t and 0 < r 5 t. 
At least one of NKIQ(Pil . - Pi,) and NKlQ((Pl - - - Pt)/(Pil . . . Pi,)) is 
odd and is a positive divisor d of c. Hence, S N (d, Jc). Thus there 
exist a(# 0) E OK and P(# 0) E OK with aS = P(d, 4 ) .  Squaring 
we obtain (as p o ~  = S2) a2@K = P 2 d O ~ .  Hence there is a unit E 

of OK such that a 2 p  = P2 &. As p is not a square in OK, & is not a 
square in OK, and L = K(@) = ~ ( 6 ) .  

If E = f 1, then L = Q(fi,  m) is bicyclic. If c = - 1 the only other 
units of OK are s = f i. As d is a positive divisor of c we have d = 1. 
Hence, 

is a bicyclic extension of Q. However, L = Q ( a ,  4 )  is not an 
unramified extension of Q ( a )  since (1 + i) = (1 + (1 + i)/fi)2 in 
OL, so this possibility in fact cannot occur. 

If c = -3 the only other units of OK are s = f (1/2)(-1 f G). 
As d is a positive odd divisor of c, we have d = 1 or 3. Thus, as 

[L: Q] =4 ,  wehave L=Q(-,J-(1/2)(-If-)) =Q( l f l )  = 

Q ( Q ,  a) is a bicyclic extension of Q. However, Q(-, a )  is 
not an unramified extension of Q(-) as (2) = (1 + i)2 in OL, so this 
possibility in fact cannot occur. Any further units must come from real 
quadratic fields K. Thus, it remains to consider c > 0 and E # f 1. 

Let s o  be the fundamental unit (> 1) of OK. Let q = x + y& be the 
least unit of OK with x and y positive integers. Then q = sk, where 
k = 1 or 3, and s = fs; for some integer g # 0. Hence 

( d )  if g = 0 (mod 2), 

K(-), if g = 1 (mod 2). 

When g is even, L = Q(&, m) is a bicyclic extension of Q. When g 
is odd and x2 - cy2 = 1, 
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is bicyclic (see, for example, [3, Section 11). Finally, when g is odd 
and x2 - q2 = -1, we have the following table of congruence., where 
the corresponding values of the ideal T have been determined from [5, 
Theorem 11. 

This table shows that some prime ideal of OK lying above 2 ramifies 
in OL, contradicting that LIK is unramified at all finite primes. 

c 
c G 2 (mod 4) 
c = 3 (mod 4) 

c = 5 (mod 8) 
c = 1 (mod 8) 

Theorem 2. Let K be a quadratic extension of Q so that K = 
Q ( a  where c is a square-free integer not equal to 1. Let L be a 
quadratic extension of K which is unramified at all finite primes. Then 
L = K(fi) ,  where m is a divisor (# 1,c) of c with m = 1 (mod 4)). 
Conversely, any such field is unramified at all finite primes of OK. 

Proof. As L is a quadratic extension of K which is unramified at 
all finite primes, by Theorem 1, L is a bicyclic extension of Q, say 
L = Q ( 4 ,  fi), where m # 1, c. 

Let p be a rational prime which ramifies in Q(f i ) .  Then p ramifies 
in L. But LIK is unramified at all finite primes so p must ramify in 
K = Q(&). Hence, recalling that 

f d x  
1 (mod 2) 

cannot 
OCCUI 

2 (mod 4) 

0 (mod 4) 

m, if m = 1 (mod 4) 
4m, if m = 2,3 (mod 4), 

(and similarly for Q ( 4 ) )  we see that 

fd!4 
1 (mod 2) 

cannot 
OCCUI 

1 (mod 2) 

1 (mod 2) 

if c = 3 (mod 4), m = 2 (mod 4), 
otherwise. 

T 

~ O K  

~ O K  

(2, (1/2)(1- &)) 
or (2, (112)(1+ 4% 
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If c = 2 (mod 4), then mlc, and as L = Q ( 4 ,  fi) = Q ( 4 ,  m ) ,  
we may assume that m is odd. As LIK is unramified at (2, &3) we see 
from [3 or 4, Table A] that L falls under case A1 so that m = 1 (mod 4). 

I f  c = 3 (mod 4) and m f 2 (mod 4), then mlc and as L = 
Q ( 4 ,  6) = Q ( 4 ,  m ) ,  we may assume that m = 1 (mod 4). 

If c 3 (mod 4) and m 2 (mod 4), then from case B7 of [3 
or 4, Table B] we see that (2,l + 4 )  ramifies in L = Q(Jc, fi), 
contradicting that L IK  is unramified at all finite primes. 

If c = 5 (mod 8), then mlc and, as LIK is unramified at 2OK we see 
from [3 or 4, Table C] that L falls under case C2 so that m = 1 (mod 
4). 

If c = 1 (mod 8), then mlc and, as LIK is unramified at both 
(2, (1/2)(1+ 4 ) )  and (2, (1/2)(1- 4 ) ) ,  we see from [3 or 4, Table Dl 
that L falls under case D3 so that m = 1 (mod 4). 

Conversely, suppose that L = K(f i ) ,  where m is a divisor of c 
with m = 1 (mod 4)). We recall from the proof of Theorem 1 that 
d(L/K) = R T ~ .  As m = 1 (mod 4), we see from cases Al, B2, C2 
and D3 of Tables A, B, C and D of [3 or 41 that T = OK. Finally, as 
mOK = (m, fi)2, it follows that R = OK, so d(L/K) = OK. 

The case c < 0 of Theorem 2 is given in [2, Lemma 6.81. 

Theorem 3. Let K be a quadmtic extension of Q so that K = Q(Jc) 
for some square-be integer c # 1. Let n denote the number of distinct 
primes dividing d(K). Then the number N  of quadmtic extensions L 
of K such that LIK is unmmified at all finite primes is given by 

The number N' of quadmtic extensions L of K such that LIK is 
unmmified (that is, unmmified at all primes both finite and infinite) 
is given by 

2n-2 - 1, if c > 0 and there exists at least one prime 
N ' =  { q r 3 (mod 4) which divides c, 

2"-l - 1, otherwise. 



QUADRATIC FIELD 787 

P m j  By Theorem 2, remembering that Q(fi, 6) = Q(&, f i lm),  
we see that 

~ = e  C 1, 
mlc 

m#l,c 
m=l (mod 4) 

where m runs through positive and negative divisors of c, and 

if c r 2 , 3  (mod4), 
if c = 1 (mod 4). 

The asserted result now follows as 

c I = {  
2"-'- 1, i f c = 2 , 3  (mod 4), 
2" - 2, if c n 1 (mod 4). 

mlc 
m#l,c 

m r l  (mod 4) 

To prove the assertion regarding Nt we recall that Q(&, f i ) / Q ( & )  
is ramified at infinity if and only if c > 0 and m < 0. Hence Nt = N if 
c < 0. If c > 0 we have by Theorem 2, 

dlc 
d ~ l  (mod 4) 

d#l,c 

': ( -1, i f c ~ l  (mod4), 

d+l (mod 4) 

( $ i f c ~ 2 , 3 ( m o d 4 ) ,  

, d l 1  (mod 4) 

where d runs through the positive divisors of c. The result now follows 
as 

2', if there does not exist a prime 
q r 3 (mod 4) dividing c, 

2'-', if there exists a prime 
dlc 

d l 1  (mod 4) q E 3 (mod 4) dividing c, 
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where 1 is the number of distinct odd prime divisors of c, that is, 

n, if c = 1 (mod 4), I = {  
n - 1 ,  i f c = 2 , 3  (mod4). 

Example. The quadratic field Q ( m )  has 23-1 - 1 = 3 quadratic 
extensions which are unramified at all finite primes (Theorem 3). 
These three fields are Q ( m ,  a), Q ( m ,  6 )  and Q ( m ,  m) 
(Theorem 2). However, only 23-2 - 1 = 1 of these is an unramified 
extension of Q ( m ) ,  namely, Q ( m ,  6 ) .  
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